

Artificial Intelligence in Robotics Lecture 12: Visibility-based pursuit evasion

Viliam Lisý

Artificial Intelligence Center Department of Computer Science, Faculty of Electrical Eng. Czech Technical University in Prague

Art gallery problem

By Victor Klee in 1973 simple polygon P: $v_1, ... v_n$ $x \in P$ covers $y \in P$ iff $xy \subseteq P$ minimal number of "guards" to cover the whole space?

Picture by Claudio Rocchini

Art gallery problem

Theorem (Václav Chvátal 1975):

 $\lfloor n/3 \rfloor$ guard is sometimes necessary and always sufficient to solve the art gallery problem.

Necessary

comb

Sufficient (Fisk 1978)

simple polygons always have triangulation triangulated polygon can be 3-colored least used color is used no more than $\lfloor n/3 \rfloor$ times vertices of each color cover the whole polygon

Art gallery problem

Pathological cases (from Subhash Suri's slides):

Fun facts:

- For orthogonal polygons, only $\lfloor n/4 \rfloor$ guards are needed.
- Computing minimal number of guards for a polygon is NP-hard.
- The problem is closely connected to the set cover problem.

More realistic art gallery problem

There are *m* cameras (angles)

A guard can watch k cameras

What cameras to show?

Thief has to enter, steal, exit Penalty for each seen second/meter

Inspired by: McMahan, Gordon, Blum: Planning in the presence of cost functions controlled by an adversary. ICML 2003.

Matrix game representation

Defender's action: watch k of m cameras

Attacker's action: path door-target-door

 ∞

p - prob. of notbeing detected when seen

Double oracle framework

McMahan, Gordon, Blum: Planning in the presence of cost functions controlled by an adversary. ICML 2003.

Always converges and finds NE.

Attacker's best response oracle

Path planning with costs defined by cameras in use (A*, TSP, etc.)

Defender's best response oracle

Greedy / combinatorial search for best k camera positions

Clearing polygonal environment

Hunters and pray problem

simple polygon P: v_1 , ... v_n k hunters with bounded speed pray with unbounded speed can hunters spot the pray?

Definitions

 $h^i: [0, \infty) \to P$ is the pursuer *i*'s strategy $e: [0, \infty) \to P$ is the evader's strategy

 $V(q) \subseteq P$ are the points visible from $q \in P$

Solution

Strategy $h = h^1, ..., h^k$ is a solution if for every continuous $e: [0, \infty) \to P$ there exists $t \in [0, \infty), i \in \{1, ..., k\}$, such that $e(t) \in V(h^i(t))$.

Clearing polygonal environment

Theorem (Urrutia, 1997): $O(\log n)$ hunters are always sufficient and occasionally necessary to spot a pray in polygon with nvertices.

Sufficient

let f(n) be the required number of hunters each polygon has a diagonal splitting it to two with $\leq \frac{2n}{3}$ vertices if one guard guards the diagonal, $f(n) \leq f\left(\frac{2n}{3}\right) + 1$ from master theorem, $f(n) \in O(\log n)$

Necessary

Guibas, L. J., Latombe, J.-C., Lavalle, et al.: Visibility-Based Pursuit-Evasion in a Polygonal Environment. WADS, 1997

hunter and play setting - we assume a **single hunter** critical event analysis (similar to event-based simulation)

Definitions

information state $\eta = (x, S); x \in P, S \subseteq P$ are pursuer/evader positions $\Psi(\eta, h, t_0, t_1)$ is the inf. state after executing h from η during $[t_0, t_1]$ region $D \subseteq P$ is conservative, if for all continuous $h_1, h_2: [t_0, t_1] \to D$ $h_1(t_0) = h_2(t_0) \& h_1(t_1) = h_2(t_1) \Rightarrow \Psi(\eta, h_1, t_0, t_1) = \Psi(\eta, h_2, t_0, t_1)$

Clearing polygonal environment

Extend the edges

obstacle edges in both directions pairs of vertices outwards

Search graph

- adjacent cell graph
- gap edge labeling: "1" contaminated, "0" clear
- corresponding gap edges determine change in labeling

Gap edge labeling

Clearing polygonal environment

Quiz: goo.gl/3S8nHh

Visibility-based tracking

graph of locations (V, E)

visibility relation $Sees(v_1, v_2)$

k pursuers, 1 evader

both move on the graph both unit speed

Goal

See as often as possible

Minimize the set of possible positions

Extensive form game

Simultaneous moves in EFG

Pursuit evasion as EFG

EFG vs. Information Set Tree

+ IST is much smaller+ solved as perfect information

 overly pessimistic (worst possible observation)

Relaxed look-ahead heuristic (Raboin at al. 2011) positions reachable by evader

- positions that can be possibly seen|

evader can be on worst possible position pursuers can be everywhere at once

usable in iterative deepening minimax or MCTS

(Perfect information) Monte Carlo tree search

UCT selects actions based on

 $\arg\max_{i} \quad v_i + C_{\sqrt{\frac{\sum_{j} n_j}{n_i}}}$

Static camera position

Camera switching

Capturing spotting fast evader

Tracking realistic evader