CTU

Artificial Intelligence in Robotics
 Lecture 12: Visibility-based pursuit evasion

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.
Czech Technical University in Prague

Art gallery problem

By Victor Klee in 1973 simple polygon P: $v_{1}, \ldots v_{n}$ $x \in P$ covers $y \in P$ iff $x y \subseteq P$ minimal number of "guards" to cover the whole space?

Picture by Claudio Rocchini

Art gallery problem

Theorem (Václav Chvátal 1975):
$\lfloor n / 3\rfloor$ guard is sometimes necessary and always sufficient to solve the art gallery problem.

Necessary
comb

Sufficient (Fisk 1978)
simple polygons always have triangulation triangulated polygon can be 3-colored least used color is used no more than $\lfloor n / 3\rfloor$ times vertices of each color cover the whole polygon

Art gallery problem

Pathological cases (from Subhash Suri's slides):
less guards may be enough
optimal positions not on boundary
seeing the boundary is not enough

Fun facts:

For orthogonal polygons, only $\lfloor n / 4\rfloor$ guards are needed.
Computing minimal number of guards for a polygon is NP-hard.
The problem is closely connected to the set cover problem.

More realistic art gallery problem

CENT

There are m cameras (angles)
A guard can watch k cameras
What cameras to show?

Thief has to enter, steal, exit
Penalty for each seen second/meter

Inspired by: McMahan, Gordon, Blum: Planning in the presence of cost functions controlled by an adversary. ICML 2003.

Matrix game representation

Defender's action: watch k of m cameras
Attacker's action: path door-target-door

Double oracle framework

McMahan, Gordon, Blum: Planning in the presence of cost functions controlled by an adversary. ICML 2003.

Double-oracle in Matrix game

Always converges and finds NE.

Attacker's best response oracle

Path planning with costs defined by cameras in use (A*, TSP, etc.)

Defender's best response oracle

$$
\begin{aligned}
& \begin{array}{lllll}
\frac{1}{4} & \frac{1}{6} & \frac{1}{4} & 0 & \frac{1}{3}
\end{array}
\end{aligned}
$$

Greedy / combinatorial search for best k camera positions

Clearing polygonal environment

Hunters and pray problem
simple polygon P: $v_{1}, \ldots v_{n}$
k hunters with bounded speed
pray with unbounded speed
can hunters spot the pray?
Definitions
$h^{i}:[0, \infty) \rightarrow P$ is the pursuer i 's strategy
$e:[0, \infty) \rightarrow P$ is the evader's strategy
$V(q) \subseteq P$ are the points visible from $q \in P$

Solution

Strategy $h=h^{1}, \ldots, h^{k}$ is a solution if for every continuous $e:[0, \infty) \rightarrow P$ there exists $t \in[0, \infty), i \in\{1, \ldots, k\}$, such that $e(t) \in V\left(h^{i}(t)\right)$.

Clearing polygonal environment

Theorem (Urrutia, 1997): $O(\log n)$ hunters are always sufficient and occasionally necessary to spot a pray in polygon with n vertices.

Sufficient
let $f(n)$ be the required number of hunters
each polygon has a diagonal splitting it to two with $\leq \frac{2 n}{3}$ vertices
if one guard guards the diagonal, $f(n) \leq f\left(\frac{2 n}{3}\right)+1$
from master theorem, $f(n) \in O(\log n)$
Necessary

Clearing polygonal environment

Guibas, L. J., Latombe, J.-C., Lavalle, et al.: Visibility-Based Pursuit-Evasion in a Polygonal Environment. WADS, 1997
hunter and play setting - we assume a single hunter
critical event analysis (similar to event-based simulation)
Definitions
information state $\eta=(x, S) ; x \in P, S \subseteq P$ are pursuer/evader positions
$\Psi\left(\eta, h, t_{0}, t_{1}\right)$ is the inf. state after executing h from η during $\left[t_{0}, t_{1}\right]$
region $D \subseteq P$ is conservative, if for all continuous $h_{1}, h_{2}:\left[t_{0}, t_{1}\right] \rightarrow D$
$h_{1}\left(t_{0}\right)=h_{2}\left(t_{0}\right) \& h_{1}\left(t_{1}\right)=h_{2}\left(t_{1}\right) \Rightarrow \Psi\left(\eta, h_{1}, t_{0}, t_{1}\right)=\Psi\left(\eta, h_{2}, t_{0}, t_{1}\right)$

Clearing polygonal environment

Extend the edges
obstacle edges in both directions
pairs of vertices outwards

Search graph
adjacent cell graph
gap edge labeling: " 1 " contaminated, " 0 " clear
corresponding gap edges determine change in labeling

Gap edge labeling

Clearing polygonal environment

Quiz: goo.gl/3S8nHh

Visibility-based tracking

graph of locations (V, E)
visibility relation $\operatorname{Sees}\left(v_{1}, v_{2}\right)$
k pursuers, 1 evader
both move on the graph both unit speed

Goal
See as often as possible

Minimize the set of possible positions

Extensive form game

Simultaneous moves in EFG

	r	p	s
R	0	-1	1
P	1	0	-1
S	-1	1	0

Pursuit evasion as EFG

EFG vs. Information Set Tree

+ IST is much smaller
+ solved as perfect information
- overly pessimistic
(worst possible observation)

Relaxed look-ahead heuristic (Raboin at al. 2011) |positions reachable by evader

- positions that can be possibly seen|
evader can be on worst possible position pursuers can be everywhere at once
usable in iterative deepening minimax or MCTS

(Perfect information) Monte Carlo tree search

UCT selects actions based on

$$
\arg \max _{i} \quad v_{i}+C \sqrt{\frac{\sum_{j} n_{j}}{n_{i}}}
$$

Summary

Static camera position
Camera switching
Capturing spotting fast evader
Tracking realistic evader

