Data collection planning - TSP(N), PC-TSP(N), and OP(N))

Jan Faigl

Department of Computer Science

Faculty of Electrical Engineering Czech Technical University in Prague

Lecture 08

B4M36UIR - Artificial Intelligence in Robotics

■ Part 1 – Data Collection Planning

Overview of the Lecture

- - Data Collection Planning Motivational Problem
 - Traveling Salesman Problem (TSP)
 - Traveling Salesman Problem with Neighborhoods (TSPN)
 - Generalized Traveling Salesman Problem (GTSP)
 - Example of Noon-Bean Transformation
 - Orienteering Problem (OP)
 - Orienteering Problem with Neighborhoods (OPN)

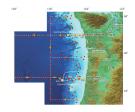
Part I

Part 1 – Data Collection Planning

lan Faigl, 2017

Autonomous Data Collection

- Having a set of sensors (sampling stations), we aim to determine a costefficient path to retrieve data from the individual sensors
 - E.g., Sampling stations on the ocean floor
- The planning problem is a variant of the Traveling Salesman Problem



Two practical aspects of the data collection can be identified

- 1. Data from particular sensors may be of different importance
- 2. Data from the sensor can be retrieved using wireless communication

These two aspects can be considered in Prize-Collecting Traveling Salesman Problem (PC-TSP) and Orienteering Problem (OP) and their extensions with neighborhoods

B4M36UIR - Lecture 08: Data Collection Planning

Prize-Collecting Traveling Salesman Problem with Neighborhoods (PC-TSPN)

- Let *n* sensors be located in \mathbb{R}^2 at the locations $S = \{s_1, \dots, s_n\}$
- Each sensor has associated penalty $\zeta(s_i) > 0$ characterizing additional cost if the data are not retrieved from si
- \blacksquare Let the data collecting vehicle operates in \mathbb{R}^2 with the motion cost $c(p_1, p_2)$ for all pairs of points $p_1, p_2 \in \mathbb{R}^2$
- The data from s_i can be retrieved within δ distance from s_i

PC-TSPN – Optimization Criterion

The PC-TSPN is a problem to

- Determine a set of unique locations $G = \{g_1, \dots, g_k\}, k < n$ $g_i \in \mathbb{R}^2$, at which data readings are performed
- Find a cost efficient tour T visiting G such that the total cost C(T) of T is minimal

$$C(T) = \sum_{(g_{l_i}, g_{l_{i+1}}) \in T} c(g_{l_i}, g_{l_{i+1}}) + \sum_{s \in S \setminus S_T} \zeta(s), \tag{1}$$

B4M36UIR - Lecture 08: Data Collection Planning

E.g., Concorde solver - http://www.tsp.gatech.edu/concorde.html

where $S_T \subseteq S$ are sensors such that for each $s_i \in S_T$ there is g_l on $T = (g_{l_1}, \dots, g_{l_{k-1}}, g_{l_k})$ and $g_{l_i} \in G$ for which $|(s_i, g_{l_i})| \leq \delta$.

- PC-TSPN includes other variants of the TSP
 - for $\delta = 0$ it is the PC-TSP

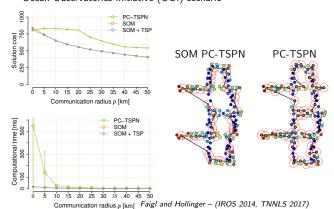
Existing solvers to the TSP

Approximation algorithms

- for $\zeta(s_i) = 0$ and $\delta \ge 0$ it is the TSPN
- for $\zeta(s_i) = 0$ and $\delta = 0$ it is the ordinary TSP

PC-TSPN – Example of Solution

Ocean Observatories Initiative (OOI) scenario



Traveling Salesman Problem (TSP)

- Let S be a set of n sensor locations $S = \{s_1, \ldots, s_n\}, s_i \in \mathbb{R}^2$ and $c(s_i, s_i)$ is a cost of travel from s_i to s_i
- Traveling Salesman Problem (TSP) is a problem to determine a closed tour visiting each $s \in S$ such that the total tour length is minimal, i.e.,
 - determine a sequence of visits $\Sigma = (\sigma_1, \dots, \sigma_n)$ such that

minimize
$$_{\Sigma}$$
 $L = \left(\sum_{i=1}^{n-1} c(s_{\sigma_i}, s_{\sigma_{i+1}})\right) + c(s_{\sigma_n}, s_{\sigma_1})$ (2) subject to $\Sigma = (\sigma_1, \dots, \sigma_n), 1 \le \sigma_i \le n, \sigma_i \ne \sigma_i \text{ for } i \ne j$

B4M36UIR - Lecture 08: Data Collection Planning

- The TSP can be considered on a graph G(V, E) where the set of vertices V represents sensor locations S and E are edges connecting the nodes with the cost $c(s_i, s_i)$
- For simplicity we can consider $c(s_i, s_i)$ to be Euclidean distance; otherwise, it is a solution of the path planning problem

- If $c(s_i, s_i) \neq C(s_i, s_i)$ it is the Asymmetric TSP ■ The TSP is known to be NP-hard unless P=NP

Heuristic algorithms

■ Exact solutions

- Constructive heuristic Nearest Neighborhood Algorithm
- 2-Opt local search algorithm proposed by Croes 1958

■ Branch and Bound, Integer Linear Programming (ILP)

Minimum Spanning Tree (MST) heuristic – $L < 2L_{ont}$

Lin-Kernighan (LK) heuristic

• Christofides's algorithm – $L \leq \frac{3/2}{L_{opt}}$

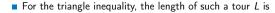
- Soft-Computing techniques, e.g.,
 - Variable Neighborhood Search (VNS)
 - Unsupervised Learning

B4M36UIR - Lecture 08: Data Collection Planning

Evolutionary approaches

MST-based Approximation Algorithm to the TSP

- Minimum Spanning Tree Heuristic
 - 1. Compute the MST T of the input graph G
 - 2. Construct a graph H by doubling every edge of T
 - 3. Shortcut repeated occurrences of a vertex in the Tour

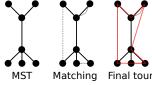


 $L \leq 2L_{optimal}$,

where $L_{optimal}$ is the cost of the optimal solution of the TSP

Christofides's Algorithm to the TSP

- Christofides's algorithm
 - 1. Compute the MST of the input graph G 2. Compute minimal matching
 - on the odd-degree vertices
 - 3. Shortcut a traversal of the resulting Eulerian graph



For the triangle inequality, the length of such a tour L is

$$L \leq \frac{3}{2}L_{optimal},$$

where $L_{optimal}$ is the cost of the optimal solution of the TSP

Length of MST is $< L_{optimal}$

Learning epoch 35

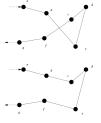
Learning epoch 53

B4M36UIR - Lecture 08: Data Collection Planning

Sum of lengths of the edges in the matching $\leq \frac{1}{2}L_{optimal}$

2-Opt Heuristic

- 1. Use a construction heuristic to create an initial route
 - NN algorithm, cheapest insertion, farther insertion
- 2. Repeat until no improvement is made
 - 2.1 Determine swapping that can shorten the tour (i, j) for $\leq 1i \leq n$ and $i + 1 \leq j \leq n$
 - route[0] to route[i-1]
 - route[i] to route[j] in reverse order
 - route[i] to route[end]
 - Determine length of the route
 - Update the current route if length is shorter than the existing solution



Jan Faigl, 2017

Learning epoch 12

Learning epoch 42

Example of Unsupervised Learning for the TSP

an Faigl, 2017

16 / 50

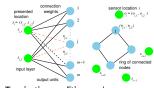
Unsupervised Learning based Solution of the TSP

- Sensor locations $S = \{s_1, \ldots, s_n\}$, $s_1 \in \mathbb{R}^2$; Neurons $\mathcal{N} = (\nu_1, \ldots, \nu_m)$, $\nu_i \in \mathbb{R}^2$, m = 2.5n
- Learning gain G; epoch counter i; gain decreasing rate $\alpha = 0.1$; learning rate $\mu = 0.6$
- 1. $\mathcal{N} \leftarrow \text{init ring of neurons as a small ring around some } s_i \in \mathcal{S}$, e.g., a circle with radius 0.5
- 2. $i \leftarrow 0$; $\sigma \leftarrow 12.41n + 0.06$;
- 1 ← ∅ //clear inhibited neurons
- 4. foreach $s \in \Pi(S)$ (a permutation of S) 4.1 $\nu^* \leftarrow \operatorname{argmin}_{\nu \in \mathcal{N} \setminus I} ||(\nu, s)||$
 - 4.2 foreach ν in d neighborhood of ν^*

$$\nu \leftarrow nu + \mu f(\sigma, d)(s - \nu)$$

$$f(\sigma, d) = \begin{cases}
e^{-\frac{d^2}{\sigma^2}} & \text{for } d < 0.2 \\
0 & \text{otherwise,}
\end{cases}$$

- 4.3 $I \leftarrow I \cup \{\nu^*\}$ // inhibit the winner
- 5. $\sigma \leftarrow (1-\alpha)\sigma$; $i \leftarrow i+1$;
- 6. If (termination condition is not satisfied) Goto Step 4; Otherwise retrieve solution



Termination condition can be

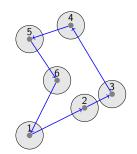
- Maximal number of learning epochs i ≤ i_{max} , e.g., $i_{max} = 120$
- Winner neurons are negligibly close to sensor locations, e.g., ≤ 0.001

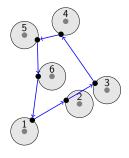
Somhom, S., Modares, A., Enkawa, T. (1999): Competition-based neural network for the mul

	Salesman Problem. Neurocomputing.	rav
Jan Faigl, 2017	B4M36UIR - Lecture 08: Data Collection Planning	

Traveling Salesman Problem with Neighborhoods (TSPN)

- Euclidean TSPN with disk shaped δ -neighborhoods
- Sequence of visits to the regions with particular locations of the visit





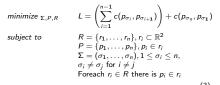
Approaches to the TSPN

- Direct solution of the TSPN approximation algorithm and heuristics
- E.g., using evolutionary techniques or unsupervised learning

 Decoupled approach
 - 1. Determine sequence of visits Σ independently on the locations PE.g., as the TSP for centroids of the regions R
 - 2. For the sequence Σ determine the locations P to minimize the total tour length, e.g.,
 - Touring polygon problem (TPP)
 - Sampling possible locations and forward search for best locations Continuous optimization such as hill-climbing
 - E.g., Local Iterative Optimization (LIO), Váňa, Faigl (IROS 2015)
- Sampling-based approaches
 - For each region, sample possible locations of visits into a discrete set of locations for each region
 - The problem can be then formulated as the Generalized Traveling Salesman Problem (GTSP)
- Euclidean TSPN with, e.g., disk-shaped δ neighborhoods
 - lacktriangle Simplified variant with regions as disks with radius δ remote sensing with the δ communication range

Traveling Salesman Problem with Neighborhoods (TSPN)

- Instead visiting a particular location $s \in \mathbb{R}^2$ we can request to visit, e.g., a region $r \subset \mathbb{R}^2$ to save travel cost, i.e., visit regions $R = \{r_1, \dots, r_n\}$
- The TSP becomes the TSP with Neighborhoods (TSPN) where it is necessary, in addition to the determination of the order of visits Σ , determine suitable locations $P = \{p_1, \dots, p_n\}$, $p_i \in r_i$, of visits to R
- The problem is a combination of combinatorial optimization to determine Σ with continuous optimization to determine P



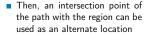
In general, TSPN is APX-hard, and cannot be approximated to within a factor $2 - \epsilon$ $\epsilon > 0$ unless P=NP

Safra, S., Schwartz, O. (2006)

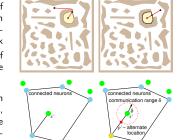
B4M36UIR - Lecture 08: Data Collection Planning

Unsupervised Learning for the TSPN

- In the unsupervised learning for the TSP, we can sample suitable sensing locations during winner selection
- We can use the centroid of the region for the shortest path computation from ν to the region r presented to the network

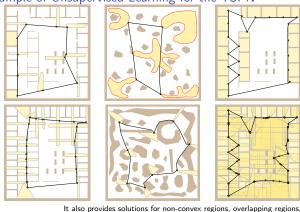


For the Euclidean TSPN with disk-shaped δ neighborhoods, we can compute the alternate location directly from the Euclidean distance



Faigl, J. et al. (2013): Visiting convex regions in a polygonal map. Robotics and Autonomous Systems.

B4M36UIR - Lecture 08: Data Collection Planning



and coverage problems.

Jan Faigl, 2017

- 1. Sampling the polygons into a discrete set of points and determine all shortest paths between each sampled points in the sequence of the regions visits.
- 2. Initialization: Construct an initial touring polygons path using a sampled point of each region Let the path be defined by $P = (p_1, p_2, ..., p_n)$, where $p_i \in r_i$ and L(P) be the length of the shortest path induced by P
- 3. Refinement: For $i = 1, 2, \ldots, n$
 - lacksquare Find $p_i^* \in r_i$ minimizing the length of the path $d(p_{i-1}, p_i^*) + d(p_i^*, p_{i+1})$, where $d(p_k, p_l)$ is the length path from p_k to p_l , $p_0 = p_n$, and $p_{n+1} = p_1$
 - If the total length of the current path over point p* is shorter than over p_i , replace the point p_i by p_i^*
- 4. Compute path length Lnew using the refined points
- Termination condition: If $L_{new} L < \epsilon$ Stop the refinement. Otherwise $L \leftarrow L_{new}$ and go to Step 3
- 6. Final path construction: use the last points and construct the path using the shortest paths among obstacles between two consecutive points lan Faigl, 2017

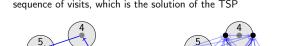
an Faigl, 2017 B4M36UIR - Lecture 08: Data Collection Planning

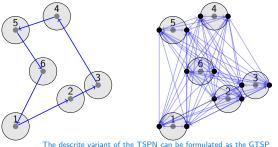
Generalized Traveling Salesman Problem (GTSP)

- For an unknown sequence of the visits to the regions, there are
- Finding the shortest path is NP-hard, we need to determine the sequence of visits, which is the solution of the TSP

Sampling-based Solution of the TSPN

 $\mathcal{O}(n^2k^2)$ possible edges





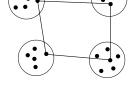
B4M36UIR - Lecture 08: Data Collection Planning

Example of Noon-Bean Transformation

For sampled neighborhoods into a discrete set of locations, we can formulate the problem as the Generalized Traveling Salesman Problem (GTSP) • For a set of n sets $S = \{S_1, \dots, S_n\}$, each with particular set of locations (nodes) $S_i = \{s_1^i, \dots, s_{n_i}^i\}$

The problem is to determine the shortest tour visiting each set S_i , i.e., determining the order Σ of visits to S and a particular locations $s^i \in S_i$ for each $S_i \in S$

 $\Sigma = (\sigma_1, \dots, \sigma_n), 1 \le \sigma_i \le n, \sigma_i \ne \sigma_j \text{ for } i \ne j$ $s^{\sigma_i} \in S_{\sigma_i}, S_{\sigma_i} = \{s_1^{\sigma_i}, \dots, s_{n-1}^{\sigma_i}\}, S_{\sigma_i} \in S$



■ In addition to exact, e.g., ILP-based, solution, a heuristic algorithm **GLNS** is available (besides other heuristics)

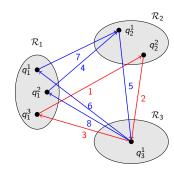
Smith, S. L., Imeson, F. (2017), GLNS: An effective large neighborhood search heuristic for the Generalized Traveling Salesman Problem. Computers and Operations Research.

Implementation in Julia - https://ece.uwaterloo.ca/~s12smith/GLNS

B4M36UIR - Lecture 08: Data Collection Planning

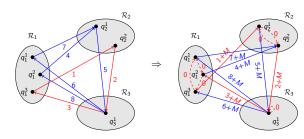
Ben-Arieg, et al. (2003), Transfo

An Instance of the Generalized Asymmetric TSP (GATSP)



Noon-Bean transformation (GATSP to ATSP)

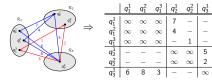
- 1. Create a zero-length cycle in each set
- 2. For each edge (q_i^m, q_i^n) create an edge (q_i^m, q_i^{n-1}) with a value increased by sufficiently large M



Noon-Bean transformation – Matrix Notation

Noon, C.E., Bean, J.C. (1993), An efficient transformation of the ge problem. INFOR: Information Systems and Operational Research.

■ 1. Create a zero-length cycle in each set; and 2. for each edge (q_i^m, q_i^n) create an edge (q_i^m, q_i^{n-1}) with a value increased by sufficiently large M



∞ represents there are not edges inside the same set; and - denotes unused edge

Original GATSP

	q_1^1	q_1^2	q_1^3	q_2^1	q_{2}^{2}	q_3^1		q_1^1	q_1^2	q_1^3	q_2^1	q_2^2	q_3^1
1	∞	∞	∞	7	_	_	q_1^1	∞	0	∞	-	7+M	_
2	∞	∞	∞	4	_	_	q_{1}^{2}	∞	∞	0	_	4+M	_
3	∞	∞	∞	_	1	_	q_{1}^{3}	0	∞	∞	1+M	-	_
1 2	_	_	_	∞	∞	5	q_2^1	_	_	_	∞	0	5+M
2	-	_	_	∞	∞	2	q_{2}^{2}	_	_	_	0	∞	2+M
1	6	8	3	-	_	∞	q_3^1	8+M	3+M	6+ <i>M</i>	-	_	0

B4M36UIR - Lecture 08: Data Collection Planning

Finding the shortest tour takes in a forward search graph in $O(nk^3)$ for nk^2 edges in the sequence

the centroids of the regions

Transformation of the GTSP to the Asymmetric TSP

■ The Generalized TSP can be transformed into Asymmetric TSP that can be then solved, e.g., by LKH or exactly by Concorde (by further transformation to the TSP)

ations of generalized ATSP into ATSP. Operations Re

Noon-Bean Transformation – Summary

- It transforms the GATSP into the ATSP which can be further
 - Solved by existing solvers, e.g., the Lin-Kernighan heuristic algorithm (LKH) http://www.akira.ruc.dk/~keld/research/LKH
 - the ATSP can be further transformed into the TSP and solved optimality by, e.g., Concorde solver $$_{\tt http://www.tsp.gatech.edu/concorde.html}$$
- It runs in $\mathcal{O}(k^2n^2)$ time and uses $\mathcal{O}(k^2n^2)$ memory, where n is the number of sets (regions) each with up to k samples
- The transformed ATSP problem contains *kn* vertexes
- The main issue of the transformation is related to the suitable selection of the constant M that is need to forbid the repetitive visitation of the same set
 - I.e., the problem is how to set sufficiently large M but do not cause numeric troubles

Noon, C.E., Bean, J.C. (1993), An efficient transformation of the generalized traveling m. INFOR: Information Systems and Operational Research

B4M36UIR - Lecture 08: Data Collection Planning

_							
Motivation	TSP	TSPN	GTSP	Exampl	le of No	on-Bean	Irans

Jan Faigl, 2017

Orienteering Problem – Optimization Criterion

- Let $\Sigma = (\sigma_1, \dots, \sigma_k)$ be a permutation of k sensor labels, $1 < \sigma_i < \sigma_i$ *n* and $\sigma_i \neq \sigma_i$ for $i \neq i$
- Σ defines a tour $T = (s_{\sigma_1}, \dots, s_{\sigma_k})$ visiting the selected sensors S_k
- Let the start and end points of the tour be $\sigma_1 = 1$ and $\sigma_k = n$
- The Orienteering problem (OP) is to determine the number of sensors k, the subset of sensors S_k , and their sequence Σ such that

maximize_{k,S_k,\Sigma}
$$R = \sum_{i=1}^{k} \varsigma_{\sigma_i}$$

subject to $\sum_{i=2}^{k} |(s_{\sigma_{i-1}}, s_{\sigma_i})| \le T_{max}$ and $s_{\sigma_1} = s_1, s_{\sigma_k} = s_n.$ (4)

The OP combines the problem of determining the most valuable locations S_k with finding the shortest tour T visiting the locations S_k . It is NP-hard, since for $s_1 = s_n$

and particular S_k it becomes the TSP. B4M36UIR - Lecture 08: Data Collection Planning

Unsupervised Learning to the OP 1/2

- A solution of the OP is similar to the solution of the PC-TSP and TSP
- We need to satisfy the limited travel budget T_{max} , which needs the final tour over the sensing locations
- During the unsupervised learning, the winners are associated with the particular sensing locations, which can be utilized to determine the solution of the OP represented by the network:

Learning epoch 7 Learning epoch 55 Learning epoch 87

■ This is utilized in the conditional adaptation of the network towards the sensing location only if the tour represented by the network after the adaptation would satisfy T_{max}

The Orienteering Problem (OP)

- The problem is to collect as many rewards as possible within the given travel budget (T_{max}) , which is especially suitable for robotic vehicles such as multi-rotor Unmanned Aerial Vehicles (UAVs)
- The starting and termination locations are prescribed and can be different The solution may not be a closed tour as in the TSP

Travel budget $T_{max} = 50$, Collected rewards R = 270Collected rewards R = 190

Travel budget $T_{max} = 75$

B4M36UIR - Lecture 08: Data Collection Planning

Existing Heuristic Approaches for the OP

■ The Orienteering Problem has been addressed by several approaches, e.g.,

4-phase heuristic algorithm proposed in [3] Results for the method proposed by Pillai in [2] Heuristic algorithm proposed in [1] Guided local search algorithm proposed in [4]

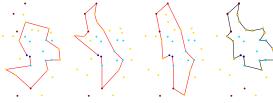
- [1] I.-M. Chao, B. L. Golden, and E. A. Wasil. A fast and effective heuristic for the orienteering problem. European Journal of Operational Research, 88(3):475-489, 1996.
- The traveling salesman subset-tour problem with one additional constraint Ph.D. thesis, The University of Tennessee, Knoxville, TN, 1992.
- [3] R. Ramesh and K. M. Brown An efficient four-phase heuristic for the generalized orienteering problem Computers & Operations Research, 18(2):151-165, 1991
- [4] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. V. Oudheusden. A guided local search metaheuristic for the team orienteering problem. European Journal of Operational Research, 196(1):118-127, 2009

Unsupervised Learning to the OP 2/2

- The winner selection for $s' \in S$ is conditioned according to T_{max}
 - \blacksquare The network is adapted only if the tour T_{win} represented by the current winners would shorter or equal than T_{max}

$$\mathcal{L}(\textit{T}_\textit{win}) - |(\textit{s}_{\nu_\textit{p}}, \textit{s}_{\nu_\textit{n}})| + |(\textit{s}_{\nu_\textit{p}}, \textit{s}')| + |(\textit{s}', \textit{s}_{\nu_\textit{n}})| \leq \textit{T}_\textit{max}$$

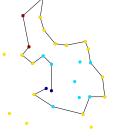
■ The unsupervised learning performs a *stochastic search* steered by the rewards and the length of the tour to be below T_{max}



Epoch 155, R=150 Epoch 201, R=135 Epoch 273, R=125 Final solution, R=190

Orienteering Problem - Specification

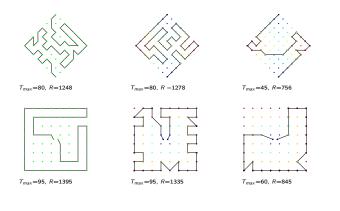
- Let the given set of n sensors be located in \mathbb{R}^2 with the locations $S = \{s_1, \ldots, s_n\}, s_i \in \mathbb{R}^2$
- **Each** sensor s_i has an associated score ς_i characterizing the reward if data from s_i are collected
- The vehicle is operating in \mathbb{R}^2 , and the travel
- cost is the Euclidean distance Starting and final locations are prescribed
- \blacksquare We aim to determine a subset of k locations $S_k \subseteq S$ that maximizes the sum of the collected rewards while the travel cost to visit them is



The Orienteering Problem (OP) combines two NP-hard problems:

- Knapsack problem in determining the most valuable locations $S_k \subseteq S$
- Travel Salesman Problem (TSP) in determining the shortest tour

OP Benchmarks – Example of Solutions



Comparison with Existing Algorithms for the OP

- Standard benchmark problems for the Orienteering Problem various scenarios with several values of T_{max}
- The results are presented as the average ratios (and standard deviations) to the best-known solution Instances of the Tsiligirides problems

Unsupervised Problem Set PL Learning Set 1, $5 \le T_{max} \le 85$ 0.99/0.01 1.00/0.01 1.00/0.01 0.99/0.02 1.00/0.00

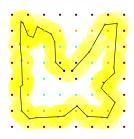
Diamond-shaped (Set 64) and Square-shaped (Set 66) test problems								
Problem Set	RB [†]	PL	CGW	Unsupervised Learning				
Set 64, $5 \le T_{max} \le 80$	0.97/0.02	1.00/0.01	0.99/0.01	0.97/0.03				

Required computational time is up to units of seconds, but for small problems tens or hundreds of milliseconds.

B4M36UIR - Lecture 08: Data Collection Planning

Orienteering Problem with Neighborhoods

■ Similarly to the TSP with Neighborhoods and PC-TSPN we can formulate the Orienteering Problem with Neighborhoods.

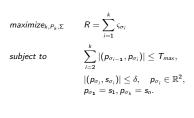


 T_{max} =60, δ =1.5, R=1600

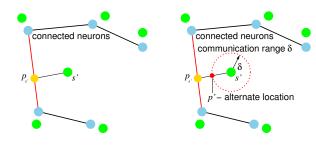
 T_{max} =45, δ =1.5, R=1344

Orienteering Problem with Neighborhoods

- Data collection using wireless data transfer allows to reliably retrieve data within some communication radius δ
 - lacksquare Disk-shaped δ -neighborhood
- We need to determine the most suitable locations P_k such that



■ More rewards can be collected than for the OP formulation with the same travel budget T_{max}



Generalization of the Unsupervised Learning to the

■ The same idea of the alternate location as in TSPN

Orienteering Problem with Neighborhoods

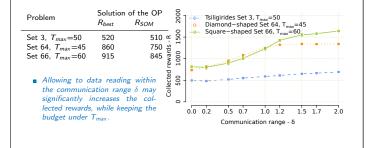
■ The location p' for retrieving data from s' is determined as the alternate goal location during the conditioned winner selection

Summary of the Lecture

B4M36UIR - Lecture 08: Data Collection Planning

Influence of the δ -Sensing Distance

■ Influence of increasing communication range to collected rewards

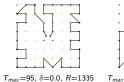


OP with Neighborhoods (OPN) – Example of Solutions

lacksquare Diamond-shaped problem Set 64 – SOM solutions for T_{max} and δ

 T_{max} =80, δ =0.0, R=1278 T_{max} =45, δ =0.0, R=756

ullet Square-shaped problem Set 66 – SOM solutions for T_{max} and δ



 T_{max} =60, δ =0.0, R=845 T_{max} =60, δ =1.5, R=1600

In addition to unsupervised learning, Variable Neighborhood Search (VNS) for the OP has been generalized to the OPN B4M36UIR - Lecture 08: Data Collection Planning

B4M36UIR - Lecture 08: Data Collection Planning

Jan Faigl, 2017 Topics Discussed

Topics Discussed

- Data Collection Planning motivational problem and solution
 - Prize-Collecting Traveling Salesman Problem with Neighborhoods (PC-TSPN)

B4M36UIR - Lecture 08: Data Collection Planning

- Traveling Salesman Problem (TSP)
 - Approximation and heuristic approaches
- Traveling Salesman Problem with Neighborhoods (TSPN)
 - Sampling-based and decoupled approaches
 - Unsupervised learning
- Generalized Traveling Salesman Problem (GTSP)
 - Heuristic and transformation (GTSP→ATSP) approaches
- Orienteering problem (OP)
 - Heuristic and unsupervised learning based approaches
- Orienteering problem with Neighborhoods (OPN)
 - Unsupervised learning based approach
- Next: Data-collection planning with curvature-constrained vehicles

47 / 50

Jan Faigl, 2017

Jan Faigl, 2017

lan Faigl, 2017