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Improved Sampling-based Motion Planners

Improved Sampling-based Motion Planners

Although Asymptotically optimal sampling-based motion planners
such RRT* or RRG may provide high-quality or even optimal so-
lutions of complex problem, their performance in simple, e.g., 2D
scenarios, is relatively poor

In a comparison to the previous approaches

They are computationally demanding and performance can be im-
proved similarly as RRT, e.g.,
m Goal biasing, supporting sampling in narrow passages, multi-tree
grows (Bidirectional RRT)

The general idea of improvements is based on informing the sam-
pling process
Many modifications of the algorithms exists, selected representative
modifications are

m Informed RRT*

m Batch Informed Trees (BIT*)

m Regionally Accelerated BIT* (RABIT*)
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Improved Sampling-based Motion Planners

Informed RRT*

Algorithm 1: Informed RRT*(Xqyart, Xgoal)
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Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2014): Informed RRT*: Opti-
mal Sampling-based Path Planning Focused via Direct Sampling of an Admissible
Ellipsoidal Heuristic. IROS.
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Improved Sampling-based Motion Planners

Informed RRT* — Demo
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Il Informed RRT*
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https://www.youtube.com/watch?v=d7dX5MvDYTc

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2014): Informed RRT*: Opti-
mal Sampling-based Path Planning Focused via Direct Sampling of an Admissible
Ellipsoidal Heuristic. IROS.
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Improved Sampling-based Motion Planners

Batch Informed Trees (BIT*)

m Combining RGG (Random Geometric Graph) with the heuristic in
incremental graph search technique, e.g., Lifelong Planning A* (LPA*)

m The properties of the RGG are used in the RRG and RRT*
m Batches of samples — a new batch starts with denser implicit RGG

m The search tree is updated using LPA* like incremental search to reuse
existing information

During each batch, (h( search| [When a.solufion is fmmd Lhr A new batch of samples is then| |The process repeats indefinitely,
expands outwards = S ladded and the

h restarts. | [restarting each time an im-

minimum  solution  lsing-. a S

proved solution is found.
heuristic.

@ w © @

Fig. 3. An illustration of the informed search procedure used by BIT*. The start and goal states are shown as green and red, respectively. The current
solution is highlighted in magenta. The subproblem that contains any better solutions is shown as a black dashed line, while the progress of the current
batch is shown as a grey dashed line. Fig. (a) shows the growing search of the first batch of samples, and (b) shows the first scarch ending when a solution
is found. After pruning and adding a second batch of samples, Fig. (c) shows the search restarting on a denser graph while (d) shows the second search
ending when an improved solution is found. An animated illustration is available in the attached video.

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2015): Batch Informed Trees (BIT*):
Sampling-based optimal planning via the heuristically guided search of implicit ran-
dom geometric graphs. ICRA.
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Improved Sampling-based Motion Planners

Batch Informed Trees (BIT*) — Demo
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https://www.youtube.com/watch?v=TQIoCC48gp4

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2015): Batch Informed Trees (BIT*):
Sampling-based optimal planning via the heuristically guided search of implicit ran-
dom geometric graphs. ICRA.
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Improved Sampling-based Motion Planners

Regionally Accelerated BIT* (RABIT*)

m Use local optimizer with the BIT* to improve the convergence speed

m Local search Covariant Hamiltonian Optimization for Motion Planning
(CHOMP) is utilized to connect edges in the search graphs using local
information about the obstacles.

®
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Fig. 2. An illustration of how the RABIT* algorithm uses a local optimizer to exploit obstacle information and improve a global scarch. The global search
is performed, as in BIT*, by incrementally processing an edge queue (dashed lines) into a tree (a). Using heuristics, the potential edge from x; to x is
processed first as it could provide a better solution than an edge from x; to x;. The initial straight-line edge is given to a local optimizer which uses
information about obstacles to find a local optima between the specified states (b). If this edge is collision free, it is added to the tree and its potential
outgoing edges are added to the queue. The next-best edge in the queue is then processed in the same fashion, using the local optimizer to once again
propose a better edge than a straight-line (c).

Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa, S. S., Scherer, S. (2016):
Regionally Accelerated Batch Informed Trees (RABIT*): A Framework to Integrate
Local Information into Optimal Path Planning. ICRA.
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Improved Sampling-based Motion Planners

Regionally Accelerated BIT* (RABIT*) — Demo
RABIT* matches BIT* performance on easy problcms (R2)

RABIT*

s 1.57

RABIT* has 1.8 times
faster convergence on

i - hard problems (R8)
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https://www.youtube.com/watch?v=mgq-DW36jSo

Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa, S. S., Scherer, S. (2016):
Regionally Accelerated Batch Informed Trees (RABIT*): A Framework to Integrate
Local Information into Optimal Path Planning. ICRA.
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Improved Sampling-based Motion Planners

Overview of Improved Algorithm

m Optimal motion planning is an active research field

Approaches Constraints Planning Mode Kinematic Model ~ Sampling Strategy Metric
I RRT* 711 Holonomic Offline Point Uniform Euclidean
2. Anytime RRT* [4]  Non-holonomic  Online Dubin Car Uniform Euclidean + Velocity
3. B-RRT* [58] Holonomic Offline Rigid Body Local bias Goal biased

RRT*FN [33] Holonomic Offline Robotic Arm Uniform Cumulative Euclidean
5. RRT*-Smart [35]  Holonomic Offline Point Intelligent Euclidean
6. Optimal B-RRT* [36]Holonomic Offline Point Uniform Euclidean
7. RRT# [50] Holonomic Offline Point Uniform Euclidean
8. f}é’(}plcd RRT* [64], Non-holonomic  Offline Car-like and UAV ~ Uniform A* Heuristic
9. SRRT* [44] Non-holonomic ~ Offline UAV Uniform Geometric + dynamic constraint
10. Informed RRT* [34] Holonomic Offline Point Dircct Sampling Euclidean
11 g RRT* [37] Holonomic Offline Point Intelligent Greedy + Euclidean
12 DT.RRT [39] Non-holonomic  Offline Car-like Hybrid Angular + Euclidean
13. RRT*i [3] Non-holonomic ~ Online UAV Local Sampling A* Heuristic
14. RTR+CS* [43] Non-holonomic ~ Offline Car-like Uniform + Local Planning ~ Angular + Euclidean
15. Mitsubishi RRT* [2] Non-holonomic ~ Online Autonomous Car Two-stage sampling Weighted Euclidean
16. CARRT* [65] Non-holonomic  Online Humanoid Uniform MW Energy Cost
7. prr* [48] Non-holonomic ~ Offline P3-DX Uniform Euclidean

Noreen, I., Khan, A., Habib, Z. (2016): Optimal path planning using RRT* based
approaches: a survey and future directions. IJACSA.
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Multi-Goal Planning in Robotic Missions
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Multi-Goal Path Planning

Motivation
Having a set of locations (goals) to be visited, determine the

cost-efficient path to visit them and return to a starting location.

m Locations where a robotic arm performs some task

m Locations where a mobile robot has to be navigated
To perform measurements such as scan the environment or

read data from sensors.

Alatartsev et al. (2015) — Robotic Task Sequencing Problem: A Survey
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Multi-Goal Path Planning

Traveling Salesman Problem (TSP)

Given a set of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city exactly once
and returns to the origin city.

m The TSP can be formulated for a graph G(V/, E), where V denotes
a set of locations (cities) and E represents edges connecting two
cities with the associated travel cost ¢ (distance), i.e., for each
vi,vj € V there is an edge e € E, ej = (v;, vj) with the cost ¢j;.

m If the associated cost of the edge (v;, v;) is the Euclidean distance
cij = |(vi, vj)|, the problem is called the Euclidean TSP (ETSP).

In our case, v € V represents a point in R? and solution of the ETSP
is a path in the plane.

m It is known, the TSP is NP-hard (its decision variant) and several
algorithms can be found in literature.

William J. Cook (2012) — In Pursuit of the Traveling Salesman: Math-
ematics at the Limits of Computation
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Solutions of the TSP

m Efficient heuristics from the Operational
Research have been proposed

m LKH — K. Helsgaun efficient implementa-
tion of the Lin-Kernighan heuristic (1998)

http://www.akira.ruc.dk/ “keld/research/LKH/

m Concorde — Solver with several heuristics

and also optimal solver Problem Berlin52 from the

http://www.math.uwaterloo.ca/tsp/concorde.html TSFPLIB

Beside the heuristic and approximations algorithms (such as Christofides
3/2-approximation algorithm), other (,soft-computing”) approaches have
been proposed, e.g., based on genetic algorithms, and memetic approaches,
ant colony optimization (ACO), and neural networks.
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Multi-Goal Path Planning

Multi-Goal Path Planning (MTP) Problem

Given a map of the environment YV, mobile robot R, and a set
of locations, what is the shortest possible collision free path that
visits each location exactly once and returns to the origin location.

m MTP problem is de facto the TSP with the
cost associated to the edges as the length of
the shortest path connecting the locations

m For n locations, we need to compute up to n?
shortest paths (solve n?> motion planning prob-
lems)

m The paths can be found as the shortest path in
a graph (roadmap), from which the G(V, E)
for the TSP can be constructed

Visibility graph as the roadmap for a point robot provides a straight forward solution,
but such a shortest path may not be necessarily feasible for more complex robots

@
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Multi-Goal Path Planning
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Multi-Goal Motion Planning

m In the previous cases, we consider existing roadmap or relatively
“simple” collision free (shortest) paths in the polygonal domain

m However, determination of the collision-free path in a high dimen-
sional configuration space (C-space) can be a challenging problem
itself

m Therefore, we can generalize the MTP to multi-goal motion plan-
ning (MGMP) considering motion (trajectory) planners in C-space.

m An example of MGMP can be

Plan a cost efficient trajectory for
hexapod walking robot to visit a
set of target locations.
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions
Problem Statement — MGMP Problem

The working environment W C R3 is represented as a set of ob-
stacles © C W and the robot configuration space C describes all
possible configurations of the robot in W

m For g € C, the robot body A(q) at q is collision free if A(q)NO =0
and all collision free configurations are denoted as Cgree

m Set of n goal locations is G = (g1,.--,8n), & € Cree

m Collision free path from gsart t0 Ggoar is £ 1 [0,1] = Cpee with
k(0) = gstart and d(k(1), gend) < €, for an admissible distance €

m Multi-goal path 7 is admissible if 7 : [0,1] — Cfree, 7(0) = 7(1)
and there are n points such that 0 < t; < t, < ... < tp,
d(7(ti),vi) <e and Uy jc,vi=G

m The problem is to find path 7* for a cost function ¢ such that
c(7*) = min{c(7) | 7 is admissible multi-goal path}
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

MGMP — Examples of Solutions

m Determination of all paths connecting any two locations gj, gj € G is
usually very computationally demanding

m Several approaches can be found in literature, e.g.,

B Considering Euclidean distance as approximation in solution of the TSP as the
Minimum Spanning Tree (MST) — Edges in the MST are iteratively refined
using optimal motion planner until all edges represent a feasible solution

Saha, M., Roughgarden, T., Latombe, J.-C., Sanchez-Ante, G. (2006): Planning
Tours of Robotic Arms among Partitioned Goals. IJRR.

m Synergistic Combination of Layers of Planning (SyCLoP) — A combination

of route and trajectory planning

Plaku, E., Kavraki, L.E., Vardi, M.Y. (2010): Motion Planning With Dynamics by a
Synergistic Combination of Layers of Planning. T-RO.

m Steering RRG roadmap expansion by unsupervised learning for the TSP

Faigl (2016), WSOM
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Multi-Goal Path Planning in Robotic Missions

Multi-goal path planning

m It builds on a simple path and trajectory planning

m It is a combinatorial optimization problem to determine the se-
quence to visit the given locations

m It allows to solve (or improve performance of) more complex prob-
lems such as

m Inspection planning - Find the shortest tour to see (inspect) the
whole environment

m Data collection planning — Determine a cost efficient path to col-
lect data from the sensor stations (locations)

m Robotic exploration - Create a map of unknown environment as
quickly as possible
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Inspection Planning

Motivations (examples)

m  Periodically visit particular locations of the environment to check,
e.g., for intruders, and return to the starting locations

m Based on available plans, provide a guideline how to search a
building to find possible victims as quickly as possible (search
and rescue scenario)

giun &%,

2

[
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Inspection Planning — Decoupled Approach

1. Determine sensing locations such that the whole environment
would be inspected (seen) by visiting them
A solution of the Art Gallery Problem
2. Create a roadmap connecting the sensing location
E.g., using visibility graph or randomized sampling based approaches
3. Find the inspection path visiting all the sensing locations as a

solution of the multi-goal path planning
De facto solution of the TSP

Inspection planning is also called coverage path planning in literature.
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Example — Inspection Planning with AUV

m Determine shortest inspection path for Autonomous Underwater
Vehicle (AUV) to inspect a propeller of the vessel

@ Three-dimensional coverage planning for an underwater inspection robot

Brendan Englot and Franz S. Hover
International Journal of Robotic Research, 32(9-10):1048-1073, 2013.

ft
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Inspection Planning — “ Continuous Sensing”

= |f we do not prescribe a discrete set of sensing locations, we can
formulate the problem as the Watchman route problem

Given a map of the environment W determine the shortest, closed,
and collision-free path, from which the whole environment is covered

by an omnidirectional sensor with the radius p.

-l

@ Approximate Solution of the Multiple Watchman Routes Problem with

Restricted Visibility Range

Jan Faigl
IEEE Transactions on Neural Networks, 21(10):1668-1679, 2010.
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Multi-Goal Path Planning
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Multi-Goal Motion Planning

Self-Organizing Maps based Solution of the TSP

Kohonen's type of unsupervised two-layered neural network

Neurons’ weights represent nodes
N ={v1,...,vm}) in a plane.
Nodes are organized into a ring.

Sensing locations S = {s1,...s,} are pre-
sented to the network in a random order.

Nodes compete to be winner according to
their distance to the presented goal s

v* = argmin, ¢\ |D(v, s)|

The winner and its neighbouring nodes are
adapted (moved) towards the city accord-
ing to the neighbouring function

d2
f(o,d) = { 8’? for d < m/n,

otherwise,

B4M36UIR — Lecture 07: Multi-Goal Planning
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Best matching unit v to the presented pro-
totype s is determined according to dis-
tance function |D(v, s)|

For the Euclidean TSP, D is the Euclidean
distance

However, for problems with obstacles, the
multi-goal path planning, D should corre-
spond to the length of the shortest, colli-
sion free path.

Multi-Goal Planning in Robotic Missions
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SOM for the Multi-Goal Path Planning

Unsupervised learning procedure

Algorithm 1: SOM-based MTP solver
N <« initialization(v1, . .., vpm);
repeat
error + 0;
foreach g € 1(S) do
v

selectWinnerargmin, ¢\ |S(g, v)|;
adapt(S(g,v), uf(o,|S(g,v)|);
error <— max{error,|S(g,v*)|};
o+ (l-a) o
until error < §;

m For multi-goal path planning — the selectWinner and adapt
procedures are based on the solution of the path planning problem

@ An Application of Self-Organizing Map in the non-Euclidean Traveling Salesman
Problem

Jan Faigl, Miroslav Kulich, Vojtéch Vonasek and Libor Preucil
Neurocomputing, 74(5):671-679, 2011.
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SOM for the TSP in the Watchman Route Problem

During the unsupervised learning, we can compute coverage of W
from the current ring (solution represented by the neurons) and
adapt the network towards uncovered parts of WW

m Convex cover set of VW created on top of a triangular mesh

m Incident convex polygons with a straight line segment are found by
walking in a triangular mesh technique

NI

%

Jan Faigl (2010), TNN
The
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Multi-Goal Path Planning Multi-Goal Motion Planning

Multi-Goal Planning in Robotic Missions

Multi-Goal Path Planning with Goal Areas

m It may be sufficient to visit a goal region instead of the particular
point location

E.g., to take a sample measurement at each goal

-
Cameralor
NAVigation ===

Not only a sequence of goals visit has to be determined, but also an
appropriate sensing location for each goal need to be found.

The problem with goal regions can be considered as a variant of the
Traveling Salesman Problem with Neighborhoods (TSPN). %
Jan Faigl, 2017
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Traveling Salesman Problem with Neighborhoods

Given a set of n regions (neighbourhoods), what is the shortest
closed path that visits each region.

m The problem is NP-hard and APX-hard, it cannot be approximated
to within factor 2 — €, where € > 0
Safra and Schwartz (2006) — Computational Complexity
m Approximate algorithms exists for particular problem variants
E.g., Disjoint unit disk neighborhoods
m Flexibility of SOM for the TSP allows generalizing the unsupervised
learning procedure to address the TSPN

m TSPN provides a suitable problem formulation for planning
various inspection and data collection missions
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SOM-based Solution of the Traveling Salesman Problem
with Neighborhoods (TSPN)

Convex Cover Set Non-Convex Goals

Polygonal Goals
n=106, T=5.1s n=5, T=0.1s

n=9, T=0.32s

B Visiting Convex Regions in a Polygonal Map,

Jan Faigl, Vojéch Vonasek and Libor Preucil
Robotics and Autonomous Systems, 61(10):1070-1083, 2013.
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Example — TSPN for Inspection Planning with UAV

m Determine a cost-efficient trajectory from which a given set of
target regions is covered

m For each target region a subspace S C R3 from which the target
can be covered is determined S represents the neighbourhood

m The PRM motion planning algorithm is utilized to construct a
motion planning roadmap (a graph)

m SOM based solution of the TSP with a graph input is generalized
to the TSPN
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Example — TSPN for Planning with Localization Uncertainty

m Selection of waypoints from the neighborhood of each location
m P3AT ground mobile robot in an outdoor environment

TSP: L=184 m, TSPN: L=202 m,
Esg=0.57 m Esg=0.35 m

Real overall error at the goals decreased from 0.89 m — 0.58 m (about 35%)

m Decrease localization error at the target locations (indoor)
Small UGV - MMP5 Small UAV - Parrot AR.Drone

Error decreased from 16.6 cm — 12.8 cm Improved success of the locations’ visits 83%—»95% &%
. N
Faigl et al., (2012) — ICRA -
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Topics Discussed

Summary of the Lecture
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Topics Discussed

m Improved sampling-based motion planners

m Multi-goal planning
m Robotic variant of the Traveling Salesman Problem (TSP)
m Multi-Goal Path Planning (MTP) problem
m Multi-Goal Motion Planning (MGMP) problem

m Multi-goal planning in robotic missions

m Traveling Salesman Problem with Neighborhoods (TSPN)
m Inspection planning
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Topics Discussed

m Improved sampling-based motion planners

m Multi-goal planning
m Robotic variant of the Traveling Salesman Problem (TSP)
m Multi-Goal Path Planning (MTP) problem
m Multi-Goal Motion Planning (MGMP) problem

m Multi-goal planning in robotic missions
m Traveling Salesman Problem with Neighborhoods (TSPN)
m Inspection planning

m Next: Data collection planning
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