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Part I

Part 1 – Data Collection Planning
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Autonomous Data Collection

Having a set of sensors (sampling
stations), we aim to determine a
cost-efficient path to retrieve data
by autonomous underwater vehicles
(AUVs) from the individual sensors

E.g., Sampling stations on the ocean floor

The planning problem is a variant of
the Traveling Salesman Problem

Two practical aspects of the data collection can be identified
1. Data from particular sensors may be of different importance
2. Data from the sensor can be retrieved using wireless communication

These two aspects (of general applicability) can be considered in the
Prize-Collecting Traveling Salesman Problem (PC-TSP) and Orien-
teering Problem (OP) and their extensions with neighborhoods

Jan Faigl, 2017 B4M36UIR – Lecture 08: Data Collection Planning 5 / 50



Motivation TSP TSPN GTSP Noon-Bean Transformation OP OPN

Prize-Collecting Traveling Salesman Problem with
Neighborhoods (PC-TSPN)

Let n sensors be located in R2 at the locations S = {s1, . . . , sn}
Each sensor has associated penalty ξ(si ) ≥ 0 characterizing
additional cost if the data are not retrieved from si

Let the data collecting vehicle operates in R2 with the motion cost
c(p1, p2) for all pairs of points p1, p2 ∈ R2

The data from si can be retrieved within δ distance from si
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PC-TSPN – Optimization Criterion
The PC-TSPN is a problem to

Determine a set of unique locations P = {p1, . . . , pk}, k ≤ n,
pi ∈ R2, at which data readings are performed
Find a cost efficient tour T visiting P such that the total cost
C (T ) of T is minimal

C(T ) =
∑

(pli ,pli+1 )∈T
c(pli , pli+1) +

∑

s∈S\ST
ξ(s), (1)

where ST ⊆ S are sensors such that for each si ∈ ST there is plj on
T = (pl1 , . . . , plk−1 , plk ) and plj ∈ P for which |(si , plj )| ≤ δ.

PC-TSPN includes other variants of the TSP
for δ = 0 it is the PC-TSP
for ξ(si ) = 0 and δ ≥ 0 it is the TSPN
for ξ(si ) = 0 and δ = 0 it is the ordinary TSP
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PC-TSPN – Example of Solution
Ocean Observatories Initiative (OOI) scenario
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Traveling Salesman Problem (TSP)
Let S be a set of n sensor locations S = {s1, . . . , sn}, si ∈ R2 and c(si , sj)
is a cost of travel from si to sj
Traveling Salesman Problem (TSP) is a problem to determine a closed
tour visiting each s ∈ S such that the total tour length is minimal, i.e.,

determine a sequence of visits Σ = (σ1, . . . , σn) such that

minimize Σ L =

(
n−1∑

i=1

c(sσi , sσi+1)

)
+ c(sσn , sσ1)

subject to Σ = (σ1, . . . , σn), 1 ≤ σi ≤ n, σi 6= σj for i 6= j

(2)

The TSP can be considered on a graph G (V ,E ) where the set of vertices
V represents sensor locations S and E are edges connecting the nodes
with the cost c(si , sj)

For simplicity we can consider c(si , sj) to be Euclidean distance; other-
wise, it is a solution of the path planning problem

Euclidean TSP

If c(si , sj) 6= c(sj , si ) it is the Asymmetric TSP
The TSP is known to be NP-hard unless P=NP
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Existing solvers to the TSP

Exact solutions
Branch and Bound, Integer Linear Programming (ILP)

E.g., Concorde solver – http://www.tsp.gatech.edu/concorde.html

Approximation algorithms
Minimum Spanning Tree (MST) heuristic with L ≤ 2Lopt
Christofides’s algorithm with L ≤ 3/2

L opt

Heuristic algorithms
Constructive heuristic – Nearest Neighborhood (NN) algorithm
2-Opt – local search algorithm proposed by Croes 1958
Lin-Kernighan (LK) heuristic

E.g., Helsgaun’s implementation of the LK heuristic
http://www.akira.ruc.dk/~keld/research/LKH

Soft-Computing techniques, e.g.,
Variable Neighborhood Search (VNS)
Evolutionary approaches
Unsupervised learning
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MST-based Approximation Algorithm to the TSP

Minimum Spanning Tree Heuristic

1. Compute the MST (denoted T )
of the input graph G

2. Construct a graph H by doubling
every edge of T

3. Shortcut repeated occurrences of
a vertex in the tour

For the triangle inequality, the length of such a tour L is

L ≤ 2Loptimal ,

where Loptimal is the cost of the optimal solution of the TSP

Jan Faigl, 2017 B4M36UIR – Lecture 08: Data Collection Planning 12 / 50

Motivation TSP TSPN GTSP Noon-Bean Transformation OP OPN

Christofides’s Algorithm to the TSP

Christofides’s algorithm
1. Compute the MST of the input

graph G
2. Compute the minimal match-

ing on the odd-degree vertices
3. Shortcut a traversal of the re-

sulting Eulerian graph MST Matching Final tour

For the triangle inequality, the length of such a tour L is

L ≤ 3
2
Loptimal ,

where Loptimal is the cost of the optimal solution of the TSP
Length of the MST is ≤ Loptimal

Sum of lengths of the edges in the matching ≤ 1
2Loptimal

Jan Faigl, 2017 B4M36UIR – Lecture 08: Data Collection Planning 13 / 50

Motivation TSP TSPN GTSP Noon-Bean Transformation OP OPN

2-Opt Heuristic

1. Use a construction heuristic to create an
initial route

NN algorithm, cheapest insertion, farther
insertion

2. Repeat until no improvement is made
2.1 Determine swapping that can shorten the

tour (i , j) for 1 ≤ i ≤ n and i + 1 ≤ j ≤ n

route[0] to route[i-1]
route[i] to route[j] in reverse order
route[j] to route[end]
Determine length of the route
Update the current route if length is
shorter than the existing solution
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Unsupervised Learning based Solution of the TSP
Sensor locations S = {s1, . . . , sn}, s1 ∈ R2; Neurons N = (ν1, . . . , νm), νi ∈ R2, m = 2.5n

Learning gain σ; epoch counter i ; gain decreasing rate α = 0.1; learning rate µ = 0.6

1. N ← init ring of neurons as a small ring around some si ∈ S, e.g., a circle with radius 0.5

2. i ← 0; σ ← 12.41n + 0.06;

3. I ← ∅ //clear inhibited neurons

4. foreach s ∈ Π(S) (a permutation of S)

4.1 ν∗ ← argminν∈N\I ||(ν, s)||
4.2 foreach ν in d neighborhood of ν∗

ν ← ν + µf (σ, d)(s − ν)

f (σ, d) =

{
e
− d2

σ2 for d < 0.2m,
0 otherwise,

4.3 I ← I
⋃{ν∗} // inhibit the winner

5. σ ← (1− α)σ; i ← i + 1;

6. If (termination condition is not satisfied)
Goto Step 3; Otherwise retrieve solution
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Termination condition can be

Maximal number of learning epochs i ≤
imax , e.g., imax = 120

Winner neurons are negligibly close to sen-
sor locations, e.g., less than 0.001

Somhom, S., Modares, A., Enkawa, T. (1999): Competition-based neural network for the mul-
tiple travelling salesmen problem with minmax objective. Computers & Operations Research.
Faigl, J. et al. (2011): An application of the self-organizing map in the non-Euclidean Traveling
Salesman Problem. Neurocomputing.
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Example of Unsupervised Learning for the TSP

Learning epoch 12 Learning epoch 35

Learning epoch 42 Learning epoch 53
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Traveling Salesman Problem with Neighborhoods (TSPN)
Instead visiting a particular location s ∈ S , s ∈ R2 we can request to visit,
e.g., a region r ⊂ R2 to save travel cost, i.e., visit regions R = {r1, . . . , rn}
The TSP becomes the TSP with Neighborhoods (TSPN) where it
is necessary, in addition to the determination of the order of visits Σ,
determine suitable locations P = {p1, . . . , pn}, pi ∈ ri , of visits to R

The problem is a combination of combinatorial optimization to determine
Σ with continuous optimization to determine P

minimize Σ,P,R L =

(
n−1∑

i=1

c(pσi , pσi+1 )

)
+ c(pσn , pσ1 )

subject to R = {r1, . . . , rn}, ri ⊂ R2

P = {p1, . . . , pn}, pi ∈ ri
Σ = (σ1, . . . , σn), 1 ≤ σi ≤ n,
σi 6= σj for i 6= j
Foreach ri ∈ R there is pi ∈ ri

(3)
In general, TSPN is APX-hard, and cannot be approximated
to within a factor 2− ε, ε > 0, unless P=NP.

Safra, S., Schwartz, O. (2006)
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Traveling Salesman Problem with Neighborhoods (TSPN)

Euclidean TSPN with disk shaped δ-neighborhoods
Sequence of visits to the regions with particular locations of the
visit
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Approaches to the TSPN
A direct solution of the TSPN – approximation algorithms and heuristics

E.g., using evolutionary techniques or unsupervised learning
Decoupled approach
1. Determine sequence of visits Σ independently on the locations P

E.g., as the TSP for centroids of the regions R

2. For the sequence Σ determine the locations P to minimize the
total tour length, e.g.,

Touring polygon problem (TPP)
Sampling possible locations and use a forward search for finding
the best locations
Continuous optimization such as hill-climbing

E.g., Local Iterative Optimization (LIO), Váňa & Faigl (IROS 2015)

Sampling-based approaches
For each region, sample possible locations of visits into a discrete
set of locations for each region
The problem can be then formulated as the Generalized Traveling
Salesman Problem (GTSP)

Euclidean TSPN with, e.g., disk-shaped δ neighborhoods
Simplified variant with regions as disks with radius δ – remote sens-
ing with the δ communication range
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Unsupervised Learning for the TSPN
In the unsupervised learning for the TSP, we can sample suitable
sensing locations during winner selection

We can use the centroid of
the region for the shortest path
computation from ν to the re-
gion r presented to the network
Then, an intersection point of
the path with the region can be
used as an alternate location

For the Euclidean TSPN with
disk-shaped δ neighborhoods,
we can compute the alternate
location directly from the Eu-
clidean distance

s’

connected neurons

location
− alternatep’

communication range δ

connected neurons

δ

s’

Faigl, J. et al. (2013): Visiting convex regions in a polygonal map. Robotics
and Autonomous Systems.
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Example of Unsupervised Learning for the TSPN

It also provides solutions for non-convex regions, overlapping regions,
and coverage problems.
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Solving the TSPN as the TPP – Iterative Refinement
Let the sequence of n polygon regions be R = (r1, . . . , rn)

Li, F., Klette, R.: Approximate algorithms for touring a sequence of polygons. 2008

1. Sampling the polygons into a discrete set of points and de-
termine all shortest paths between each sampled points in
the sequence of the regions visits E.g., using visibility graph

2. Initialization: Construct an initial touring polygons path us-
ing a sampled point of each region
Let the path be defined by P = (p1, p2, . . . , pn), where pi ∈
ri and L(P) be the length of the shortest path induced by P

3. Refinement: For i = 1, 2, . . . , n

Find p∗i ∈ ri minimizing the length of the path
d(pi−1, p∗i ) + d(p∗i , pi+1), where d(pk , pl ) is the path
length from pk to pl , p0 = pn, and pn+1 = p1
If the total length of the current path over point p∗i is
shorter than over pi , replace the point pi by p∗i

4. Compute path length Lnew using the refined points

5. Termination condition: If Lnew −L < ε Stop the refinement.
Otherwise L← Lnew and go to Step 3

6. Final path construction: use the last points and construct
the path using the shortest paths among obstacles between
two consecutive points
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Sampling-based Decoupled Solution of the TSPN
Sample each neighborhood with, e.g., k = 6 samples
Determine sequence of visits, e.g., by a solution of the ETSP for
the centroids of the regions
Finding the shortest tour takes in a forward search graph O(nk3)
for nk2 edges in the sequence Trying each of the k possible starting locations
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Sampling-based Solution of the TSPN
For an unknown sequence of the visits to the regions, there are
O(n2k2) possible edges
Finding the shortest path is NP-hard, we need to determine the
sequence of visits, which is the solution of the TSP
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The descrite variant of the TSPN can be formulated as the GTSP
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Generalized Traveling Salesman Problem (GTSP)
For sampled neighborhoods into discrete sets of locations, we can
formulate the problem as the Generalized Traveling Salesman
Problem (GTSP) Also known as the Set TSP or Covering Salesman Problem, etc.

For a set of n sets S = {S1, . . . ,Sn}, each with par-
ticular set of locations (nodes) Si = {s i1, . . . , s ini }
The problem is to determine the shortest tour vis-
iting each set Si , i.e., determining the order Σ of
visits to S and a particular locations s i ∈ Si for
each Si ∈ S

minimize Σ L =

(
n−1∑

i=1

c(sσi , sσi+1)

)
+ c(sσn , sσ1)

subject to Σ = (σ1, . . . , σn), 1 ≤ σi ≤ n, σi 6= σj for i 6= j
sσi ∈ Sσi ,Sσi = {sσi

1 , . . . , s
σi
nσi
},Sσi ∈ S

In addition to exact, e.g., ILP-based, solution, a heuristic algorithm
GLNS is available (besides other heuristics)

Smith, S. L., Imeson, F. (2017), GLNS: An effective large neighborhood search heuristic for
the Generalized Traveling Salesman Problem. Computers and Operations Research.

Implementation in Julia – https://ece.uwaterloo.ca/~sl2smith/GLNS
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Transformation of the GTSP to the Asymmetric TSP
The Generalized TSP can be transformed into the Asymmetric
TSP that can be then solved, e.g., by LKH or exactly using
Concorde with further transformation of the problem to the TSP
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GATSP

A transformation of the GTSP to the ATSP has been proposed by
Noon and Bean in 1993, and it is called as the Noon-Bean
Transformation

Noon, C.E., Bean, J.C. (1993), An efficient transformation of the generalized traveling salesman
problem. INFOR: Information Systems and Operational Research.
Ben-Arieg, et al. (2003), Transformations of generalized ATSP into ATSP. Operations Research
Letters.
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Noon-Bean Transformation

Noon-Bean transformation to transfer GTSP to ATSP

Modify weight of the edges (arcs) such
that the optimal ATSP tour visits all ver-
tices of the same cluster before moving to
the next cluster

Adding a large a constant M to the weights
of arcs connecting the clusters, e.g., a sum
of the n heaviest edges
Ensure visiting all vertices of the cluster in
prescribed order, i.e., creating zero-length
cycles within each cluster

The transformed ATSP can be further
transformed to the TSP

For each vertex of the ATSP created 3 ver-
tices in the TSP, i.e., it increases the size of
the problem three times

R1

R2

R3

q11

q21

q31

q12

q22

q13

7
4

1 5
2

6

8
3

Noon, C.E., Bean, J.C. (1993), An efficient transformation of the generalized traveling salesman
problem. INFOR: Information Systems and Operational Research.
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Example – Noon-Bean transformation (GATSP to ATSP)

1. Create a zero-length cycle in each set and set all other arcs to ∞
(or 2M) To ensure all vertices of the cluster are visited before leaving the cluster

2. For each edge (qmi , q
n
j ) create an edge (qmi , q

n−1
j ) with a value

increased by sufficiently large M
To ensure visit of all vertices in a cluster before the next cluster
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⇒
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Noon-Bean transformation – Matrix Notation
1. Create a zero-length cycle in each set; and 2. for each edge (qmi , q

n
j ) create an

edge (qmi , q
n−1
j ) with a value increased by sufficiently large M

R1

R2

R3

q11

q21

q31

q12

q22

q13

7
4

1 5
2

6

8
3

⇒
q11 q21 q31 q12 q22 q13

q11 ∞ ∞ ∞ 7 − −
q21 ∞ ∞ ∞ 4 − −
q31 ∞ ∞ ∞ − 1 −
q12 − − − ∞ ∞ 5
q22 − − − ∞ ∞ 2
q13 6 8 3 − − ∞

∞ represents there are not edges inside the same set; and ’−’ denotes unused edge

Original GATSP

q11 q21 q31 q12 q22 q13

q11 ∞ ∞ ∞ 7 − −
q21 ∞ ∞ ∞ 4 − −
q31 ∞ ∞ ∞ − 1 −
q12 − − − ∞ ∞ 5
q22 − − − ∞ ∞ 2
q13 6 8 3 − − ∞

Transformed ATSP

q11 q21 q31 q12 q22 q13

q11 ∞ 0 ∞ − 7+M −
q21 ∞ ∞ 0 − 4+M −
q31 0 ∞ ∞ 1+M − −
q12 − − − ∞ 0 5+M

q22 − − − 0 ∞ 2+M

q13 8+M 3+M 6+M − − 0
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Noon-Bean Transformation – Summary

It transforms the GATSP into the ATSP which can be further
Solved by existing solvers, e.g., the Lin-Kernighan heuristic
algorithm (LKH) http://www.akira.ruc.dk/~keld/research/LKH

the ATSP can be further transformed into the TSP and solve it
optimaly, e.g., by the Concorde solverhttp://www.tsp.gatech.edu/concorde.html

It runs in O(k2n2) time and uses O(k2n2) memory, where n is the
number of sets (regions) each with up to k samples
The transformed ATSP problem contains kn vertices

Noon, C.E., Bean, J.C. (1993), An efficient transformation of the generalized traveling salesman
problem. INFOR: Information Systems and Operational Research.
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Travel budget Tmax = 50,
Collected rewards R = 190

Travel budget Tmax = 75,
Collected rewards R = 270
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The Orienteering Problem (OP)
The problem is to collect as many rewards as possible within the given
travel budget (Tmax), which is especially suitable for robotic vehicles
such as multi-rotor Unmanned Aerial Vehicles (UAVs)
The starting and termination locations are prescribed and can be different

The solution may not be a closed tour as in the TSP
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Orienteering Problem – Specification
Let the given set of n sensors be located in R2

with the locations S = {s1, . . . , sn}, si ∈ R2

Each sensor si has an associated score ζi char-
acterizing the reward if data from si are col-
lected

The vehicle is operating in R2, and the travel
cost is the Euclidean distance

Starting and final locations are prescribed

We aim to determine a subset of k locations
Sk ⊆ S that maximizes the sum of the collected
rewards while the travel cost to visit them is
below Tmax

The Orienteering Problem (OP) combines two NP-hard problems:
Knapsack problem in determining the most valuable locations Sk ⊆ S

Travel Salesman Problem (TSP) in determining the shortest tour
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Orienteering Problem – Optimization Criterion
Let Σ = (σ1, . . . , σk) be a permutation of k sensor labels, 1 ≤ σi ≤
n and σi 6= σj for i 6= j

Σ defines a tour T = (sσ1 , . . . , sσk ) visiting the selected sensors Sk
Let the start and end points of the tour be σ1 = 1 and σk = n

The Orienteering problem (OP) is to determine the number of
sensors k , the subset of sensors Sk , and their sequence Σ such that

maximizek,Sk ,Σ R =
k∑

i=1

ζσi

subject to
k∑

i=2

|(sσi−1 , sσi )| ≤ Tmax and

sσ1 = s1, sσk = sn.

(4)

The OP combines the problem of determining the most valuable locations Sk with
finding the shortest tour T visiting the locations Sk . It is NP-hard, since for s1 = sn
and particular Sk it becomes the TSP.

Jan Faigl, 2017 B4M36UIR – Lecture 08: Data Collection Planning 37 / 50

Motivation TSP TSPN GTSP Noon-Bean Transformation OP OPN

Existing Heuristic Approaches for the OP
The Orienteering Problem has been addressed by several approaches, e.g.,

RB 4-phase heuristic algorithm proposed in [3]
PL Results for the method proposed by Pillai in [2]
CGW Heuristic algorithm proposed in [1]
GLS Guided local search algorithm proposed in [4]

[1] I.-M. Chao, B. L. Golden, and E. A. Wasil.
A fast and effective heuristic for the orienteering problem.
European Journal of Operational Research, 88(3):475–489, 1996.

[2] R. S. Pillai.
The traveling salesman subset-tour problem with one additional constraint
(TSSP+ 1).
Ph.D. thesis, The University of Tennessee, Knoxville, TN, 1992.

[3] R. Ramesh and K. M. Brown.
An efficient four-phase heuristic for the generalized orienteering problem.
Computers & Operations Research, 18(2):151–165, 1991.

[4] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. V. Oudheusden.
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OP Benchmarks – Example of Solutions

Tmax=80, R=1248 Tmax=80, R =1278 Tmax=45, R=756

Tmax=95, R=1395 Tmax=95, R=1335 Tmax=60, R=845
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Unsupervised Learning for the OP 1/2

A solution of the OP is similar to the solution of the PC-TSP and TSP
We need to satisfy the limited travel budget Tmax , which needs the final
tour over the sensing locations
During the unsupervised learning, the winners are associated with the
particular sensing locations, which can be utilized to determine the tour
as a solution of the OP represented by the network:

Learning epoch 7 Learning epoch 55 Learning epoch 87 Final solution

This is utilized in the conditional adaptation of the network towards
the sensing location and the adaptation is performed only if the tour
represented by the network after the adaptation would satisfy Tmax
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Unsupervised Learning for the OP 2/2

The winner selection for s ′ ∈ S is conditioned according to Tmax

The network is adapted only if the tour Twin represented by the
current winners would be shorter or equal than Tmax

L(Twin)− |(sνp , sνn)|+ |(sνp , s ′)|+ |(s ′, sνn)| ≤ Tmax

The unsupervised learning performs a stochastic search steered by
the rewards and the length of the tour to be below Tmax

Epoch 155, R=150 Epoch 201, R=135 Epoch 273, R=125 Final solution, R=190
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Comparison with Existing Algorithms for the OP
Standard benchmark problems for the Orienteering Problem represent
various scenarios with several values of Tmax

The results (rewards) found by different OP approaches presented as the
average ratios (and standard deviations) to the best-known solution

Instances of the Tsiligirides problems

Problem Set RB PL CGW Unsupervised
Learning

Set 1, 5 ≤ Tmax ≤ 85 0.99/0.01 1.00/0.01 1.00/0.01 1.00/0.01
Set 2, 15 ≤ Tmax ≤ 45 1.00/0.02 0.99/0.02 0.99/0.02 0.99/0.02
Set 3, 15 ≤ Tmax ≤ 110 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00

Diamond-shaped (Set 64) and Square-shaped (Set 66) test problems

Problem Set RB† PL CGW Unsupervised
Learning

Set 64, 5 ≤ Tmax ≤ 80 0.97/0.02 1.00/0.01 0.99/0.01 0.97/0.03
Set 66, 15 ≤ Tmax ≤ 130 0.97/0.02 1.00/0.01 0.99/0.04 0.97/0.02

Required computational time is up to units of seconds, but for small problems tens
or hundreds of milliseconds.
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Orienteering Problem with Neighborhoods

Similarly to the TSP with Neighborhoods and PC-TSPN we can
formulate the Orienteering Problem with Neighborhoods.

Tmax=60, δ=1.5, R=1600 Tmax=45, δ=1.5, R=1344
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Orienteering Problem with Neighborhoods
Data collection using wireless data transfer allows to reliably
retrieve data within some communication radius δ

Disk-shaped δ-neighborhood
We need to determine the most suitable locations Pk such that

maximizek,Pk ,Σ R =
k∑

i=1

ζσi

subject to
k∑

i=2

|(pσi−1 , pσi )| ≤ Tmax ,

|(pσi , sσi )| ≤ δ, pσi ∈ R2,
pσ1 = s1, pσk = sn.

Tmax = 50, R = 270
Introduced by Best, Faigl, Fitch (IROS 2016, SMC 2016, IJCNN 2017)

More rewards can be collected than for the OP formulation with
the same travel budget Tmax
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Generalization of the Unsupervised Learning to the
Orienteering Problem with Neighborhoods

The same idea of the alternate location as in the TSPN

p
s’

s’

connected neurons

s’
p

p’

communication range δ

connected neurons

− alternate location

δ

s’

The location p′ for retrieving data from s ′ is determined as the
alternate goal location during the conditioned winner selection
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Influence of the δ-Sensing Distance

Influence of increasing communication range to the sum of the collected
rewards

Problem Solution of the OP
Rbest RSOM

Set 3, Tmax=50 520 510
Set 64, Tmax=45 860 750
Set 66, Tmax=60 915 845

Allowing to data reading within
the communication range δ may
significantly increases the col-
lected rewards, while keeping the
budget under Tmax

Tsiligirides Set 3, Tmax=50
Diamond−shaped Set 64, Tmax=45
Square−shaped Set 66, Tmax=60
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OP with Neighborhoods (OPN) – Example of Solutions
Diamond-shaped problem Set 64 – SOM solutions for Tmax and δ

Tmax=80, δ=0.0, R=1278 Tmax=45, δ=0.0, R=756 Tmax=45, δ=1.5, R=1344

Square-shaped problem Set 66 – SOM solutions for Tmax and δ

Tmax=95, δ=0.0, R=1335 Tmax=60, δ=0.0, R=845 Tmax=60, δ=1.5, R=1600

In addition to unsupervised learning, Variable Neighborhood Search
(VNS) for the OP has been generalized to the OPN
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Summary of the Lecture

Jan Faigl, 2017 B4M36UIR – Lecture 08: Data Collection Planning 49 / 50

Topics Discussed

Topics Discussed
Data Collection Planning – motivational problem and solution

Prize-Collecting Traveling Salesman Problem with Neighborhoods
(PC-TSPN)

Traveling Salesman Problem (TSP)
Approximation and heuristic approaches

Traveling Salesman Problem with Neighborhoods (TSPN)
Sampling-based and decoupled approaches
Unsupervised learning

Generalized Traveling Salesman Problem (GTSP)
Heuristic and transformation (GTSP→ATSP) approaches

Orienteering problem (OP)
Heuristic and unsupervised learning based approaches

Orienteering problem with Neighborhoods (OPN)
Unsupervised learning based approach

Next: Data-collection planning with curvature-constrained vehicles
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