Data collection planning - TSP(N), PC-TSP(N), and OP(N))

Jan Faigl

Department of Computer Science

Faculty of Electrical Engineering Czech Technical University in Prague

Lecture 08

B4M36UIR - Artificial Intelligence in Robotics

1 / 50 Jan Faigl, 2017 2 / 50 Jan Faigl, 2017 B4M36UIR - Lecture 08: Data Collection Planning B4M36UIR - Lecture 08: Data Collection Planning Motivation **TSP** TSPN **GTSP** Noon-Bean Transformation OPN Motivation **TSP TSPN GTSP** Noon-Bean Transformation OPN

Part I

Part 1 – Data Collection Planning

Overview of the Lecture

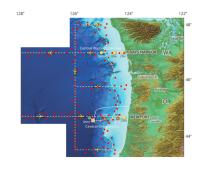
- Part 1 Data Collection Planning
 - Data Collection Planning Motivational Problem
 - Traveling Salesman Problem (TSP)
 - Traveling Salesman Problem with Neighborhoods (TSPN)
 - Generalized Traveling Salesman Problem (GTSP)
 - Noon-Bean Transformation
 - Orienteering Problem (OP)
 - Orienteering Problem with Neighborhoods (OPN)

Autonomous Data Collection

Having a set of sensors (sampling stations), we aim to determine a cost-efficient path to retrieve data by autonomous underwater vehicle (AUV) from the individual sensors

E.g., Sampling stations on the ocean floor

■ The planning problem is a variant of the Traveling Salesman Problem



Two practical aspects of the data collection can be identified

- 1. Data from particular sensors may be of different importance
- 2. Data from the sensor can be retrieved using wireless communication

These two aspects can be considered in Prize-Collecting Traveling Salesman Problem (PC-TSP) and Orienteering Problem (OP) and their extensions with neighborhoods.

Prize-Collecting Traveling Salesman Problem with Neighborhoods (PC-TSPN)

- Let *n* sensors be located in \mathbb{R}^2 at the locations $S = \{s_1, \dots, s_n\}$
- Each sensor has associated penalty $\zeta(s_i) > 0$ characterizing additional cost if the data are not retrieved from s_i
- Let the data collecting vehicle operates in \mathbb{R}^2 with the motion cost $c(p_1, p_2)$ for all pairs of points $p_1, p_2 \in \mathbb{R}^2$
- The data from s_i can be retrieved within δ distance from s_i

Jan Faigl, 2017

B4M36UIR - Lecture 08: Data Collection Planning

B4M36UIR - Lecture 08: Data Collection Planning

6 / 50

B4M36UIR - Lecture 08: Data Collection Planning

7 / 50

Motivation

TSP

TSPN

Noon-Bean Transformation

OPN

PC-TSPN includes other variants of the TSP

• for $\zeta(s_i) = 0$ and $\delta > 0$ it is the TSPN

• for $\zeta(s_i) = 0$ and $\delta = 0$ it is the ordinary TSP

Noon-Bean Transformation

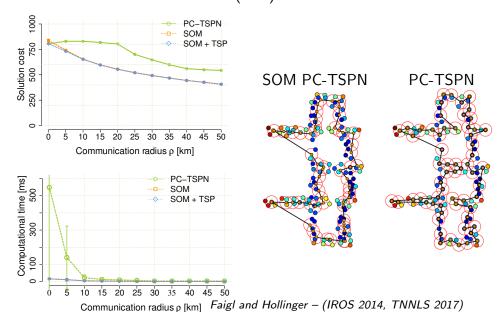
Jan Faigl, 2017

(1)

OPN

PC-TSPN – Example of Solution

Ocean Observatories Initiative (OOI) scenario



TSP Motivation **TSPN**

Traveling Salesman Problem (TSP)

• for $\delta = 0$ it is the PC-TSP

PC-TSPN – Optimization Criterion

 $g_i \in \mathbb{R}^2$, at which data readings are performed

The PC-TSPN is a problem to

C(T) of T is minimal

■ Let S be a set of n sensor locations $S = \{s_1, \ldots, s_n\}$, $s_i \in \mathbb{R}^2$ and $c(s_i, s_i)$ is a cost of travel from s_i to s_i

■ Determine a set of unique locations $G = \{g_1, \dots, g_k\}, k \leq n$,

■ Find a cost efficient tour T visiting G such that the total cost

 $\mathcal{C}(T) = \sum_{(g_{l_i}, g_{l_{i+1}}) \in T} c(g_{l_i}, g_{l_{i+1}}) + \sum_{s \in S \setminus S_T} \zeta(s),$

where $S_T \subseteq S$ are sensors such that for each $s_i \in S_T$ there is g_{l_i} on

 $T = (g_{l_1}, \ldots, g_{l_{k-1}}, g_{l_k})$ and $g_{l_i} \in G$ for which $|(s_i, g_{l_i})| \leq \delta$.

- Traveling Salesman Problem (TSP) is a problem to determine a closed tour visiting each $s \in S$ such that the total tour length is minimal, i.e.,
 - determine a sequence of visits $\Sigma = (\sigma_1, \dots, \sigma_n)$ such that

minimize
$$_{\Sigma}$$
 $L = \left(\sum_{i=1}^{n-1} c(s_{\sigma_i}, s_{\sigma_{i+1}})\right) + c(s_{\sigma_n}, s_{\sigma_1})$ (2) subject to $\Sigma = (\sigma_1, \dots, \sigma_n), 1 \le \sigma_i \le n, \sigma_i \ne \sigma_i \text{ for } i \ne j$

- The TSP can be considered on a graph G(V, E) where the set of vertices V represents sensor locations S and E are edges connecting the nodes with the cost $c(s_i, s_i)$
- For simplicity we can consider $c(s_i, s_i)$ to be Euclidean distance; otherwise, it is a solution of the path planning problem

Euclidean TSP

- If $c(s_i, s_i) \neq C(s_i, s_i)$ it is the **Asymmetric TSP**
- The TSP is known to be NP-hard unless P=NP

Existing solvers to the TSP

- Exact solutions
 - Branch and Bound, Integer Linear Programming (ILP)

E.g., Concorde solver - http://www.tsp.gatech.edu/concorde.html

- Approximation algorithms
 - Minimum Spanning Tree (MST) heuristic $L \le 2L_{opt}$
 - Christofides's algorithm $L \leq \frac{3/2}{L_{ont}}$
- Heuristic algorithms
 - Constructive heuristic Nearest Neighborhood Algorithm
 - 2-Opt local search algorithm proposed by Croes 1958
 - Lin-Kernighan (LK) heuristic

E.g., Helsgaun's implementation of the LK heuristic http://www.akira.ruc.dk/~keld/research/LKH

- Soft-Computing techniques, e.g.,
 - Variable Neighborhood Search (VNS)
 - Evolutionary approaches
- Unsupervised Learning

Jan Faigl, 2017 B4M36UIR - Lecture 08: Data Collection Planning

11 / 50

Jan Faigl, 2017

B4M36UIR - Lecture 08: Data Collection Planning

12 / 50 OPN

Motivation

TSP

TSPN

Noon-Bean Transformation

OPN

Motivation

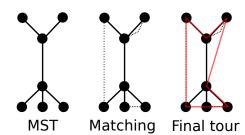
TSPN

GTSP

Noon-Bean Transformation

Christofides's Algorithm to the TSP

- Christofides's algorithm
 - 1. Compute the MST of the input graph G
 - 2. Compute minimal matching on the odd-degree vertices
 - 3. Shortcut a traversal of the resulting Eulerian graph



For the triangle inequality, the length of such a tour L is

$$L \leq \frac{3}{2}L_{optimal}$$
,

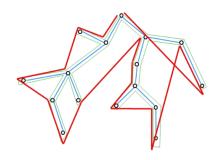
where $L_{optimal}$ is the cost of the optimal solution of the TSP

Length of MST is $\leq L_{optimal}$

Sum of lengths of the edges in the matching $\leq \frac{1}{2}L_{optimal}$

MST-based Approximation Algorithm to the TSP

- Minimum Spanning Tree Heuristic
 - 1. Compute the MST T of the input graph G
 - 2. Construct a graph H by doubling every edge of T
 - 3. Shortcut repeated occurrences of a vertex in the Tour



For the triangle inequality, the length of such a tour L is

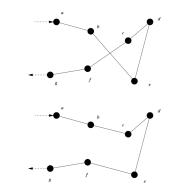
$$L \leq 2L_{optimal}$$
,

where $L_{optimal}$ is the cost of the optimal solution of the TSP

2-Opt Heuristic

TSP

- 1. Use a construction heuristic to create an initial route
 - NN algorithm, cheapest insertion, farther insertion
- 2. Repeat until no improvement is made
 - 2.1 Determine swapping that can shorten the tour (i, j) for $\leq 1i \leq n$ and $i + 1 \leq j \leq n$
 - route[0] to route[i-1]
 - route[i] to route[j] in reverse order
 - route[j] to route[end]
 - Determine length of the route
 - Update the current route if length is shorter than the existing solution



Unsupervised Learning based Solution of the TSP

- Sensor locations $S = \{s_1, \ldots, s_n\}$, $s_1 \in \mathbb{R}^2$; Neurons $\mathcal{N} = (\nu_1, \ldots, \nu_m)$, $\nu_i \in \mathbb{R}^2$, m = 2.5n
- Learning gain G; epoch counter i; gain decreasing rate $\alpha = 0.1$; learning rate $\mu = 0.6$
- 1. $\mathcal{N} \leftarrow \text{init ring of neurons as a small ring around some } s_i \in S$, e.g., a circle with radius 0.5
- 2. $i \leftarrow 0$; $\sigma \leftarrow 12.41n + 0.06$;
- //clear inhibited neurons
- 4. **foreach** $s \in \Pi(S)$ (a permutation of S)
 - 4.1 $\nu^* \leftarrow \operatorname{argmin}_{\nu \in \mathcal{N} \setminus I} ||(\nu, s)||$
 - 4.2 **foreach** ν in d neighborhood of ν^*

$$u \leftarrow nu + \mu f(\sigma, d)(s - \nu)$$
 $f(\sigma, d) = \begin{cases}
e^{-\frac{d^2}{\sigma^2}} & \text{for } d < 0.2m, \\
0 & \text{otherwise,}
\end{cases}$

TSPN

- 4.3 $I \leftarrow I \cup \{\nu^*\}$ // inhibit the winner
- 5. $\sigma \leftarrow (1-\alpha)\sigma$; $i \leftarrow i+1$; 6. If (termination condition is not satisfied) Goto Step 4: Otherwise retrieve solution
- ing of connected

Termination condition can be

Noon-Bean Transformation

- Maximal number of learning epochs i < i_{max} , e.g., $i_{max} = 120$
- Winner neurons are negligibly close to sensor locations, e.g., < 0.001

Somhom, S., Modares, A., Enkawa, T. (1999): Competition-based neural network for the multiple travelling salesmen problem with minmax objective. Computers & Operations Research. Faigl, J. et al. (2011): An application of the self-organizing map in the non-Euclidean Traveling Salesman Problem. Neurocomputing.

Jan Faigl, 2017

TSP

Motivation

B4M36UIR - Lecture 08: Data Collection Planning

15 / 50

OPN

Jan Faigl, 2017 Motivation

TSP

TSPN

GTSP

Noon-Bean Transformation

16 / 50 OPN

Traveling Salesman Problem with Neighborhoods (TSPN)

- Instead visiting a particular location $s \in \mathbb{R}^2$ we can request to visit, e.g., a region $r \subset \mathbb{R}^2$ to save travel cost, i.e., visit regions $R = \{r_1, \dots, r_n\}$
- The TSP becomes the TSP with Neighborhoods (TSPN) where it is necessary, in addition to the determination of the order of visits Σ , determine suitable locations $P = \{p_1, \dots, p_n\}, p_i \in r_i$, of visits to R
- The problem is a combination of combinatorial optimization to determine Σ with continuous optimization to determine P

minimize
$$_{\Sigma,P,R}$$

$$L = \left(\sum_{i=1}^{n-1} c(p_{\sigma_i}, p_{\sigma_{i+1}})\right) + c(p_{\sigma_n}, p_{\sigma_1})$$
subject to
$$R = \{r_1, \dots, r_n\}, r_i \subset \mathbb{R}^2$$

$$P = \{p_1, \dots, p_n\}, p_i \in r_i$$

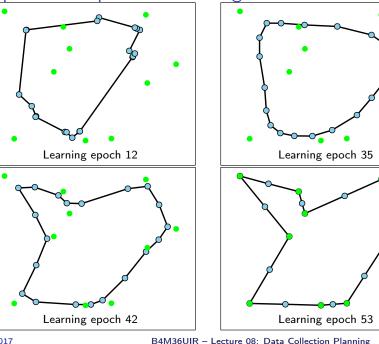
$$\Sigma = (\sigma_1, \dots, \sigma_n), 1 \leq \sigma_i \leq n,$$

$$\sigma_i \neq \sigma_j \text{ for } i \neq j$$
Foreach $r_i \in R$ there is $p_i \in r_i$

In general, TSPN is APX-hard, and cannot be approximated to within a factor $2 - \epsilon$, $\epsilon > 0$, unless P=NP.

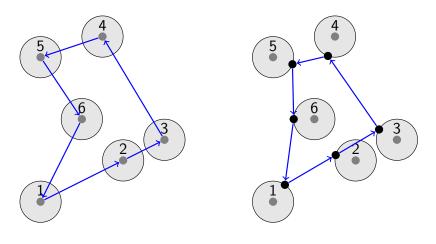
Safra, S., Schwartz, O. (2006)

Example of Unsupervised Learning for the TSP



Traveling Salesman Problem with Neighborhoods (TSPN)

- **Euclidean TSPN** with disk shaped δ -neighborhoods
- Sequence of visits to the regions with particular locations of the visit



Jan Faigl, 2017

Motivation TSP TSPN GTSP Noon-Bean Transformation OP OPN Motivation TSP TSPN GTSP Noon-Bean Transformation OP OP

Approaches to the TSPN

■ Direct solution of the TSPN – approximation algorithm and heuristics

E.g., using evolutionary techniques or unsupervised learning

- Decoupled approach
 - 1. Determine sequence of visits Σ independently on the locations PE.g., as the TSP for centroids of the regions R
 - 2. For the sequence Σ determine the locations P to minimize the total tour length, e.g.,
 - Touring polygon problem (TPP)
 - Sampling possible locations and forward search for best locations
 - Continuous optimization such as hill-climbing

E.g., Local Iterative Optimization (LIO), Váňa, Faigl (IROS 2015)

Noon-Bean Transformation

- Sampling-based approaches
 - For each region, sample possible locations of visits into a discrete set of locations for each region
 - The problem can be then formulated as the Generalized Traveling Salesman Problem (GTSP)
- **E**uclidean TSPN with, e.g., disk-shaped δ neighborhoods
 - \blacksquare Simplified variant with regions as disks with radius δ remote sensing with the δ communication range

Jan Faigl, 2017 B4M36UIR – Lecture 08: Data Collection Planning

20 / 50 Jan Faigl, 2017

OPN

B4M36UIR - Lecture 08: Data Collection Planning

Motivation TSP TSPN GTSP Noon-Bean Transformation OP OPN

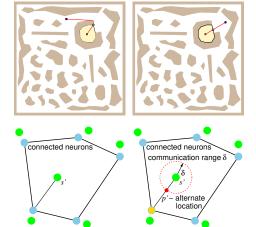
TSPN



It also provides solutions for non-convex regions, overlapping regions, and coverage problems.

Unsupervised Learning for the TSPN

- In the unsupervised learning for the TSP, we can sample suitable sensing locations during winner selection
- We can use the centroid of the region for the shortest path computation from ν to the region r presented to the network
- Then, an intersection point of the path with the region can be used as an alternate location
- lacktriangle For the Euclidean TSPN with disk-shaped δ neighborhoods, we can compute the alternate location directly from the Euclidean distance



Faigl, J. et al. (2013): Visiting convex regions in a polygonal map. Robotics and Autonomous Systems.

The TSPN as the TPP - Iterative Refinement

- Let the sequence of n polygon regions be $R=(r_1,\ldots,r_n)$ Li, F., Klette, R.: Approximate algorithms for touring a sequence of polygons. 2008
- 2. Initialization: Construct an initial touring polygons path using a sampled point of each region
 Let the path be defined by $P=(p_1,p_2,\ldots,p_n)$, where $p_i\in r_i$ and L(P) be the length of the shortest path induced by P
- 3. *Refinement:* **For** i = 1, 2, ..., n
 - Find $p_i^* \in r_i$ minimizing the length of the path $d(p_{i-1}, p_i^*) + d(p_i^*, p_{i+1})$, where $d(p_k, p_l)$ is the length path from p_k to p_l , $p_0 = p_n$, and $p_{n+1} = p_1$
 - If the total length of the current path over point p_i^* is shorter than over p_i , replace the point p_i by p_i^* .
- 4. Compute path length L_{new} using the refined points
- 5. Termination condition: If $L_{new} L < \epsilon$ Stop the refinement. Otherwise $L \leftarrow L_{new}$ and go to Step 3.
- 6. Final path construction: use the last points and construct the path using the shortest paths among obstacles between two consecutive points.

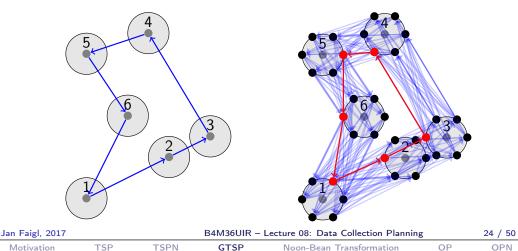
Motivation

21 / 50

Motivation TSP TSPN GTSP Noon-Bean Transformation OP OPN Motivation TSP TSPN GTSP Noon-Bean Transformation OP OPI

Sampling-based Decoupled Solution of the TSPN

- Sample each neighborhood with, e.g., k = 6 samples
- Determine sequence of visits, e.g., by a solution of the ETSP for the centroids of the regions
- Finding the shortest tour takes in a forward search graph in $\mathcal{O}(nk^3)$ for nk^2 edges in the sequence



Generalized Traveling Salesman Problem (GTSP)

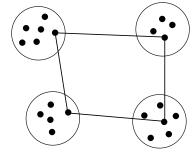
- For sampled neighborhoods into a discrete set of locations, we can formulate the problem as the Generalized Traveling Salesman Problem (GTSP)

 Also known as the Set TSP or Covering Salesman Problem, etc.
- For a set of n sets $S = \{S_1, \ldots, S_n\}$, each with particular set of locations (nodes) $S_i = \{s_1^i, \ldots, s_n^i\}$
- The problem is to determine the shortest tour visiting each set S_i , i.e., determining the order Σ of visits to S and a particular locations $s^i \in S_i$ for each $S_i \in S$

minimize
$$\Sigma$$

$$L = \left(\sum_{i=1}^{n-1} c(s^{\sigma_i}, s^{\sigma_{i+1}})\right) + c(s^{\sigma_n}, s^{\sigma_1})$$
subject to
$$\Sigma = (\sigma_1, \dots, \sigma_n), 1 \le \sigma_i \le n, \sigma_i \ne \sigma_j \text{ for } i \ne j$$

$$s^{\sigma_i} \in S_{\sigma_i}, S_{\sigma_i} = \{s_1^{\sigma_i}, \dots, s_{\sigma_n}^{\sigma_i}\}, S_{\sigma_i} \in S$$



■ In addition to exact, e.g., ILP-based, solution, a heuristic algorithm GLNS is available (besides other heuristics)

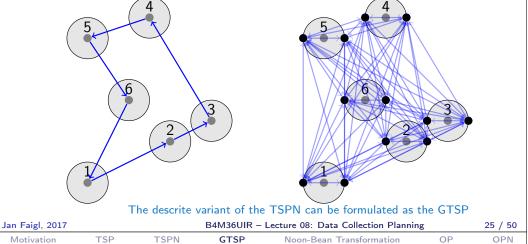
Smith, S. L., Imeson, F. (2017), GLNS: An effective large neighborhood search heuristic for the Generalized Traveling Salesman Problem. Computers and Operations Research.

Implementation in Julia - https://ece.uwaterloo.ca/~sl2smith/GLNS

B4M36UIR - Lecture 08: Data Collection Planning

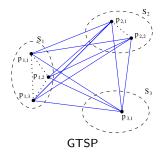
Sampling-based Solution of the TSPN

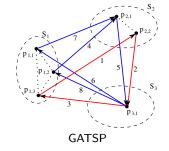
- For an unknown sequence of the visits to the regions, there are $\mathcal{O}(n^2k^2)$ possible edges
- Finding the shortest path is NP-hard, we need to determine the sequence of visits, which is the solution of the TSP



Transformation of the GTSP to the Asymmetric TSP

■ The Generalized TSP can be transformed into Asymmetric TSP that can be then solved, e.g., by LKH or exactly by Concorde (by further transformation to the TSP)





■ The transformation of the GTSP to ATSP has been proposed by Noon and Bean in 1993, and it is called as the Noon-Bean Transformation

Noon, C.E., Bean, J.C. (1993), An efficient transformation of the generalized traveling salesman problem. INFOR: Information Systems and Operational Research.

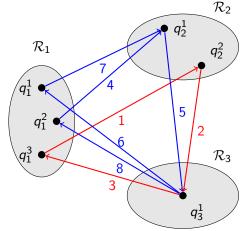
Ben-Arieg, et al. (2003), Transformations of generalized ATSP into ATSP. Operations Research

Jan Faigl. 2017

Noon-Bean Transformation

Noon-Bean transformation to transfer GTSP to ATSP

- Modify weight of the edges (arcs) such that the optimal ATSP tour visits all vertices of the same cluster before moving to the next cluster
- Adding large constant M to the weights, e.g., a sum of the n heaviest edges
- Ensure visiting all vertices of the cluster in a prescribed order, i.e., creating zerolength cycles within each cluster
- The transformed ATSP can be further transformed to the TSP
- For each vertex of the ATSP created 3 vertices in the TSP, i.e., it increases the size of the problem three times



Noon, C.E., Bean, J.C. (1993), An efficient transformation of the generalized traveling salesman problem. INFOR: Information Systems and Operational Research.

Jan Faigl, 2017

B4M36UIR - Lecture 08: Data Collection Planning

30 / 50

Jan Faigl, 2017

B4M36UIR - Lecture 08: Data Collection Planning **TSPN**

Motivation

TSP

TSPN

Noon-Bean Transformation

OPN

Motivation

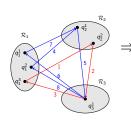
TSP

Noon-Bean Transformation

31 / 50 OPN

Noon-Bean transformation – Matrix Notation

■ 1. Create a zero-length cycle in each set; and 2. for each edge (q_i^m, q_i^n) create an edge (q_i^m, q_i^{n-1}) with a value increased by sufficiently large M



	q_1^1	q_1^2	q_1^3	q_2^1	q_{2}^{2}	q_3^1
q_1^1	∞	∞	∞	7	_	_
$\begin{array}{c}q_1^1\\q_1^2\end{array}$	∞	∞		4	_	_
q_1^3	∞	∞	∞	-	1	_
$\overline{q_2^1}$	_	_	_	∞	∞	5
$q_2^1 = q_2^2$	_	_	_	∞	∞	2
q_3^1	6	8	3	_	_	∞

 ∞ represents there are not edges inside the same set; and - denotes unused edge

Original GATSP

	_						
		q_1^1	q_1^2	q_1^3	q_2^1	q_2^2	q_3^1
•	q_1^1	∞	∞	∞	7	_	-
	$\begin{array}{c}q_1^1\\q_1^2\end{array}$	∞	∞	∞	4	_	_
	q_1^3	∞	∞	∞	-	1	_
	q_2^1	_	_	_	∞	∞	5
	q_2^2	-	_	_	∞	∞	2
	1	-	_				

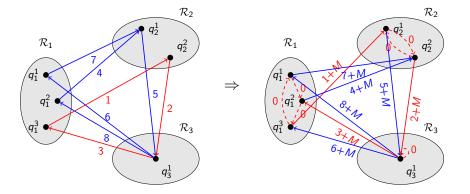
Transformed ATSP

		q_1^1	q_1^2	q_1^3	q_2^1	q_2^2	q_3^1
	q_1^1	∞	0	∞	_	7+ <i>M</i>	
	q_1^2	∞	∞	0	_	4+M	_
	q_1^3	0	∞	∞	1+M	_	_
	q_2^1	_	_	_	∞	0	5+ <i>M</i>
	q_{2}^{2}	_	_	_	0	∞	2+ <i>M</i>
	q_3^1	8+ <i>M</i>	3+ <i>M</i>	6+ <i>M</i>	_	_	0
	$ \begin{array}{c} q_1^1 \\ q_1^2 \\ q_1^3 \\ q_2^1 \\ q_2^2 \\ q_3^1 \end{array} $	0 - -	∞ - -	<u>-</u>	∞	0	

Example – Noon-Bean transformation (GATSP to ATSP)

- 1. Create a zero-length cycle in each set and set all other inter-cluster arc to ∞ (or 2M) To ensure all vertices of the cluster are visited before leaving the cluster
- 2. For each edge (q_i^m, q_i^n) create an edge (q_i^m, q_i^{n-1}) with a value increased by sufficiently large M

To ensure visit of all vertices in a cluster before the next cluster



Noon-Bean Transformation – Summary

- It transforms the GATSP into the ATSP which can be further
 - Solved by existing solvers, e.g., the Lin-Kernighan heuristic algorithm (LKH) http://www.akira.ruc.dk/~keld/research/LKH
 - the ATSP can be further transformed into the TSP and solved optimality by, e.g., Concorde solver http://www.tsp.gatech.edu/concorde.html
- It runs in $\mathcal{O}(k^2n^2)$ time and uses $\mathcal{O}(k^2n^2)$ memory, where n is the number of sets (regions) each with up to k samples
- The transformed ATSP problem contains kn vertices
- The main issue of the transformation is related to the suitable selection of the constant M that is need to forbid the repetitive visitation of the same set
 - I.e., the problem is how to set sufficiently large M but do not cause numeric troubles

Noon, C.E., Bean, J.C. (1993), An efficient transformation of the generalized traveling salesman problem. INFOR: Information Systems and Operational Research.

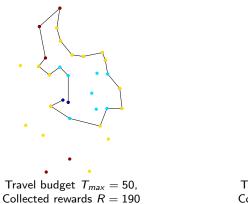
Motivation TSP TSPN GTSP Noon-Bean Transformation OP OPN Motivation TSP TSPN GTSP Noon-Bean Transformation OP OP

The Orienteering Problem (OP)

■ The problem is to collect as many rewards as possible within the given travel budget (T_{max}) , which is especially suitable for robotic vehicles such as multi-rotor Unmanned Aerial Vehicles (UAVs)

■ The starting and termination locations are prescribed and can be different

The solution may not be a closed tour as in the TSP



Travel budget $T_{max} = 75$,

Noon-Bean Transformation

Collected rewards R = 270

Jan Faigl, 2017 B4M36UIR – Lecture 08: Data Collection Planning 35 / 50

Orienteering Problem – Optimization Criterion

TSPN

- Let $\Sigma = (\sigma_1, \dots, \sigma_k)$ be a permutation of k sensor labels, $1 \le \sigma_i \le n$ and $\sigma_i \ne \sigma_i$ for $i \ne j$
- lacksquare Σ defines a tour $T=(s_{\sigma_1},\ldots,s_{\sigma_k})$ visiting the selected sensors S_k
- Let the start and end points of the tour be $\sigma_1=1$ and $\sigma_k=n$
- The Orienteering problem (OP) is to determine the number of sensors k, the subset of sensors S_k , and their sequence Σ such that

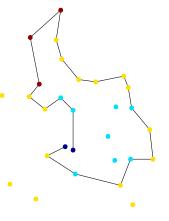
maximize_{k,S_k,\Sigma}
$$R = \sum_{i=1}^{k} \varsigma_{\sigma_i}$$

subject to $\sum_{i=2}^{k} |(s_{\sigma_{i-1}}, s_{\sigma_i})| \le T_{max}$ and $s_{\sigma_1} = s_1, s_{\sigma_k} = s_n.$ (4)

The OP combines the problem of determining the most valuable locations S_k with finding the shortest tour T visiting the locations S_k . It is NP-hard, since for $s_1 = s_n$ and particular S_k it becomes the TSP.

Orienteering Problem – Specification

- Let the given set of n sensors be located in \mathbb{R}^2 with the locations $S = \{s_1, \dots, s_n\}$, $s_i \in \mathbb{R}^2$
- Each sensor s_i has an associated score s_i characterizing the reward if data from s_i are collected
- The vehicle is operating in \mathbb{R}^2 , and the travel cost is the Euclidean distance
- Starting and final locations are prescribed
- We aim to determine a subset of k locations $S_k \subseteq S$ that maximizes the sum of the collected rewards while the travel cost to visit them is below T_{max}



The Orienteering Problem (OP) combines two NP-hard problems:

- Knapsack problem in determining the most valuable locations $S_k \subseteq S$
- Travel Salesman Problem (TSP) in determining the shortest tour

Jan Faigl, 2017 B4M36UIR – Lecture 08: Data Collection Planning 36 / 50

Noon-Bean Transformation

TSPN

Existing Heuristic Approaches for the OP

■ The Orienteering Problem has been addressed by several approaches, e.g.,

RB 4-phase heuristic algorithm proposed in [3]
PL Results for the method proposed by Pillai in [2]
CGW Heuristic algorithm proposed in [1]

GLS Guided local search algorithm proposed in [4]

- I.-M. Chao, B. L. Golden, and E. A. Wasil.
 A fast and effective heuristic for the orienteering problem.
 European Journal of Operational Research, 88(3):475–489, 1996.
- R. S. Pillai.
 The traveling salesman subset-tour problem with one additional constraint (TSSP+ 1).

 Ph.D. thesis, The University of Tennessee, Knoxville, TN, 1992.
- [3] R. Ramesh and K. M. Brown. An efficient four-phase heuristic for the generalized orienteering problem. Computers & Operations Research, 18(2):151–165, 1991.
- [4] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. V. Oudheusden. A guided local search metaheuristic for the team orienteering problem. European Journal of Operational Research, 196(1):118–127, 2009.

Motivation

TSP

Jan Faigl, 2017

OPN

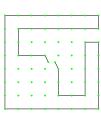
Motivation

TSP

OPN

OP Benchmarks - Example of Solutions

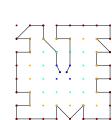
 T_{max} =80, R=1248



 T_{max} =95, R=1395

TSP

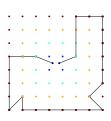
 T_{max} =80, R = 1278



 T_{max} =95, R=1335

GTSP

 T_{max} =45, R=756



 T_{max} =60, R=845

Jan Faigl, 2017 Motivation

Jan Faigl, 2017

B4M36UIR - Lecture 08: Data Collection Planning

Noon-Bean Transformation

OPN

39 / 50

Jan Faigl, 2017 Motivation

TSPN

adaptation would satisfy T_{max}

TSP

Unsupervised Learning for the OP 1/2

tour over the sensing locations

GTSP

Noon-Bean Transformation

B4M36UIR - Lecture 08: Data Collection Planning

40 / 50 OPN

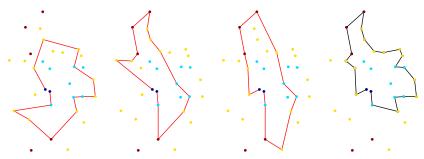
Unsupervised Learning for the OP 2/2

TSPN

- The winner selection for $s' \in S$ is conditioned according to T_{max}
 - \blacksquare The network is adapted only if the tour T_{win} represented by the current winners would shorter or equal than T_{max}

$$|\mathcal{L}(T_{\mathit{win}}) - |(s_{
u_p}, s_{
u_n})| + |(s_{
u_p}, s')| + |(s', s_{
u_n})| \leq T_{\mathit{max}}$$

■ The unsupervised learning performs a *stochastic search* steered by the rewards and the length of the tour to be below T_{max}



Epoch 155, R=150 Epoch 201, R=135 Epoch 273, R=125 Final solution, R=190

Comparison with Existing Algorithms for the OP

■ Standard benchmark problems for the Orienteering Problem various scenarios with several values of T_{max}

A solution of the OP is similar to the solution of the PC-TSP and TSP • We need to satisfy the limited travel budget T_{max} , which needs the final

■ During the unsupervised learning, the winners are associated with the particular sensing locations, which can be utilized to determine the tour

■ This is utilized in the conditional adaptation of the network towards

the sensing location only if the tour represented by the network after the

as a solution of the OP represented by the network:

Learning epoch 7 Learning epoch 55 Learning epoch 87

■ The results are presented as the average ratios (and standard deviations) to the best-known solution Instances of the Tsiligirides problems

Problem Set	RB	PL	CGW	Unsupervised Learning
Set 1, $5 \le T_{max} \le 85$	0.99/0.01	1.00/0.01	1.00/0.01	1.00/0.01
Set 2, $15 \le T_{max} \le 45$	1.00/0.02	0.99/0.02	0.99/0.02	0.99/0.02
Set 3, $15 \le T_{max} \le 110$	1.00/0.00	1.00/0.00	1.00/0.00	1.00/0.00

Diamond-shaped (Set 64) and Square-shaped (Set 66) test problems

Problem Set	RB [†]	PL	CGW	Unsupervised Learning
Set 64, $5 \le T_{max} \le 80$	0.97/0.02	1.00/0.01	0.99/0.01	0.97/0.03
Set 66, $15 \le T_{max} \le 130$	0.97/0.02	1.00/0.01	0.99/0.04	0.97/0.02

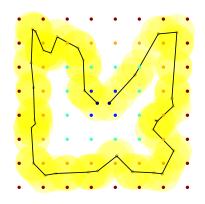
Required computational time is up to units of seconds, but for small problems tens or hundreds of milliseconds.

Jan Faigl, 2017

Motivation TSP TSPN GTSP Noon-Bean Transformation OP OPN Motivation TSP TSPN GTSP Noon-Bean Transformation OP OP

Orienteering Problem with Neighborhoods

■ Similarly to the TSP with Neighborhoods and PC-TSPN we can formulate the Orienteering Problem with Neighborhoods.



$$T_{max}$$
=60, δ =1.5, R =1600

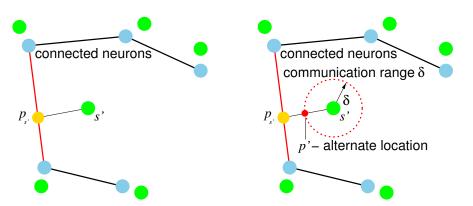
 T_{max} =45, δ =1.5, R=1344

Jan Faigl, 2017B4M36UIR – Lecture 08: Data Collection Planning44 / 50

Motivation TSP TSPN GTSP Noon-Bean Transformation OP OPN

Generalization of the Unsupervised Learning to the Orienteering Problem with Neighborhoods

■ The same idea of the alternate location as in TSPN



■ The location p' for retrieving data from s' is determined as the alternate goal location during the conditioned winner selection

Orienteering Problem with Neighborhoods

- \blacksquare Data collection using wireless data transfer allows to reliably retrieve data within some communication radius δ
 - \blacksquare Disk-shaped $\delta\text{-neighborhood}$
- We need to determine the most suitable locations P_k such that

$$\begin{aligned} \textit{maximize}_{k,P_k,\Sigma} & R = \sum_{i=1}^k \varsigma_{\sigma_i} \\ \textit{subject to} & \sum_{i=2}^k |(p_{\sigma_{i-1}},p_{\sigma_i})| \leq T_{\textit{max}}, \\ |(p_{\sigma_i},s_{\sigma_i})| \leq \delta, \quad p_{\sigma_i} \in \mathbb{R}^2, \\ p_{\sigma_1} = s_1, p_{\sigma_k} = s_n. \end{aligned}$$

Introduced by Best, Faigl, Fitch (IROS 2016, SMC 2016, IJCNN 2017)

 $T_{max} = 50, R = 270$

■ More rewards can be collected than for the OP formulation with the same travel budget T_{max}

 Jan Faigl, 2017
 B4M36UIR – Lecture 08: Data Collection Planning
 45 / 50

 Motivation
 TSP
 TSPN
 GTSP
 Noon-Bean Transformation
 OP
 OPN

Influence of the δ -Sensing Distance

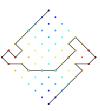
■ Influence of increasing communication range to collected rewards

Problem	Solution of the OP R_{best} R_{SOM}		2000	- o- Tsiligirides Set 3, T _{max} =50 Diamond-shaped Set 64, T _{max} =45
Set 3, T_{max} =50 Set 64, T_{max} =45 Set 66, T_{max} =60	520 860 915	510 750 845	rewards - 1000 1	Square–shaped Set 66, T _{max} =60
 Allowing to a the communic significantly lected rewards 	cation rang increases s, while kee	the col-	Collected 0 500	0.0 0.2 0.5 0.7 1.0 1.2 1.5 1.7 2.0
budget under	I max.			Communication range - δ

Motivation Noon-Bean Transformation Topics Discussed

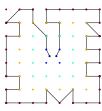
OP with Neighborhoods (OPN) – Example of Solutions

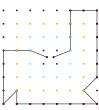
lacktriangle Diamond-shaped problem Set 64 – SOM solutions for T_{max} and δ



 T_{max} =80, δ =0.0, R=1278 T_{max} =45, δ =0.0, R=756 T_{max} =45, δ =1.5, R=1344

■ Square-shaped problem Set 66 – SOM solutions for T_{max} and δ





 T_{max} =60, δ =0.0, R=845 T_{max} =60, δ =1.5, R=1600

In addition to unsupervised learning, Variable Neighborhood Search (VNS) for the OP has been generalized to the OPN.

Jan Faigl, 2017

B4M36UIR - Lecture 08: Data Collection Planning

48 / 50

Jan Faigl, 2017

B4M36UIR - Lecture 08: Data Collection Planning

Summary of the Lecture

Topics Discussed

Topics Discussed

- Data Collection Planning motivational problem and solution
 - Prize-Collecting Traveling Salesman Problem with Neighborhoods (PC-TSPN)
- Traveling Salesman Problem (TSP)
 - Approximation and heuristic approaches
- Traveling Salesman Problem with Neighborhoods (TSPN)
 - Sampling-based and decoupled approaches
 - Unsupervised learning
- Generalized Traveling Salesman Problem (GTSP)
 - Heuristic and transformation (GTSP→ATSP) approaches
- Orienteering problem (OP)
 - Heuristic and unsupervised learning based approaches
- Orienteering problem with Neighborhoods (OPN)
 - Unsupervised learning based approach
- Next: Data-collection planning with curvature-constrained vehicles