
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

Department of Cybernetics

P. Pošík c© 2017 Artificial Intelligence – 1 / 31

Linear Methods for Regression and Classification

Petr Pošík

Czech Technical University in Prague

Faculty of Electrical Engineering

Dept. of Cybernetics

Linear regression

P. Pošík c© 2017 Artificial Intelligence – 2 / 31

Linear regression

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 3 / 31

Regression task is a supervised learning task, i.e.

■ a training (multi)set T = {(x(1), y(1)), . . . , (x(|T|), y(|T|))} is available, where

■ the labels y(i) are quantitative, often continuous (as opposed to classification tasks

where y(i) are nominal).

■ Its purpose is to model the relationship between independent variables (inputs)
x = (x1, . . . , xD) and the dependent variable (output) y.

Linear regression

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 3 / 31

Regression task is a supervised learning task, i.e.

■ a training (multi)set T = {(x(1), y(1)), . . . , (x(|T|), y(|T|))} is available, where

■ the labels y(i) are quantitative, often continuous (as opposed to classification tasks

where y(i) are nominal).

■ Its purpose is to model the relationship between independent variables (inputs)
x = (x1, . . . , xD) and the dependent variable (output) y.

Linear regression is a particular regression model which assumes (and learns) linear
relationship between the inputs and the output:

ŷ = h(x) = w0 + w1x1 + . . . + wDxD = w0 + 〈w, x〉 = w0 + xwT ,

where

■ ŷ is the model prediction (estimate of the true value y),

■ h(x) is the linear model (a hypothesis),

■ w0, . . . , wD are the coefficients of the linear function, w0 is the bias, organized in a row
vector w,

■ 〈w, x〉 is a dot product of vectors w and x (scalar product),

■ which can be also computed as a matrix product xwT if w and x are row vectors.

Notation remarks

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 4 / 31

Homogeneous coordinates: If we add “1” as the first element of x so that
x = (1, x1, . . . , xD), then we can write the linear model in an even simpler form (without
the explicit bias term):

ŷ = h(x) = w0 · 1 + w1x1 + . . . + wDxD = 〈w, x〉 = xwT .

Notation remarks

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 4 / 31

Homogeneous coordinates: If we add “1” as the first element of x so that
x = (1, x1, . . . , xD), then we can write the linear model in an even simpler form (without
the explicit bias term):

ŷ = h(x) = w0 · 1 + w1x1 + . . . + wDxD = 〈w, x〉 = xwT .

Matrix notation: If we organize the data into matrix X and vector y, such that

X =




1 x(1)

...
...

1 x(|T|)


 and y =




y(1)

...

y(|T|)


 ,

and similarly with ŷ, then we can write a batch computation of predictions for all data in
X as

ŷ = XwT .

Two operation modes

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 5 / 31

Any ML model has 2 operation modes:

1. learning (training, fitting) and

2. application (testing, making predictions).

Two operation modes

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 5 / 31

Any ML model has 2 operation modes:

1. learning (training, fitting) and

2. application (testing, making predictions).

The model h can be viewed as a function of 2 variables: h(x, w).

Two operation modes

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 5 / 31

Any ML model has 2 operation modes:

1. learning (training, fitting) and

2. application (testing, making predictions).

The model h can be viewed as a function of 2 variables: h(x, w).

Model application: If the model is given (w is fixed), we can manipulate x to make
predictions:

ŷ = h(x, w) = hw(x).

Two operation modes

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 5 / 31

Any ML model has 2 operation modes:

1. learning (training, fitting) and

2. application (testing, making predictions).

The model h can be viewed as a function of 2 variables: h(x, w).

Model application: If the model is given (w is fixed), we can manipulate x to make
predictions:

ŷ = h(x, w) = hw(x).

Model learning: If the data is given (T is fixed), we can manipulate the model parameters
w to fit the model to the data:

w∗ = argmin
w

J(w, T).

Two operation modes

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 5 / 31

Any ML model has 2 operation modes:

1. learning (training, fitting) and

2. application (testing, making predictions).

The model h can be viewed as a function of 2 variables: h(x, w).

Model application: If the model is given (w is fixed), we can manipulate x to make
predictions:

ŷ = h(x, w) = hw(x).

Model learning: If the data is given (T is fixed), we can manipulate the model parameters
w to fit the model to the data:

w∗ = argmin
w

J(w, T).

How to train the model?

Simple (univariate) linear regression

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 6 / 31

Simple (univariate) regression deals with cases where x(i) = x(i), i.e. the examples are
described by a single feature (they are 1-dimensional).

Simple (univariate) linear regression

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 6 / 31

Simple (univariate) regression deals with cases where x(i) = x(i), i.e. the examples are
described by a single feature (they are 1-dimensional).

Fitting a line to data:

■ find parameters w0, w1 of a linear model ŷ = w0 + w1x

■ given a training (multi)set T = {(x(i), y(i))}
|T|
i=1.

Simple (univariate) linear regression

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 6 / 31

Simple (univariate) regression deals with cases where x(i) = x(i), i.e. the examples are
described by a single feature (they are 1-dimensional).

Fitting a line to data:

■ find parameters w0, w1 of a linear model ŷ = w0 + w1x

■ given a training (multi)set T = {(x(i), y(i))}
|T|
i=1.

How to fit a line depending on the number of training examples |T|:

■ Given a single example (1 equation, 2 parameters)
⇒ infinitely many linear functions can be fitted.

■ Given 2 examples (2 equations, 2 parameters)
⇒ exactly 1 linear function can be fitted.

■ Given 3 or more examples (> 2 equations, 2 parameters)
⇒ no line can be fitted with zero error
⇒ a line which minimizes the “size” of error y− ŷ can be fitted:

w∗ = (w∗0 , w∗1) = argmin
w0 ,w1

J(w0, w1, T).

The least squares method

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 7 / 31

The least squares method (LSM) suggests to choose such parameters w which minimize
the mean squared error (MSE)

JMSE(w) =
1

|T|

|T|

∑
i=1

(
y(i) − ŷ(i)

)2
=

1

|T|

|T|

∑
i=1

(
y(i) − hw(x(i))

)2
.

x

y

0

w0

|y(1) − ŷ(1) |

|y(2) − ŷ(2) |
|y(3) − ŷ(3) |

(x(1) , y(1))

(x(2) , y(2))

(x(3) , y(3))

ŷ = w0 + w1x

(x(1) , ŷ(1))

(x(2) , ŷ(2))

(x(3) , ŷ(3))

1

w1

The least squares method

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 7 / 31

The least squares method (LSM) suggests to choose such parameters w which minimize
the mean squared error (MSE)

JMSE(w) =
1

|T|

|T|

∑
i=1

(
y(i) − ŷ(i)

)2
=

1

|T|

|T|

∑
i=1

(
y(i) − hw(x(i))

)2
.

x

y

0

w0

|y(1) − ŷ(1) |

|y(2) − ŷ(2) |
|y(3) − ŷ(3) |

(x(1) , y(1))

(x(2) , y(2))

(x(3) , y(3))

ŷ = w0 + w1x

(x(1) , ŷ(1))

(x(2) , ŷ(2))

(x(3) , ŷ(3))

1

w1

Explicit solution:

w1 =
∑
|T|
i=1(x(i) − x)(y(i) − y)

∑
|T|
i=1(x(i) − x)2

=
sxy

s2
x

w0 = y− w1x

Universal fitting method: minimization of cost function J

P. Pošík c© 2017 Artificial Intelligence – 8 / 31

The landscape of J in the space of parameters w0 and w1:

w
0

0
2 0

4 0
6 0

8 0
1 0 0

w 1

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

J
(w

0
,w

1
)

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

0 2 0 4 0 6 0 8 0 1 0 0

w0

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

w
1

Gradually better linear models found by an optimization method (BFGS):

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

d is p

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

h
p

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

d is p

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

h
p

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

d is p

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

h
p

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

d is p

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

h
p

Gradient descent algorithm

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 9 / 31

■ Given a function J(w0, w1) that should be minimized,

■ start with a guess of w0 and w1 and

■ change it, so that J(w0, w1) decreases, i.e.

■ update our current guess of w0 and w1 by taking a step in the direction opposite to
the gradient:

w← w− α∇J(w0, w1), i.e.

wd ← wd − α
∂

∂wd
J(w0, w1),

where all wis are updated simultaneously and α is a learning rate (step size).

■ For the cost function

J(w0, w1) =
1

|T|

|T|

∑
i=1

(
y(i) − hw(x(i))

)2
=

1

|T|

|T|

∑
i=1

(
y(i) − (w0 + w1x(i))

)2
,

the gradient can be computed as

∂

∂w0
J(w0, w1) = −

2

|T|

|T|

∑
i=1

(
y(i) − hw(x(i))

)
=

2

|T|

|T|

∑
i=1

(
hw(x(i))− y(i)

)

∂

∂w1
J(w0, w1) = −

2

|T|

|T|

∑
i=1

(
y(i) − hw(x(i))

)
x(i) =

2

|T|

|T|

∑
i=1

(
hw(x(i))− y(i)

)
x(i)

Multivariate linear regression

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 10 / 31

Multivariate linear regression deals with cases where x(i) = (x
(i)
1 , . . . , x

(i)
D), i.e. the

examples are described by more than 1 feature (they are D-dimensional).

Multivariate linear regression

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 10 / 31

Multivariate linear regression deals with cases where x(i) = (x
(i)
1 , . . . , x

(i)
D), i.e. the

examples are described by more than 1 feature (they are D-dimensional).

Model fitting:

■ find parameters w = (w1, . . . , wD) of a linear model ŷ = xwT

■ given the training (multi)set T = {(x(i), y(i))}
|T|
i=1.

■ The model is a hyperplane in the D + 1-dimensional space.

Multivariate linear regression

Linear regression

• Regression

• Notation remarks

• Train, apply

• 1D regression

• LSM

•Minimizing J(w, T)

• Gradient descent
•Multivariate linear
regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 10 / 31

Multivariate linear regression deals with cases where x(i) = (x
(i)
1 , . . . , x

(i)
D), i.e. the

examples are described by more than 1 feature (they are D-dimensional).

Model fitting:

■ find parameters w = (w1, . . . , wD) of a linear model ŷ = xwT

■ given the training (multi)set T = {(x(i), y(i))}
|T|
i=1.

■ The model is a hyperplane in the D + 1-dimensional space.

Fitting methods:

1. Numeric optimization of J(w, T):

■ Works as for simple regression, it only searches a space with more dimensions.

■ Sometimes one needs to tune some parameters of the optimization algorithm to
work properly (learning rate in gradient descent, etc.).

■ May be slow (many iterations needed), but works even for very large D.

2. Normal equation:

w∗ = (XT X)−1XTy

■ Method to solve for the optimal w∗ analytically!

■ No need to choose optimization algorithm parameters.

■ No iterations.

■ Needs to compute (XT X)−1, which is O(D3). Slow, or intractable, for large D.

Linear classification

P. Pošík c© 2017 Artificial Intelligence – 11 / 31

Binary classification task (dichotomy)

Linear regression

Linear classification

• Binary class.

• Naive approach

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 12 / 31

Let’s have the training dataset T = {(x(1), y(1)), . . . , (x(|T|), y(|T|)):

■ each example is described by a vector of features x = (x1, . . . , xD),

■ each example is labeled with the correct class y ∈ {+1,−1}.

Discrimination function: a function allowing us to decide to which class an example x
belongs.

■ For 2 classes, 1 discrimination function is enough.

■ Decision rule:

f (x) > 0⇐⇒ ŷ = +1
f (x) < 0⇐⇒ ŷ = −1

}
i.e. ŷ = sign (f (x))

■ Decision boundary: {x : f (x) = 0}

■ Learning then amounts to finding (parameters of) function f .

0.5 1 1.5 2 2.5 3 3.5

−1

−0.5

0

0.5

1

1.5

x

f(
x)

0 1 2 3 4 5

−6

−5

−4

−3

−2

−1

0

1

2

3

4

x

f(
x)

Naive approach

Linear regression

Linear classification

• Binary class.

• Naive approach

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 13 / 31

Problem: Learn a linear discrimination function f from data T.

Naive approach

Linear regression

Linear classification

• Binary class.

• Naive approach

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 13 / 31

Problem: Learn a linear discrimination function f from data T.

Naive solution: fit linear regression model to the data!

■ Use cost function

JMSE(w, T) =
1

|T|

|T|

∑
i=1

(
y(i) − f (w, x(i))

)2
,

■ minimize it with respect to w,

■ and use ŷ = sign(f (x)).

■ Issue: Points far away from the decision boundary have huge effect on the model!

Naive approach

Linear regression

Linear classification

• Binary class.

• Naive approach

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 13 / 31

Problem: Learn a linear discrimination function f from data T.

Naive solution: fit linear regression model to the data!

■ Use cost function

JMSE(w, T) =
1

|T|

|T|

∑
i=1

(
y(i) − f (w, x(i))

)2
,

■ minimize it with respect to w,

■ and use ŷ = sign(f (x)).

■ Issue: Points far away from the decision boundary have huge effect on the model!

Better solution: fit a linear discrimination function which minimizes the number of errors!

■ Cost function:

J01(w, T) =
1

|T|

|T|

∑
i=1

I(y(i) 6= ŷ(i)),

where I is the indicator function: I(a) returns 1 iff a is True, 0 otherwise.

■ The cost function is non-smooth, contains plateaus, not easy to optimize, but there are
algorithms which attempt to solve it, e.g. perceptron, Kozinec’s algorithm, etc.

Perceptron

P. Pošík c© 2017 Artificial Intelligence – 14 / 31

Perceptron algorithm

Linear regression

Linear classification

Perceptron

• Algorithm

• Demo

• Features

• Result

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 15 / 31

Perceptron [Ros62]:

■ a simple model of a neuron

■ a linear classifier (in this case, a classifier with a linear discrimination function)

Algorithm 1: Perceptron algorithm

Input: Linearly separable training dataset: {x(i) , y(i)}, x(i) ∈ RD+1 (homogeneous coordinates),

y(i) ∈ {+1,−1}

Output: Weight vector w such that x(i)wT
> 0 iff y(i) = +1 and x(i)wT

< 0 iff y(i) = −1
1 begin
2 Initialize the weight vector, e.g. w = 0.

3 Invert all examples x belonging to class -1: x(i) = −x(i) for all i, where y(i) = −1.

4 Find an incorrectly classified training vector, i.e. find j such that x(j)wT ≤ 0, e.g. the worst

classified vector: x(j) = argmin
x(i)

(x(i)wT).

5 if all examples classified correctly then
6 Return the solution w. Terminate.
7 else

8 Update the weight vector: w = w + x(j) .

9 Go to 4.

Instead of using the worst classified point, the algorithm may go over the training set
(several times) and use all encountered wrongly classified points to update w.

[Ros62] Frank Rosenblatt. Principles of Neurodynamics: Perceptron and the Theory of Brain Mechanisms. Spartan Books, Washington, D.C., 1962.

Demo: Perceptron

Linear regression

Linear classification

Perceptron

• Algorithm

• Demo

• Features

• Result

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 16 / 31

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

Iteration 257

Features of the perceptron algorithm

Linear regression

Linear classification

Perceptron

• Algorithm

• Demo

• Features

• Result

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 17 / 31

Perceptron convergence theorem [Nov62]:

■ Perceptron algorithm eventually finds a hyperplane that separates 2 classes of points
in a finite number of steps, if such a hyperplane exists.

■ If no separating hyperplane exists, the algorithm does not converge and will iterate
forever.

Possible solutions:

■ Pocket algorithm — track the error the perceptron makes in each iteration and store
the best weights found so far in a separate memory (pocket).

■ Use a different learning algorithm, which finds an approximate solution, if the classes
are not linearly separable.

[Nov62] Albert B. J. Novikoff. On convergence proofs for perceptrons. In Proceedings of the Symposium on Mathematical Theory of Automata,
volume 12, Brooklyn, New York, 1962.

The hyperplane found by perceptron

Linear regression

Linear classification

Perceptron

• Algorithm

• Demo

• Features

• Result

Logistic regression

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 18 / 31

The perceptron algorithm

■ finds a separating hyperplane, if it exists;

■ but if a single separating hyperplane exists, then there are infinitely many (equally
good?) separating hyperplanes.

■ and perceptron finds any of them!

Which separating hyperplane is the optimal one? What does “optimal” actually mean?

Logistic regression

P. Pošík c© 2017 Artificial Intelligence – 19 / 31

Logistic regression model

Linear regression

Linear classification

Perceptron

Logistic regression

•Model

• Cost function

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 20 / 31

Problem: Learn a binary classifier for the dataset T = {(x(i), y(i))}, where y(i) ∈ {0, 1}.1

To reiterate: when using linear regression, the examples far from the decision boundary
have a huge impact on f . How to limit their influence?

Logistic regression model

Linear regression

Linear classification

Perceptron

Logistic regression

•Model

• Cost function

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 20 / 31

Problem: Learn a binary classifier for the dataset T = {(x(i), y(i))}, where y(i) ∈ {0, 1}.1

To reiterate: when using linear regression, the examples far from the decision boundary
have a huge impact on f . How to limit their influence?

Logistic regression uses a discrimination function which is a nonlinear transformation of
the values of a linear function

fw(x) = g(xwT) =
1

1 + e−xwT
,

where g(z) =
1

1 + e−z
is the sigmoid function (a.k.a logistic function).

Logistic regression model

Linear regression

Linear classification

Perceptron

Logistic regression

•Model

• Cost function

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 20 / 31

Problem: Learn a binary classifier for the dataset T = {(x(i), y(i))}, where y(i) ∈ {0, 1}.1

To reiterate: when using linear regression, the examples far from the decision boundary
have a huge impact on f . How to limit their influence?

Logistic regression uses a discrimination function which is a nonlinear transformation of
the values of a linear function

fw(x) = g(xwT) =
1

1 + e−xwT
,

where g(z) =
1

1 + e−z
is the sigmoid function (a.k.a logistic function).

Interpretation of the model:

■ fw(x) is interpretted as an estimate of the probability that x belongs to class 1.

■ The decision boundary is defined using a different level-set: {x : fw(x) = 0.5}.

■ Logistic regression is a classification model!

■ The discrimination function fw(x) itself is not linear anymore; but the decision
boundary is still linear!

■ Thanks to the sigmoidal transformation, logistic regression is much less influenced by
examples far from the decision boundary!

1Previously, we have used y(i) ∈ {−1,+1}, but the values can be chosen arbitrarily, and {0, 1} is convenient for
logistic regression.

Cost function

Linear regression

Linear classification

Perceptron

Logistic regression

•Model

• Cost function

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 21 / 31

To train the logistic regression model, one can use the JMSE criterion:

J(w, T) =
1

|T|

|T|

∑
i=1

(
y(i) − fw(x(i))

)2
.

However, this results in a non-convex multimodal landscape which is hard to optimize.

Cost function

Linear regression

Linear classification

Perceptron

Logistic regression

•Model

• Cost function

Optimal separating
hyperplane

Summary

P. Pošík c© 2017 Artificial Intelligence – 21 / 31

To train the logistic regression model, one can use the JMSE criterion:

J(w, T) =
1

|T|

|T|

∑
i=1

(
y(i) − fw(x(i))

)2
.

However, this results in a non-convex multimodal landscape which is hard to optimize.

Logistic regression uses a modified cost function (sometimes called cross-entropy):

J(w, T) =
1

|T|

|T|

∑
i=1

cost(y(i), fw(x(i))), where

cost(y, ŷ) =

{
− log(ŷ) if y = 1

− log(1− ŷ) if y = 0
,

which can be rewritten in a single expression as

cost(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ).

Such a cost function is simpler to optimize for numerical solvers.

Optimal separating hyperplane

P. Pošík c© 2017 Artificial Intelligence – 22 / 31

Optimal separating hyperplane (separable case)

P. Pošík c© 2017 Artificial Intelligence – 23 / 31

Margin (cz:odstup):

■ “The width of the band in which the decision
boundary can move (in the direction of its
normal vector) without touching any data
point.”

Maximum margin linear classifier

xwT + w0 = 1
xwT + w0 = 0

xwT + w0 = −1

Plus 1 level: {x : xwT + w0 = 1}
Minus 1 level: {x : xwT + w0 = −1}
Decision boundary
(separating hyperplane): {x : xwT + w0 = 0}

Support vectors:

■ Data points x lying at the plus 1 level or
minus 1 level.

■ Only these points influence the decision
boundary!

Why we would like to maximize the margin?

■ Intuitively, it is safe.

■ If we make a small error in estimating the
boundary, the classification will likely stay
correct.

■ The model is invariant with respect to the
training set changes, except the changes of
support vectors.

■ There are sound theoretical results that
having a maximum margin classifier is good.

■ Maximal margin works well in practice.

Margin size

Linear regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

• Optimal SH

•Margin size

• OSH learning

• Non-separable case

• OSH learning (2)

• OSH: remarks

• Demo

Summary

P. Pošík c© 2017 Artificial Intelligence – 24 / 31

How to compute the margin M given w = (w1, . . . , wD), w0 of certain sep. hyperplane?

■ Let’s choose two points x+ and
x−, lying in the plus 1 level and
minus 1 level, respectively.

■ Let’s compute the margin M as
their distance.

xwT + w0 = 1

xwT + w0 = 0

xwT + w0 = −1
w

x+

x−

M

We know that:

x+wT + w0 = 1

x−wT + w0 = −1

x− + λw = x+

And we can derive:

(x+ − x−)wT = 2

(x− + λw− x−)wT = 2

λwwT = 2

λ =
2

wwT
=

2

‖w‖2

Thus the margin size is

M = ‖x+ − x−‖ = ‖λw‖ = λ‖w‖ =
2

‖w‖2
‖w‖ =

2

‖w‖

Optimal separating hyperplane learning

Linear regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

• Optimal SH

•Margin size

• OSH learning

• Non-separable case

• OSH learning (2)

• OSH: remarks

• Demo

Summary

P. Pošík c© 2017 Artificial Intelligence – 25 / 31

We want to maximize margin M = 2
‖w‖

subject to the constraints ensuring correct

classification of the training set T. This optimization problem can be formulated as a
quadratic programming (QP) task.

Optimal separating hyperplane learning

Linear regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

• Optimal SH

•Margin size

• OSH learning

• Non-separable case

• OSH learning (2)

• OSH: remarks

• Demo

Summary

P. Pošík c© 2017 Artificial Intelligence – 25 / 31

We want to maximize margin M = 2
‖w‖

subject to the constraints ensuring correct

classification of the training set T. This optimization problem can be formulated as a
quadratic programming (QP) task.

■ Primary QP task:

minimize wwT with respect to w0, . . . , wD

subject to y(i)(x(i)wT + w0) ≥ 1 ∀i ∈ 1, . . . , |T|.

Optimal separating hyperplane learning

Linear regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

• Optimal SH

•Margin size

• OSH learning

• Non-separable case

• OSH learning (2)

• OSH: remarks

• Demo

Summary

P. Pošík c© 2017 Artificial Intelligence – 25 / 31

We want to maximize margin M = 2
‖w‖

subject to the constraints ensuring correct

classification of the training set T. This optimization problem can be formulated as a
quadratic programming (QP) task.

■ Primary QP task:

minimize wwT with respect to w0, . . . , wD

subject to y(i)(x(i)wT + w0) ≥ 1 ∀i ∈ 1, . . . , |T|.

■ Dual QP task:

maximize
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)x(i)x(j)T

with respect to α1, . . . , α|T|

subject to αi ≥ 0

and
|T|

∑
i=1

αiy
(i) = 0.

Optimal separating hyperplane learning

Linear regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

• Optimal SH

•Margin size

• OSH learning

• Non-separable case

• OSH learning (2)

• OSH: remarks

• Demo

Summary

P. Pošík c© 2017 Artificial Intelligence – 25 / 31

We want to maximize margin M = 2
‖w‖

subject to the constraints ensuring correct

classification of the training set T. This optimization problem can be formulated as a
quadratic programming (QP) task.

■ Primary QP task:

minimize wwT with respect to w0, . . . , wD

subject to y(i)(x(i)wT + w0) ≥ 1 ∀i ∈ 1, . . . , |T|.

■ Dual QP task:

maximize
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)x(i)x(j)T

with respect to α1, . . . , α|T|

subject to αi ≥ 0

and
|T|

∑
i=1

αiy
(i) = 0.

■ From the solution of the dual task, we can compute the solution of the primal task:

w =
|T|

∑
i=1

αiy
(i)x(i), w0 = y(k) − x(k)wT ,

where (x(k), y(k)) is any support vector, i.e. αk > 0.

Non-separable case

Linear regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

• Optimal SH

•Margin size

• OSH learning

• Non-separable case

• OSH learning (2)

• OSH: remarks

• Demo

Summary

P. Pošík c© 2017 Artificial Intelligence – 26 / 31

Soft margin: Allows for incorrect classification of some data points.

Slack variables ξi : The shortest distances of data points to their correct “place”:

■ 0 for correctly classified data “outside the margin”,

■ positive for incorrectly classified data and data “inside the margin”.

ξi

ξ j

ξk

wT x + w0 = 1

wT x + w0 = 0

wT x + w0 = −1

Optimal separating hyperplane learning for non-separable data

P. Pošík c© 2017 Artificial Intelligence – 27 / 31

■ Primary QP task with slack variables:

minimize (wwT+C
|T|

∑
i=1

ξi) with respect to w0, . . . , wD , ξ1, . . . , ξ|T|

subject to y(i)(x(i)wT + w0) ≥ 1−ξi ∀i ∈ 1, . . . , |T|,

and ξi ≥ 0 ∀i ∈ 1, . . . , |T|.

Optimal separating hyperplane learning for non-separable data

P. Pošík c© 2017 Artificial Intelligence – 27 / 31

■ Primary QP task with slack variables:

minimize (wwT+C
|T|

∑
i=1

ξi) with respect to w0, . . . , wD , ξ1, . . . , ξ|T|

subject to y(i)(x(i)wT + w0) ≥ 1−ξi ∀i ∈ 1, . . . , |T|,

and ξi ≥ 0 ∀i ∈ 1, . . . , |T|.

■ Dual QP task:

maximize
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)x(i)x(j)T

with respect to α1, . . . , α|T|, µ1, . . . , µ|T|,

subject to αi ≥ 0, µi ≥ 0, αi + µi = C,

and
|T|

∑
i=1

αiy
(i) = 0.

Optimal separating hyperplane learning for non-separable data

P. Pošík c© 2017 Artificial Intelligence – 27 / 31

■ Primary QP task with slack variables:

minimize (wwT+C
|T|

∑
i=1

ξi) with respect to w0, . . . , wD , ξ1, . . . , ξ|T|

subject to y(i)(x(i)wT + w0) ≥ 1−ξi ∀i ∈ 1, . . . , |T|,

and ξi ≥ 0 ∀i ∈ 1, . . . , |T|.

■ Dual QP task:

maximize
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)x(i)x(j)T

with respect to α1, . . . , α|T|, µ1, . . . , µ|T|,

subject to αi ≥ 0, µi ≥ 0, αi + µi = C,

and
|T|

∑
i=1

αiy
(i) = 0.

■ Variables αi are more constrained than in the separable case, but the solution is the same:

w =
|T|

∑
i=1

αiy
(i)x(i), w0 = y(k) − x(k)wT ,

where (x(k), y(k)) is any support vector, i.e. αk > 0.

Optimal separating hyperplane: remarks

Linear regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

• Optimal SH

•Margin size

• OSH learning

• Non-separable case

• OSH learning (2)

• OSH: remarks

• Demo

Summary

P. Pošík c© 2017 Artificial Intelligence – 28 / 31

The importance of dual formulation:

■ The QP task in dual formulation is easier to solve for QP solvers than the primal
formulation.

■ New, unseen examples can be classified using function

f (x, w, w0) = sign(xwT + w0) = sign

(
|T|

∑
i=1

αiy
(i)x(i)xT + w0

)
,

i.e. the discrimination function contains the examples x only in the form of dot
products (which will be useful later).

■ The examples with αi > 0 are support vectors, thus the sums may be carried out only
over the support vectors.

■ The dual formulation contains the data only in the form of dot products which allows
for other tricks you will learn later.

■ The primal task with soft margin has double the number of constraints, the task is
more complex, but

■ the results for the QP task with soft margin are of the same type as in the separable
case.

Optimal separating hyperplane: demo

Linear regression

Linear classification

Perceptron

Logistic regression

Optimal separating
hyperplane

• Optimal SH

•Margin size

• OSH learning

• Non-separable case

• OSH learning (2)

• OSH: remarks

• Demo

Summary

P. Pošík c© 2017 Artificial Intelligence – 29 / 31

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

Summary

P. Pošík c© 2017 Artificial Intelligence – 30 / 31

Competencies

P. Pošík c© 2017 Artificial Intelligence – 31 / 31

After this lecture, a student shall be able to . . .

■ define and recognize linear regression model (with scalar parameters, in scalar product form, in
matrix form, non-homogenous and homogenous coordinates);

■ define the loss function suitable for fitting a regression model;

■ explain the least squares metod, draw an illustration;

■ compute coefficients of simple (1D) linear regression by hand, write a computer program computing
coefficients for multiple regression;

■ explain the concept of discrimination function for binary and multinomial classification;

■ define a loss function suitable for fitting a classification model;

■ describe a perceptron algorithm, perform a few iterations by hand;

■ explain the characteristics of perceptron algorithm;

■ describe logistic regression, the interpretation of its outputs, and why we classify it as a linear model;

■ define loss functions suitable for fitting logistic regression;

■ define optimal separating hyperplane, explain in what sense it is optimal;

■ define what a margin is, what support vectors are, and explain their relation;

■ compute the margin given the parameters of separating hyperplane for which

min
i:y(i)=+1

(x(i)wT + w0) = 1 and max
i:y(i)=−1

(x(i)wT + w0) = −1;

■ formulate the primary quadratic programming task which results in the optimal separating
hyperplane (including the soft-margin version);

■ compute the parameters of optimal hyperplane given the set of support vectors and their weights.

	Linear regression
	Linear regression
	Notation remarks
	Two operation modes
	Simple (univariate) linear regression
	The least squares method
	Universal fitting method: minimization of cost function J
	Gradient descent algorithm
	Multivariate linear regression

	Linear classification
	Binary classification task (dichotomy)
	Naive approach

	Perceptron
	Perceptron algorithm
	Demo: Perceptron
	Features of the perceptron algorithm
	The hyperplane found by perceptron

	Logistic regression
	Logistic regression model
	Cost function

	Optimal separating hyperplane
	Optimal SH
	Margin size
	Optimal separating hyperplane learning
	Non-separable case
	OSH learning (2)
	Optimal separating hyperplane: remarks
	Optimal separating hyperplane: demo

	Summary
	Competencies

	pdstartclock:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:
	pdclock.time:

