Data collection planning - TSP(N), PC-TSP(N), and OP(N))

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague
Lecture 08
B4M36UIR - Artificial Intelligence in Robotics

| Jan Faigl, 2017 | | | B4M36UIR | Lecture 08: Data Collection Planning | $1 / 50$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Motivation | TSP | TSPN | GTSP | Noon-Bean Transformation | OP | OPN |

Part I

Part 1 - Data Collection Planning

Overview of the Lecture

- Part 1 - Data Collection Planning
- Data Collection Planning - Motivational Problem
- Traveling Salesman Problem (TSP)
- Traveling Salesman Problem with Neighborhoods (TSPN)
- Generalized Traveling Salesman Problem (GTSP)
- Noon-Bean Transformation
- Orienteering Problem (OP)
- Orienteering Problem with Neighborhoods (OPN)

| Jan Faigl, 2017 | | | B4M36UIR | Lecture 08: Data Collection Planning | $2 / 50$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Motivation | TSP | TSPN | GTSP | Noon-Bean Transformation | OP | OPN |

Autonomous Data Collection

- Having a set of sensors (sampling stations), we aim to determine a cost-efficient path to retrieve data by autonomous underwater vehicles $(A U V s)$ from the individual sensors
E.g., Sampling stations on the ocean floor
- The planning problem is a variant of
 the Traveling Salesman Problem

Two practical aspects of the data collection can be identified

1. Data from particular sensors may be of different importance
2. Data from the sensor can be retrieved using wireless communication

> These two aspects (of general applicability) can be considered in the Prize-Collecting Traveling Salesman Problem (PC-TSP) and Orienteering Problem (OP) and their extensions with neighborhoods

Motivation

Prize-Collecting Traveling Salesman Problem with

 Neighborhoods (PC-TSPN)- Let n sensors be located in \mathbb{R}^{2} at the locations $S=\left\{s_{1}, \ldots, s_{n}\right\}$
- Each sensor has associated penalty $\xi\left(s_{i}\right) \geq 0$ characterizing additional cost if the data are not retrieved from s_{i}
- Let the data collecting vehicle operates in \mathbb{R}^{2} with the motion cost $c\left(p_{1}, p_{2}\right)$ for all pairs of points $p_{1}, p_{2} \in \mathbb{R}^{2}$
- The data from s_{i} can be retrieved within δ distance from s_{i}

Motivation

PC-TSPN - Optimization Criterion

The PC-TSPN is a problem to

- Determine a set of unique locations $P=\left\{p_{1}, \ldots, p_{k}\right\}, k \leq n$, $p_{i} \in \mathbb{R}^{2}$, at which data readings are performed
- Find a cost efficient tour T visiting P such that the total cost $C(T)$ of T is minimal

$$
\begin{equation*}
\mathcal{C}(T)=\sum_{\left(p_{i} ; p_{l_{i+1}}\right) \in T} c\left(p_{l_{i}}, p_{l_{i+1}}\right)+\sum_{s \in S \backslash S_{T}} \xi(s), \tag{1}
\end{equation*}
$$

where $S_{T} \subseteq S$ are sensors such that for each $s_{i} \in S_{T}$ there is $p_{l_{j}}$ on $T=\left(p_{l_{1}}, \ldots, p_{l_{k-1}}, p_{l_{k}}\right)$ and $p_{l_{j}} \in P$ for which $\left|\left(s_{i}, p_{l_{j}}\right)\right| \leq \delta$.

- PC-TSPN includes other variants of the TSP
- for $\delta=0$ it is the PC-TSP
- for $\xi\left(s_{i}\right)=0$ and $\delta \geq 0$ it is the TSPN
- for $\xi\left(s_{i}\right)=0$ and $\delta=0$ it is the ordinary TSP

Jan Faigl, 2017
Traveling Salesman Problem (TSP)

- Let S be a set of n sensor locations $S=\left\{s_{1}, \ldots, s_{n}\right\}, s_{i} \in \mathbb{R}^{2}$ and $c\left(s_{i}, s_{j}\right)$ is a cost of travel from s_{i} to s_{j}
- Traveling Salesman Problem (TSP) is a problem to determine a closed tour visiting each $s \in S$ such that the total tour length is minimal, i.e.,
- determine a sequence of visits $\Sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ such that

$$
\begin{array}{ll}
\operatorname{minimize}_{\Sigma} & L=\left(\sum_{i=1}^{n-1} c\left(s_{\sigma_{i}}, s_{\sigma_{i+1}}\right)\right)+c\left(s_{\sigma_{n}}, s_{\sigma_{1}}\right) \tag{2}\\
\text { subject to } & \Sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right), 1 \leq \sigma_{i} \leq n, \sigma_{i} \neq \sigma_{j} \text { for } i \neq j
\end{array}
$$

- The TSP can be considered on a graph $G(V, E)$ where the set of vertices V represents sensor locations S and E are edges connecting the nodes with the cost $c\left(s_{i}, s_{j}\right)$
- For simplicity we can consider $c\left(s_{i}, s_{j}\right)$ to be Euclidean distance; otherwise, it is a solution of the path planning problem

Euclidean TSP

- If $c\left(s_{i}, s_{j}\right) \neq c\left(s_{j}, s_{i}\right)$ it is the Asymmetric TSP
- The TSP is known to be NP-hard unless $P=N P$

Communication radius ρ [km] Faigl and Hollinger - (IROS 2014, TNNLS 2017)

Existing solvers to the TSP

- Exact solutions
- Branch and Bound, Integer Linear Programming (ILP)
E.g., Concorde solver - http://www.tsp.gatech.edu/concorde.html
- Approximation algorithms
- Minimum Spanning Tree (MST) heuristic with $L \leq 2 L_{\text {opt }}$
- Christofides's algorithm with $L \leq \frac{3 / 2}{L}{ }_{\text {opt }}$

■ Heuristic algorithms
■ Constructive heuristic - Nearest Neighborhood (NN) algorithm

- 2-Opt - local search algorithm proposed by Croes 1958
- Lin-Kernighan (LK) heuristic

```
E.g., Helsgaun's implementation of the LK heuristic
```

 http://www.akira.ruc.dk/~keld/research/LKH
 - Soft-Computing techniques, e.g.,
- Variable Neighborhood Search (VNS)

■ Evolutionary approaches

- Unsupervised learning

Jan Faigl, 2017			B4M36UIR	Lecture 08: Data Collection Planning	11/50	
Motivation	TSP	TSPN	GTSP	Noon-Bean Transformation	OP	OPN

Christofides's Algorithm to the TSP

- Christofides's algorithm

1. Compute the MST of the input graph G
2. Compute the minimal matching on the odd-degree vertices
3. Shortcut a traversal of the resulting Eulerian graph

MST

Matching

- For the triangle inequality, the length of such a tour L is

$$
L \leq \frac{3}{2} L_{\text {optimal }}
$$

where $L_{\text {optimal }}$ is the cost of the optimal solution of the TSP

$$
\text { Length of the MST is } \leq L_{\text {optimal }}
$$

Sum of lengths of the edges in the matching $\leq \frac{1}{2} L_{\text {optimal }}$

MST-based Approximation Algorithm to the TSP

- Minimum Spanning Tree Heuristic

1. Compute the MST (denoted T) of the input graph G
2. Construct a graph H by doubling every edge of T
3. Shortcut repeated occurrences of a vertex in the tour

■ For the triangle inequality, the length of such a tour L is

$$
L \leq 2 L_{\text {optimal }}
$$

where $L_{\text {optimal }}$ is the cost of the optimal solution of the TSP

Jan Faigl, 2017 B4M36UIR - Lecture 08: Data Collection Planning
2-Opt Heuristic

1. Use a construction heuristic to create an initial route

- NN algorithm, cheapest insertion, farther insertion

2. Repeat until no improvement is made
2.1 Determine swapping that can shorten the tour (i, j) for $1 \leq i \leq n$ and $i+1 \leq j \leq n$

- route[0] to route[i-1]
- route[i] to route[j] in reverse order
- route[j] to route[end]
- Determine length of the route
- Update the current route if length is shorter than the existing solution

Unsupervised Learning based Solution of the TSP

■ Sensor locations $S=\left\{s_{1}, \ldots, s_{n}\right\}, s_{1} \in \mathbb{R}^{2} ;$ Neurons $\mathcal{N}=\left(\nu_{1}, \ldots, \nu_{m}\right), \nu_{i} \in \mathbb{R}^{2}, m=2.5 n$

- Learning gain σ; epoch counter i; gain decreasing rate $\alpha=0.1$; learning rate $\mu=0.6$

1. $\mathcal{N} \leftarrow$ init ring of neurons as a small ring around some $s_{i} \in S$, e.g., a circle with radius 0.5
2. $i \leftarrow 0 ; \sigma \leftarrow 12.41 n+0.06$
3. $I \leftarrow \emptyset \quad / /$ clear inhibited neurons
4. foreach $s \in \Pi(S) \quad$ (a permutation of S)
$4.1 \nu^{*} \leftarrow \operatorname{argmin}_{\nu \in \mathcal{N} \backslash I}\|(\nu, s)\|$
4.2 foreach ν in d neighborhood of ν^{*}

$$
\nu \leftarrow \nu+\mu f(\sigma, d)(s-\nu)
$$

$f(\sigma, d)= \begin{cases}e^{-\frac{d^{2}}{\sigma^{2}}} & \text { for } d<0.2 m, \\ 0 & \text { otherwise },\end{cases}$
$4.3 I \leftarrow I \bigcup\left\{\nu^{*}\right\} \quad / /$ inhibit the winner
5. $\sigma \leftarrow(1-\alpha) \sigma ; i \leftarrow i+1$;
6. If (termination condition is not satisfied) Goto Step 3; Otherwise retrieve solution

Termination condition can be

- Maximal number of learning epochs $i \leq$ $i_{\max }$, e.g., $i_{\max }=120$
- Winner neurons are negligibly close to sensor locations, e.g., less than 0.001

Traveling Salesman Problem with Neighborhoods (TSPN)

- Instead visiting a particular location $s \in S, s \in \mathbb{R}^{2}$ we can request to visit, e.g., a region $r \subset \mathbb{R}^{2}$ to save travel cost, i.e., visit regions $R=\left\{r_{1}, \ldots, r_{n}\right\}$
- The TSP becomes the TSP with Neighborhoods (TSPN) where it is necessary, in addition to the determination of the order of visits Σ, determine suitable locations $P=\left\{p_{1}, \ldots, p_{n}\right\}, p_{i} \in r_{i}$, of visits to R
- The problem is a combination of combinatorial optimization to determine Σ with continuous optimization to determine P
$\operatorname{minimize}_{\Sigma, P} \quad L=\left(\sum_{i=1}^{n-1} c\left(p_{\sigma_{i}}, p_{\sigma_{i+1}}\right)\right)+c\left(p_{\sigma_{n}}, p_{\sigma_{\mathbf{1}}}\right)$
subject to

$$
\begin{aligned}
& R=\left\{r_{1}, \ldots, r_{n}\right\}, r_{i} \subset \mathbb{R}^{2} \\
& P=\left\{p_{1}, \ldots, p_{n}\right\}, p_{i} \in r_{i} \\
& \Sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right), 1 \leq \sigma_{i} \leq n, \\
& \sigma_{i} \neq \sigma_{j} \text { for } i \neq j
\end{aligned}
$$

$$
\text { Foreach } r_{i} \in R \text { there is } p_{i} \in r_{i}
$$

(3)

In general, TSPN is APX-hard, and cannot be approximated

Example of Unsupervised Learning for the TSP

Traveling Salesman Problem with Neighborhoods (TSPN)

- Euclidean TSPN with disk shaped δ-neighborhoods
- Sequence of visits to the regions with particular locations of the visit

to within a factor $2-\epsilon, \epsilon>0$, unless $\mathrm{P}=\mathrm{NP}$.
Safra, S., Schwartz, O. (2006)

Approaches to the TSPN

- A direct solution of the TSPN - approximation algorithms and heuristics

■ Decoupled approach
E.g., using evolutionary techniques or unsupervised learning

1. Determine sequence of visits Σ independently on the locations P
E.g., as the TSP for centroids of the regions R
2. For the sequence Σ determine the locations P to minimize the total tour length, e.g.,

- Touring polygon problem (TPP)
- Sampling possible locations and use a forward search for finding the best locations
- Continuous optimization such as hill-climbing
E.g., Local Iterative Optimization (LIO), Váña \& Faigl (IROS 2015)

■ Sampling-based approaches

- For each region, sample possible locations of visits into a discrete set of locations for each region
- The problem can be then formulated as the Generalized Traveling Salesman Problem (GTSP)
■ Euclidean TSPN with, e.g., disk-shaped δ neighborhoods
- Simplified variant with regions as disks with radius δ - remote sensing with the δ communication range

| Jan Faigl, 2017 | | | B4M36UIR | Lecture 08: Data Collection Planning | 20/50 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Motivation | TSP | TSPN | GTSP | Noon-Bean Transformation | OP | OPN |

Example of Unsupervised Learning for the TSPN

It also provides solutions for non-convex regions, overlapping regions, and coverage problems.

Motivation

Unsupervised Learning for the TSPN

- In the unsupervised learning for the TSP, we can sample suitable sensing locations during winner selection
- We can use the centroid of the region for the shortest path computation from ν to the region r presented to the network
- Then, an intersection point of the path with the region can be used as an alternate location
- For the Euclidean TSPN with disk-shaped δ neighborhoods, we can compute the alternate location directly from the Euclidean distance

Faigl, J. et al. (2013): Visiting convex regions in a polygonal map. Robotics and Autonomous Systems.
Jan Faigl, 2017

Solving the TSPN as the TPP - Iterative Refinement

■ Let the sequence of n polygon regions be $R=\left(r_{1}, \ldots, r_{n}\right)$

$$
\text { Li, F., Klette, R.: Approximate algorithms for touring a sequence of polygons. } 2008
$$

1. Sampling the polygons into a discrete set of points and determine all shortest paths between each sampled points in the sequence of the regions visits
E.g., using visibility graph
2. Initialization: Construct an initial touring polygons path using a sampled point of each region
Let the path be defined by $P=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $p_{i} \in$ r_{i} and $L(P)$ be the length of the shortest path induced by P
3. Refinement: For $i=1,2, \ldots, n$

- Find $p_{i}^{*} \in r_{i}$ minimizing the length of the path $d\left(p_{i-1}, p_{i}^{*}\right)+d\left(p_{i}^{*}, p_{i+1}\right)$, where $d\left(p_{k}, p_{l}\right)$ is the path length from p_{k} to $p_{l}, p_{0}=p_{n}$, and $p_{n+1}=p_{1}$
- If the total length of the current path over point p_{i}^{*} is shorter than over p_{i}, replace the point p_{i} by p_{i}^{*}

4. Compute path length $L_{\text {new }}$ using the refined points
5. Termination condition: If $L_{\text {new }}-L<\epsilon$ Stop the refinement. Otherwise $L \leftarrow L_{\text {new }}$ and go to Step 3
6. Final path construction: use the last points and construct the path using the shortest paths among obstacles between two consecutive points

Faigl, 2017

Sampling-based Decoupled Solution of the TSPN

- Sample each neighborhood with, e.g., $k=6$ samples

■ Determine sequence of visits, e.g., by a solution of the ETSP for the centroids of the regions

- Finding the shortest tour takes in a forward search graph $\mathcal{O}\left(n k^{3}\right)$ for $n k^{2}$ edges in the sequence

Trying each of the k possible starting locations

Generalized Traveling Salesman Problem (GTSP)

- For sampled neighborhoods into discrete sets of locations, we can formulate the problem as the Generalized Traveling Salesman Problem (GTSP)

Also known as the Set TSP or Covering Salesman Problem, etc.

- For a set of n sets $S=\left\{S_{1}, \ldots, S_{n}\right\}$, each with particular set of locations (nodes) $S_{i}=\left\{s_{1}^{i}, \ldots, s_{n_{i}}^{i}\right\}$
- The problem is to determine the shortest tour visiting each set S_{i}, i.e., determining the order Σ of visits to S and a particular locations $s^{i} \in S_{i}$ for each $S_{i} \in S$
$\operatorname{minimize}_{\Sigma} \quad L=\left(\sum_{i=1}^{n-1} c\left(s^{\sigma_{i}}, s^{\sigma_{i+1}}\right)\right)+c\left(s^{\sigma_{n}}, s^{\sigma_{1}}\right)$

$$
\text { subject to } \quad \sum_{\varepsilon^{\sigma_{i}} \in \varsigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right), 1 \leq \sigma_{i} \leq n, \sigma_{i} \neq \sigma_{j} \text { for } i \neq j
$$

$$
s^{\sigma_{i}} \in S_{\sigma_{i}}, S_{\sigma_{i}}=\left\{s_{1}^{\sigma_{i}}, \ldots, s_{n_{\sigma_{i}}}^{\sigma_{i}}\right\}, S_{\sigma_{i}} \in S
$$

- In addition to exact, e.g., ILP-based, solution, a heuristic algorithm GLNS is available (besides other heuristics)

Smith, S. L., Imeson, F. (2017), GLNS: An effective large neighborhood search heuristic for the Generalized Traveling Salesman Problem. Computers and Operations Research.
Implementation in Julia - https://ece.uwaterloo.ca/~sl2smith/GLNS

Sampling-based Solution of the TSPN

- For an unknown sequence of the visits to the regions, there are $\mathcal{O}\left(n^{2} k^{2}\right)$ possible edges
- Finding the shortest path is NP-hard, we need to determine the sequence of visits, which is the solution of the TSP

The descrite variant of the TSPN can be formulated as the GTSP Jan Faigl, $2017 \quad$ B4M36UIR - Lecture 08: Data Collection Planning \qquad $25 / 50$

Transformation of the GTSP to the Asymmetric TSP

- The Generalized TSP can be transformed into the Asymmetric TSP that can be then solved, e.g., by LKH or exactly using Concorde with further transformation of the problem to the TSP

GTSP

GATSP

- A transformation of the GTSP to the ATSP has been proposed by Noon and Bean in 1993, and it is called as the Noon-Bean Transformation

Noon, C.E., Bean, J.C. (1993), An efficient transformation of the generalized traveling salesman problem. INFOR: Information Systems and Operational Research.
problem. INFOR: Information Systems and Operational Research.
Ben-Arieg, et al. (2003), Transformations of generalized ATSP into ATSP. Operations Research Letters.

Noon-Bean Transformation

- Noon-Bean transformation to transfer GTSP to ATSP
- Modify weight of the edges (arcs) such that the optimal ATSP tour visits all vertices of the same cluster before moving to the next cluster
- Adding a large a constant M to the weights of arcs connecting the clusters, e.g., a sum
of the n heaviest edges
prescribed order, i.e., creating zero-length cycles within each cluster
- The transformed ATSP can be further transformed to the TSP
- For each vertex of the ATSP created 3 vertices in the TSP, i.e., it increases the size of
the problem three times the problem three times

Noon, C.E., Bean, J.C. (1993), An efficient transformation of the generalized traveling salesman problem. INFOR: Information Systems and Operational Research.

| Jan Faigl, 2017 | | | B4M36UIR | Lecture 08: Data Collection Planning | | $30 / 50$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Motivation | TSP | TSPN | GTSP | Noon-Bean Transformation | OP | OPN |

Noon-Bean transformation - Matrix Notation

- 1. Create a zero-length cycle in each set; and 2. for each edge $\left(q_{i}^{m}, q_{j}^{n}\right)$ create an edge $\left(q_{i}^{m}, q_{j}^{n-1}\right)$ with a value increased by sufficiently large M

∞ represents there are not edges inside the same set; and '-' denotes unused edge
Original GATSP

	q_{1}^{1}	q_{1}^{2}	q_{1}^{3}	q_{2}^{1}	q_{2}^{2}	q_{3}^{1}
q_{1}^{1}	∞	∞	∞	7	-	-
q_{1}^{2}	∞	∞	∞	4	-	-
q_{1}^{3}	∞	∞	∞	-	1	-
q_{2}^{1}	-	-	-	∞	∞	5
q_{2}^{2}	-	-	-	∞	∞	2
q_{3}^{1}	6	8	3	-	-	∞

Transformed ATSP

	q_{1}^{1}	q_{1}^{2}	q_{1}^{3}	q_{2}^{1}	q_{2}^{2}	q_{3}^{1}
q_{1}^{1}	∞	0	∞	-	$7+M$	-
q_{1}^{2}	∞	∞	0	-	$4+M$	-
q_{1}^{3}	0	∞	∞	$1+M$	-	-
q_{2}^{1}	-	-	-	∞	0	$5+M$
q_{2}^{2}	-	-	-	0	∞	$2+M$
q_{3}^{1}	$8+M$	$3+M$	$6+M$	-	-	0

The Orienteering Problem (OP)

- The problem is to collect as many rewards as possible within the given travel budget ($T_{\max }$), which is especially suitable for robotic vehicles such as multi-rotor Unmanned Aerial Vehicles (UAVs)
- The starting and termination locations are prescribed and can be different

The solution may not be a closed tour as in the TSP

Travel budget $T_{\text {max }}=50$, Collected rewards $R=190$

Travel budget $T_{\max }=75$,
Collected rewards $R=270$

Jan Faigl, $2017 \quad$ B4M36UIR - Lecture 08: Data Collection Planning
Motivation TSP TSPN GTSP Noon-Bean Transformation OP OPN

Orienteering Problem - Optimization Criterion

- Let $\Sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ be a permutation of k sensor labels, $1 \leq \sigma_{i} \leq$ n and $\sigma_{i} \neq \sigma_{j}$ for $i \neq j$
$■ \Sigma$ defines a tour $T=\left(s_{\sigma_{1}}, \ldots, s_{\sigma_{k}}\right)$ visiting the selected sensors S_{k}
- Let the start and end points of the tour be $\sigma_{1}=1$ and $\sigma_{k}=n$
- The Orienteering problem (OP) is to determine the number of sensors k, the subset of sensors S_{k}, and their sequence Σ such that

$$
\begin{array}{ll}
\text { maximize }_{k, s_{k}, \Sigma} & R=\sum_{i=1}^{k} \zeta_{\sigma_{i}} \\
\text { subject to } & \sum_{i=2}^{k}\left|\left(s_{\sigma_{i-1}}, s_{\sigma_{i}}\right)\right| \leq T_{\max } \text { and } \\
& s_{\sigma_{1}}=s_{1}, s_{\sigma_{k}}=s_{n} \tag{4}
\end{array}
$$

The OP combines the problem of determining the most valuable locations S_{k} with finding the shortest tour T visiting the locations S_{k}. It is $N P$-hard, since for $s_{1}=s_{n}$ and particular S_{k} it becomes the TSP.

Orienteering Problem - Specification

■ Let the given set of n sensors be located in \mathbb{R}^{2} with the locations $S=\left\{s_{1}, \ldots, s_{n}\right\}, s_{i} \in \mathbb{R}^{2}$
■ Each sensor s_{i} has an associated score ζ_{i} characterizing the reward if data from s_{i} are collected

- The vehicle is operating in \mathbb{R}^{2}, and the travel cost is the Euclidean distance
- Starting and final locations are prescribed
- We aim to determine a subset of k locations $S_{k} \subseteq S$ that maximizes the sum of the collected
 rewards while the travel cost to visit them is below $T_{\text {max }}$

The Orienteering Problem (OP) combines two NP-hard problems:

- Knapsack problem in determining the most valuable locations $S_{k} \subseteq S$
- Travel Salesman Problem (TSP) in determining the shortest tour

Jan Faigl, 2017 B4M36UIR - Lecture 08: Data Collection Planning

Existing Heuristic Approaches for the OP

- The Orienteering Problem has been addressed by several approaches, e.g.,

RB	4-phase heuristic algorithm proposed in [3]
PL	Results for the method proposed by Pillai in [2]
CGW	Heuristic algorithm proposed in [1]
GLS	Guided local search algorithm proposed in [4]

[1] I.-M. Chao, B. L. Golden, and E. A. Wasil.
A fast and effective heuristic for the orienteering problem.
European Journal of Operational Research, 88(3):475-489, 1996.
[2] R. S. Pillai.
The traveling salesman subset-tour problem with one additional constraint (TSSP+1).
Ph.D. thesis, The University of Tennessee, Knoxville, TN, 1992.
[3] R. Ramesh and K. M. Brown.
An efficient four-phase heuristic for the generalized orienteering problem.
Computers \& Operations Research, 18(2):151-165, 1991.
[4] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. V. Oudheusden. A guided local search metaheuristic for the team orienteering problem. European Journal of Operational Research, 196(1):118-127, 2009.

OP Benchmarks - Example of Solutions

$T_{\max }=80, R=1248$

$T_{\text {max }}=95, R=1395$

$T_{\text {max }}=80, R=1278$

$T_{\text {max }}=95, R=1335$

$T_{\max }=45, R=756$

$T_{\text {max }}=60, R=845$

Unsupervised Learning for the OP 1/2

- A solution of the OP is similar to the solution of the PC-TSP and TSP
- We need to satisfy the limited travel budget $T_{\max }$, which needs the final tour over the sensing locations
- During the unsupervised learning, the winners are associated with the particular sensing locations, which can be utilized to determine the tour as a solution of the OP represented by the network:

Learning epoch 7 Learning epoch 55 Learning epoch 87 Final solution

- This is utilized in the conditional adaptation of the network towards the sensing location and the adaptation is performed only if the tour represented by the network after the adaptation would satisfy $T_{\text {max }}$

| Jan Faigl, 2017 | | | B4M36UIR | Lecture 08: Data Collection Planning | $40 / 50$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Motivation | TSP | TSPN | GTSP | Noon-Bean Transformation | OP | OPN |

Comparison with Existing Algorithms for the OP

- Standard benchmark problems for the Orienteering Problem represent various scenarios with several values of $T_{\text {max }}$
- The results (rewards) found by different OP approaches presented as the average ratios (and standard deviations) to the best-known solution

Instances of the Tsiligirides problems

Problem Set	RB	PL	CGW	Unsupervised Learning
Set $1,5 \leq T_{\max } \leq 85$	$0.99 / 0.01$	$1.00 / 0.01$	$1.00 / 0.01$	$1.00 / 0.01$
Set $2,15 \leq T_{\max } \leq 45$	$1.00 / 0.02$	$0.99 / 0.02$	$0.99 / 0.02$	$0.99 / 0.02$
Set $3,15 \leq T_{\max } \leq 110$	$1.00 / 0.00$	$1.00 / 0.00$	$1.00 / 0.00$	$1.00 / 0.00$

Diamond-shaped (Set 64) and Square-shaped (Set 66) test problems

Problem Set	RB †	PL	CGW	Unsupervised Learning
Set $64,5 \leq T_{\max } \leq 80$	$0.97 / 0.02$	$1.00 / 0.01$	$0.99 / 0.01$	$0.97 / 0.03$
Set $66,15 \leq T_{\max } \leq 130$	$0.97 / 0.02$	$1.00 / 0.01$	$0.99 / 0.04$	$0.97 / 0.02$

[^0] or hundreds of milliseconds.

Orienteering Problem with Neighborhoods

- Similarly to the TSP with Neighborhoods and PC-TSPN we can formulate the Orienteering Problem with Neighborhoods.

$$
T_{\max }=60, \delta=1.5, R=1600
$$

$T_{\text {max }}=45, \delta=1.5, R=1344$

Generalization of the Unsupervised Learning to the Orienteering Problem with Neighborhoods

- The same idea of the alternate location as in the TSPN

- The location p^{\prime} for retrieving data from s^{\prime} is determined as the alternate goal location during the conditioned winner selection

Orienteering Problem with Neighborhoods

- Data collection using wireless data transfer allows to reliably retrieve data within some communication radius δ
- Disk-shaped δ-neighborhood
- We need to determine the most suitable locations P_{k} such that
$\operatorname{maximize}_{k, P_{k}, \Sigma}$

$$
R=\sum_{i=1}^{k} \zeta_{\sigma_{i}}
$$

subject to

$$
\begin{aligned}
& \sum_{i=2}^{k}\left|\left(p_{\sigma_{i-1}}, p_{\sigma_{i}}\right)\right| \leq T_{\max } \\
& \left|\left(p_{\sigma_{i}}, s_{\sigma_{i}}\right)\right| \leq \delta, \quad p_{\sigma_{i}} \in \mathbb{R}^{2} \\
& p_{\sigma_{1}}=s_{1}, p_{\sigma_{k}}=s_{n}
\end{aligned}
$$

$$
T_{\max }=50, R=270
$$

Introduced by Best, Faigl, Fitch (IROS 2016, SMC 2016, IJCNN 2017)

- More rewards can be collected than for the OP formulation with the same travel budget $T_{\text {max }}$
Jan Faigl, 2017 B4M36UIR - Lecture 08: Data Collection Planning
Influence of the δ-Sensing Distance
- Influence of increasing communication range to the sum of the collectec rewards

Motivation

TSP
TSPN \qquad
OP with Neighborhoods (OPN) - Example of Solutions

- Diamond-shaped problem Set 64 - SOM solutions for $T_{\max }$ and δ

Square-shaped problem Set 66 - SOM solutions for $T_{\max }$ and δ

$T_{\max }=95, \delta=0.0, R=1335 \quad T_{\max }=60, \delta=0.0, R=845 \quad T_{\max }=60, \delta=1.5, R=1600$
In addition to unsupervised learning, Variable Neighborhood Search (VNS) for the OP has been generalized to the OPN
Jan Faigl, 2017 B4M36UIR - Lecture 08: Data Collection Planning $48 / 50$

Topics Discussed

- Data Collection Planning - motivational problem and solution
- Prize-Collecting Traveling Salesman Problem with Neighborhoods (PC-TSPN)
- Traveling Salesman Problem (TSP)
- Approximation and heuristic approaches
- Traveling Salesman Problem with Neighborhoods (TSPN)
- Sampling-based and decoupled approaches
- Unsupervised learning
- Generalized Traveling Salesman Problem (GTSP)
- Heuristic and transformation (GTSP \rightarrow ATSP) approaches
- Orienteering problem (OP)
- Heuristic and unsupervised learning based approaches
- Orienteering problem with Neighborhoods (OPN)
- Unsupervised learning based approach

■ Next: Data-collection planning with curvature-constrained vehicles

[^0]: Required computational time is up to units of seconds, but for small problems tens

