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Regression task is a supervised learning task, i.e.

■ a training (multi)set T = {(x(1), y(1)), . . . , (x(|T|), y(|T|))} is available, where

■ the labels y(i) are quantitative, often continuous (as opposed to classification tasks

where y(i) are nominal).

■ Its purpose is to model the relationship between independent variables (inputs)
x = (x1, . . . , xD) and the dependent variable (output) y.
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Regression task is a supervised learning task, i.e.

■ a training (multi)set T = {(x(1), y(1)), . . . , (x(|T|), y(|T|))} is available, where

■ the labels y(i) are quantitative, often continuous (as opposed to classification tasks

where y(i) are nominal).

■ Its purpose is to model the relationship between independent variables (inputs)
x = (x1, . . . , xD) and the dependent variable (output) y.

Linear regression is a particular regression model which assumes (and learns) linear
relationship between the inputs and the output:

ŷ = h(x) = w0 + w1x1 + . . . + wDxD = w0 + 〈w, x〉 = w0 + xwT ,

where

■ ŷ is the model prediction (estimate of the true value y),

■ h(x) is the linear model (a hypothesis),

■ w0, . . . , wD are the coefficients of the linear function, w0 is the bias, organized in a row
vector w,

■ 〈w, x〉 is a dot product of vectors w and x (scalar product),

■ which can be also computed as a matrix product xwT if w and x are row vectors.
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Homogeneous coordinates: If we add “1” as the first element of x so that
x = (1, x1, . . . , xD), then we can write the linear model in an even simpler form (without
the explicit bias term):

ŷ = h(x) = w0 · 1 + w1x1 + . . . + wDxD = 〈w, x〉 = xwT .
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Homogeneous coordinates: If we add “1” as the first element of x so that
x = (1, x1, . . . , xD), then we can write the linear model in an even simpler form (without
the explicit bias term):

ŷ = h(x) = w0 · 1 + w1x1 + . . . + wDxD = 〈w, x〉 = xwT .

Matrix notation: If we organize the data into matrix X and vector y, such that

X =




1 x(1)

...
...

1 x(|T|)


 and y =




y(1)

...

y(|T|)


 ,

and similarly with ŷ, then we can write a batch computation of predictions for all data in
X as

ŷ = XwT .
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Any ML model has 2 operation modes:

1. learning (training, fitting) and

2. application (testing, making predictions).
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1. learning (training, fitting) and

2. application (testing, making predictions).

The model h can be viewed as a function of 2 variables: h(x, w).
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Any ML model has 2 operation modes:

1. learning (training, fitting) and

2. application (testing, making predictions).

The model h can be viewed as a function of 2 variables: h(x, w).

Model application: If the model is given (w is fixed), we can manipulate x to make
predictions:

ŷ = h(x, w) = hw(x).
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Any ML model has 2 operation modes:

1. learning (training, fitting) and

2. application (testing, making predictions).

The model h can be viewed as a function of 2 variables: h(x, w).

Model application: If the model is given (w is fixed), we can manipulate x to make
predictions:

ŷ = h(x, w) = hw(x).

Model learning: If the data is given (T is fixed), we can manipulate the model parameters
w to fit the model to the data:

w∗ = argmin
w

J(w, T).
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Any ML model has 2 operation modes:

1. learning (training, fitting) and

2. application (testing, making predictions).

The model h can be viewed as a function of 2 variables: h(x, w).

Model application: If the model is given (w is fixed), we can manipulate x to make
predictions:

ŷ = h(x, w) = hw(x).

Model learning: If the data is given (T is fixed), we can manipulate the model parameters
w to fit the model to the data:

w∗ = argmin
w

J(w, T).

How to train the model?
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Simple (univariate) regression deals with cases where x(i) = x(i), i.e. the examples are
described by a single feature (they are 1-dimensional).
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Simple (univariate) regression deals with cases where x(i) = x(i), i.e. the examples are
described by a single feature (they are 1-dimensional).

Fitting a line to data:

■ find parameters w0, w1 of a linear model ŷ = w0 + w1x

■ given a training (multi)set T = {(x(i), y(i))}
|T|
i=1.
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Simple (univariate) regression deals with cases where x(i) = x(i), i.e. the examples are
described by a single feature (they are 1-dimensional).

Fitting a line to data:

■ find parameters w0, w1 of a linear model ŷ = w0 + w1x

■ given a training (multi)set T = {(x(i), y(i))}
|T|
i=1.

How to fit a line depending on the number of training examples |T|:

■ Given a single example (1 equation, 2 parameters)
⇒ infinitely many linear functions can be fitted.

■ Given 2 examples (2 equations, 2 parameters)
⇒ exactly 1 linear function can be fitted.

■ Given 3 or more examples (> 2 equations, 2 parameters)
⇒ no line can be fitted with zero error
⇒ a line which minimizes the “size” of error y− ŷ can be fitted:

w∗ = (w∗0 , w∗1) = argmin
w0 ,w1

J(w0, w1, T).
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The least squares method (LSM) suggests to choose such parameters w which minimize
the mean squared error (MSE)

JMSE(w) =
1

|T|

|T|

∑
i=1

(
y(i) − ŷ(i)

)2
=

1

|T|

|T|

∑
i=1

(
y(i) − hw(x(i))

)2
.

x

y

0

w0

|y(1) − ŷ(1) |

|y(2) − ŷ(2) |
|y(3) − ŷ(3) |

(x(1) , y(1))

(x(2) , y(2))

(x(3) , y(3))

ŷ = w0 + w1x

(x(1) , ŷ(1))

(x(2) , ŷ(2))

(x(3) , ŷ(3))

1

w1



The least squares method

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 7 / 31

The least squares method (LSM) suggests to choose such parameters w which minimize
the mean squared error (MSE)

JMSE(w) =
1

|T|

|T|

∑
i=1

(
y(i) − ŷ(i)

)2
=

1

|T|

|T|

∑
i=1

(
y(i) − hw(x(i))

)2
.

x

y

0

w0

|y(1) − ŷ(1) |

|y(2) − ŷ(2) |
|y(3) − ŷ(3) |

(x(1) , y(1))

(x(2) , y(2))

(x(3) , y(3))

ŷ = w0 + w1x

(x(1) , ŷ(1))

(x(2) , ŷ(2))

(x(3) , ŷ(3))

1

w1

Explicit solution:

w1 =
∑
|T|
i=1(x(i) − x)(y(i) − y)

∑
|T|
i=1(x(i) − x)2

=
sxy

s2
x

w0 = y− w1x
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The landscape of J in the space of parameters w0 and w1:
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Gradually better linear models found by an optimization method (BFGS):
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■ Given a function J(w0, w1) that should be minimized,

■ start with a guess of w0 and w1 and

■ change it, so that J(w0, w1) decreases, i.e.

■ update our current guess of w0 and w1 by taking a step in the direction opposite to
the gradient:

w← w− α∇J(w0, w1), i.e.

wd ← wd − α
∂

∂wd
J(w0, w1),

where all wis are updated simultaneously and α is a learning rate (step size).

■ For the cost function

J(w0, w1) =
1

|T|

|T|

∑
i=1

(
y(i) − hw(x(i))

)2
=

1

|T|

|T|

∑
i=1

(
y(i) − (w0 + w1x(i))

)2
,

the gradient can be computed as

∂

∂w0
J(w0, w1) = −

2

|T|

|T|

∑
i=1

(
y(i) − hw(x(i))

)
=

2

|T|

|T|

∑
i=1

(
hw(x(i))− y(i)

)

∂

∂w1
J(w0, w1) = −

2

|T|

|T|

∑
i=1

(
y(i) − hw(x(i))

)
x(i) =

2

|T|

|T|

∑
i=1

(
hw(x(i))− y(i)

)
x(i)
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Multivariate linear regression deals with cases where x(i) = (x
(i)
1 , . . . , x

(i)
D ), i.e. the

examples are described by more than 1 feature (they are D-dimensional).
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Multivariate linear regression deals with cases where x(i) = (x
(i)
1 , . . . , x

(i)
D ), i.e. the

examples are described by more than 1 feature (they are D-dimensional).

Model fitting:

■ find parameters w = (w1, . . . , wD) of a linear model ŷ = xwT

■ given the training (multi)set T = {(x(i), y(i))}
|T|
i=1.

■ The model is a hyperplane in the D + 1-dimensional space.
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Multivariate linear regression deals with cases where x(i) = (x
(i)
1 , . . . , x

(i)
D ), i.e. the

examples are described by more than 1 feature (they are D-dimensional).

Model fitting:

■ find parameters w = (w1, . . . , wD) of a linear model ŷ = xwT

■ given the training (multi)set T = {(x(i), y(i))}
|T|
i=1.

■ The model is a hyperplane in the D + 1-dimensional space.

Fitting methods:

1. Numeric optimization of J(w, T):

■ Works as for simple regression, it only searches a space with more dimensions.

■ Sometimes one needs to tune some parameters of the optimization algorithm to
work properly (learning rate in gradient descent, etc.).

■ May be slow (many iterations needed), but works even for very large D.

2. Normal equation:

w∗ = (XT X)−1XTy

■ Method to solve for the optimal w∗ analytically!

■ No need to choose optimization algorithm parameters.

■ No iterations.

■ Needs to compute (XT X)−1, which is O(D3). Slow, or intractable, for large D.
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Let’s have the training dataset T = {(x(1), y(1)), . . . , (x(|T|), y(|T|)):

■ each example is described by a vector of features x = (x1, . . . , xD),

■ each example is labeled with the correct class y ∈ {+1,−1}.

Discrimination function: a function allowing us to decide to which class an example x
belongs.

■ For 2 classes, 1 discrimination function is enough.

■ Decision rule:

f (x) > 0⇐⇒ ŷ = +1
f (x) < 0⇐⇒ ŷ = −1

}
i.e. ŷ = sign ( f (x))

■ Decision boundary: {x : f (x) = 0}

■ Learning then amounts to finding (parameters of) function f .
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Problem: Learn a linear discrimination function f from data T.
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Problem: Learn a linear discrimination function f from data T.

Naive solution: fit linear regression model to the data!

■ Use cost function

JMSE(w, T) =
1

|T|

|T|

∑
i=1

(
y(i) − f (w, x(i))

)2
,

■ minimize it with respect to w,

■ and use ŷ = sign( f (x)).

■ Issue: Points far away from the decision boundary have huge effect on the model!
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Problem: Learn a linear discrimination function f from data T.

Naive solution: fit linear regression model to the data!

■ Use cost function

JMSE(w, T) =
1

|T|

|T|

∑
i=1

(
y(i) − f (w, x(i))

)2
,

■ minimize it with respect to w,

■ and use ŷ = sign( f (x)).

■ Issue: Points far away from the decision boundary have huge effect on the model!

Better solution: fit a linear discrimination function which minimizes the number of errors!

■ Cost function:

J01(w, T) =
1

|T|

|T|

∑
i=1

I(y(i) 6= ŷ(i)),

where I is the indicator function: I(a) returns 1 iff a is True, 0 otherwise.

■ The cost function is non-smooth, contains plateaus, not easy to optimize, but there are
algorithms which attempt to solve it, e.g. perceptron, Kozinec’s algorithm, etc.
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Perceptron [Ros62]:

■ a simple model of a neuron

■ a linear classifier (in this case, a classifier with a linear discrimination function)

Algorithm 1: Perceptron algorithm

Input: Linearly separable training dataset: {x(i) , y(i)}, x(i) ∈ RD+1 (homogeneous coordinates),

y(i) ∈ {+1,−1}

Output: Weight vector w such that x(i)wT
> 0 iff y(i) = +1 and x(i)wT

< 0 iff y(i) = −1
1 begin
2 Initialize the weight vector, e.g. w = 0.

3 Invert all examples x belonging to class -1: x(i) = −x(i) for all i, where y(i) = −1.

4 Find an incorrectly classified training vector, i.e. find j such that x(j)wT ≤ 0, e.g. the worst

classified vector: x(j) = argmin
x(i)

(x(i)wT).

5 if all examples classified correctly then
6 Return the solution w. Terminate.
7 else

8 Update the weight vector: w = w + x(j) .

9 Go to 4.

Instead of using the worst classified point, the algorithm may go over the training set
(several times) and use all encountered wrongly classified points to update w.

[Ros62] Frank Rosenblatt. Principles of Neurodynamics: Perceptron and the Theory of Brain Mechanisms. Spartan Books, Washington, D.C., 1962.
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Perceptron convergence theorem [Nov62]:

■ Perceptron algorithm eventually finds a hyperplane that separates 2 classes of points
in a finite number of steps, if such a hyperplane exists.

■ If no separating hyperplane exists, the algorithm does not converge and will iterate
forever.

Possible solutions:

■ Pocket algorithm — track the error the perceptron makes in each iteration and store
the best weights found so far in a separate memory (pocket).

■ Use a different learning algorithm, which finds an approximate solution, if the classes
are not linearly separable.

[Nov62] Albert B. J. Novikoff. On convergence proofs for perceptrons. In Proceedings of the Symposium on Mathematical Theory of Automata,
volume 12, Brooklyn, New York, 1962.
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The perceptron algorithm

■ finds a separating hyperplane, if it exists;

■ but if a single separating hyperplane exists, then there are infinitely many (equally
good?) separating hyperplanes.

■ and perceptron finds any of them!

Which separating hyperplane is the optimal one? What does “optimal” actually mean?
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Problem: Learn a binary classifier for the dataset T = {(x(i), y(i))}, where y(i) ∈ {0, 1}.1

To reiterate: when using linear regression, the examples far from the decision boundary
have a huge impact on f . How to limit their influence?
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Problem: Learn a binary classifier for the dataset T = {(x(i), y(i))}, where y(i) ∈ {0, 1}.1

To reiterate: when using linear regression, the examples far from the decision boundary
have a huge impact on f . How to limit their influence?

Logistic regression uses a discrimination function which is a nonlinear transformation of
the values of a linear function

fw(x) = g(xwT) =
1

1 + e−xwT
,

where g(z) =
1

1 + e−z
is the sigmoid function (a.k.a logistic function).
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Problem: Learn a binary classifier for the dataset T = {(x(i), y(i))}, where y(i) ∈ {0, 1}.1

To reiterate: when using linear regression, the examples far from the decision boundary
have a huge impact on f . How to limit their influence?

Logistic regression uses a discrimination function which is a nonlinear transformation of
the values of a linear function

fw(x) = g(xwT) =
1

1 + e−xwT
,

where g(z) =
1

1 + e−z
is the sigmoid function (a.k.a logistic function).

Interpretation of the model:

■ fw(x) is interpretted as an estimate of the probability that x belongs to class 1.

■ The decision boundary is defined using a different level-set: {x : fw(x) = 0.5}.

■ Logistic regression is a classification model!

■ The discrimination function fw(x) itself is not linear anymore; but the decision
boundary is still linear!

■ Thanks to the sigmoidal transformation, logistic regression is much less influenced by
examples far from the decision boundary!

1Previously, we have used y(i) ∈ {−1,+1}, but the values can be chosen arbitrarily, and {0, 1} is convenient for
logistic regression.
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To train the logistic regression model, one can use the JMSE criterion:

J(w, T) =
1

|T|

|T|

∑
i=1

(
y(i) − fw(x(i))

)2
.

However, this results in a non-convex multimodal landscape which is hard to optimize.
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To train the logistic regression model, one can use the JMSE criterion:

J(w, T) =
1

|T|

|T|

∑
i=1

(
y(i) − fw(x(i))

)2
.

However, this results in a non-convex multimodal landscape which is hard to optimize.

Logistic regression uses a modified cost function (sometimes called cross-entropy):

J(w, T) =
1

|T|

|T|

∑
i=1

cost(y(i), fw(x(i))), where

cost(y, ŷ) =

{
− log(ŷ) if y = 1

− log(1− ŷ) if y = 0
,

which can be rewritten in a single expression as

cost(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ).

Such a cost function is simpler to optimize for numerical solvers.
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Margin (cz:odstup):

■ “The width of the band in which the decision
boundary can move (in the direction of its
normal vector) without touching any data
point.”

Maximum margin linear classifier

xwT + w0 = 1
xwT + w0 = 0

xwT + w0 = −1

Plus 1 level: {x : xwT + w0 = 1}
Minus 1 level: {x : xwT + w0 = −1}
Decision boundary
(separating hyperplane): {x : xwT + w0 = 0}

Support vectors:

■ Data points x lying at the plus 1 level or
minus 1 level.

■ Only these points influence the decision
boundary!

Why we would like to maximize the margin?

■ Intuitively, it is safe.

■ If we make a small error in estimating the
boundary, the classification will likely stay
correct.

■ The model is invariant with respect to the
training set changes, except the changes of
support vectors.

■ There are sound theoretical results that
having a maximum margin classifier is good.

■ Maximal margin works well in practice.
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How to compute the margin M given w = (w1, . . . , wD), w0 of certain sep. hyperplane?

■ Let’s choose two points x+ and
x−, lying in the plus 1 level and
minus 1 level, respectively.

■ Let’s compute the margin M as
their distance.

xwT + w0 = 1

xwT + w0 = 0

xwT + w0 = −1
w

x+

x−

M

We know that:

x+wT + w0 = 1

x−wT + w0 = −1

x− + λw = x+

And we can derive:

(x+ − x−)wT = 2

(x− + λw− x−)wT = 2

λwwT = 2

λ =
2

wwT
=

2

‖w‖2

Thus the margin size is

M = ‖x+ − x−‖ = ‖λw‖ = λ‖w‖ =
2

‖w‖2
‖w‖ =

2

‖w‖
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We want to maximize margin M = 2
‖w‖

subject to the constraints ensuring correct

classification of the training set T. This optimization problem can be formulated as a
quadratic programming (QP) task.
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We want to maximize margin M = 2
‖w‖

subject to the constraints ensuring correct

classification of the training set T. This optimization problem can be formulated as a
quadratic programming (QP) task.

■ Primary QP task:

minimize wwT with respect to w0, . . . , wD

subject to y(i)(x(i)wT + w0) ≥ 1 ∀i ∈ 1, . . . , |T|.
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We want to maximize margin M = 2
‖w‖

subject to the constraints ensuring correct

classification of the training set T. This optimization problem can be formulated as a
quadratic programming (QP) task.

■ Primary QP task:

minimize wwT with respect to w0, . . . , wD

subject to y(i)(x(i)wT + w0) ≥ 1 ∀i ∈ 1, . . . , |T|.

■ Dual QP task:

maximize
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)x(i)x(j)T

with respect to α1, . . . , α|T|

subject to αi ≥ 0

and
|T|

∑
i=1

αiy
(i) = 0.
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We want to maximize margin M = 2
‖w‖

subject to the constraints ensuring correct

classification of the training set T. This optimization problem can be formulated as a
quadratic programming (QP) task.

■ Primary QP task:

minimize wwT with respect to w0, . . . , wD

subject to y(i)(x(i)wT + w0) ≥ 1 ∀i ∈ 1, . . . , |T|.

■ Dual QP task:

maximize
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)x(i)x(j)T

with respect to α1, . . . , α|T|

subject to αi ≥ 0

and
|T|

∑
i=1

αiy
(i) = 0.

■ From the solution of the dual task, we can compute the solution of the primal task:

w =
|T|

∑
i=1

αiy
(i)x(i), w0 = y(k) − x(k)wT ,

where (x(k), y(k)) is any support vector, i.e. αk > 0.
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Soft margin: Allows for incorrect classification of some data points.

Slack variables ξi : The shortest distances of data points to their correct “place”:

■ 0 for correctly classified data “outside the margin”,

■ positive for incorrectly classified data and data “inside the margin”.

ξi

ξ j

ξk

wT x + w0 = 1

wT x + w0 = 0

wT x + w0 = −1



Optimal separating hyperplane learning for non-separable data
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■ Primary QP task with slack variables:

minimize (wwT+C
|T|

∑
i=1

ξi) with respect to w0, . . . , wD , ξ1, . . . , ξ|T|

subject to y(i)(x(i)wT + w0) ≥ 1−ξi ∀i ∈ 1, . . . , |T|,

and ξi ≥ 0 ∀i ∈ 1, . . . , |T|.
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■ Primary QP task with slack variables:

minimize (wwT+C
|T|

∑
i=1

ξi) with respect to w0, . . . , wD , ξ1, . . . , ξ|T|

subject to y(i)(x(i)wT + w0) ≥ 1−ξi ∀i ∈ 1, . . . , |T|,

and ξi ≥ 0 ∀i ∈ 1, . . . , |T|.

■ Dual QP task:

maximize
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)x(i)x(j)T

with respect to α1, . . . , α|T|, µ1, . . . , µ|T|,

subject to αi ≥ 0, µi ≥ 0, αi + µi = C,

and
|T|

∑
i=1

αiy
(i) = 0.
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■ Primary QP task with slack variables:

minimize (wwT+C
|T|

∑
i=1

ξi) with respect to w0, . . . , wD , ξ1, . . . , ξ|T|

subject to y(i)(x(i)wT + w0) ≥ 1−ξi ∀i ∈ 1, . . . , |T|,

and ξi ≥ 0 ∀i ∈ 1, . . . , |T|.

■ Dual QP task:

maximize
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)x(i)x(j)T

with respect to α1, . . . , α|T|, µ1, . . . , µ|T|,

subject to αi ≥ 0, µi ≥ 0, αi + µi = C,

and
|T|

∑
i=1

αiy
(i) = 0.

■ Variables αi are more constrained than in the separable case, but the solution is the same:

w =
|T|

∑
i=1

αiy
(i)x(i), w0 = y(k) − x(k)wT ,

where (x(k), y(k)) is any support vector, i.e. αk > 0.
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The importance of dual formulation:

■ The QP task in dual formulation is easier to solve for QP solvers than the primal
formulation.

■ New, unseen examples can be classified using function

f (x, w, w0) = sign(xwT + w0) = sign

(
|T|

∑
i=1

αiy
(i)x(i)xT + w0

)
,

i.e. the discrimination function contains the examples x only in the form of dot
products (which will be useful later).

■ The examples with αi > 0 are support vectors, thus the sums may be carried out only
over the support vectors.

■ The dual formulation contains the data only in the form of dot products which allows
for other tricks you will learn later.

■ The primal task with soft margin has double the number of constraints, the task is
more complex, but

■ the results for the QP task with soft margin are of the same type as in the separable
case.
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After this lecture, a student shall be able to . . .

■ define and recognize linear regression model (with scalar parameters, in scalar product form, in
matrix form, non-homogenous and homogenous coordinates);

■ define the loss function suitable for fitting a regression model;

■ explain the least squares metod, draw an illustration;

■ compute coefficients of simple (1D) linear regression by hand, write a computer program computing
coefficients for multiple regression;

■ explain the concept of discrimination function for binary and multinomial classification;

■ define a loss function suitable for fitting a classification model;

■ describe a perceptron algorithm, perform a few iterations by hand;

■ explain the characteristics of perceptron algorithm;

■ describe logistic regression, the interpretation of its outputs, and why we classify it as a linear model;

■ define loss functions suitable for fitting logistic regression;

■ define optimal separating hyperplane, explain in what sense it is optimal;

■ define what a margin is, what support vectors are, and explain their relation;

■ compute the margin given the parameters of separating hyperplane for which

min
i:y(i)=+1

(x(i)wT + w0) = 1 and max
i:y(i)=−1

(x(i)wT + w0) = −1;

■ formulate the primary quadratic programming task which results in the optimal separating
hyperplane (including the soft-margin version);

■ compute the parameters of optimal hyperplane given the set of support vectors and their weights.
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