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Improved Sampling-based Motion Planners

Part I

Part 1 – Improved Sampling-based Motion
Planning
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Improved Sampling-based Motion Planners

Improved Sampling-based Motion Planners

Although Asymptotically optimal sampling-based motion planners
such RRT* or RRG may provide high-quality or even optimal so-
lutions of complex problem, their performance in simple, e.g., 2D
scenarios, is relatively poor In a comparison to the previous approaches

They are computationally demanding and performance can be im-
proved similarly as RRT, e.g.,

Goal biasing, supporting sampling in narrow passages, multi-tree
growns (Bidirectional RRT)

The general idea of improvements is based on informing the sam-
pling process
Many modifications of the algorithms exists, selected representative
modifications are

Informed RRT*
Batch Informed Trees (BIT*)
Regionally Accelerated BIT* (RABIT*)
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Improved Sampling-based Motion Planners

Informed RRT∗

Focused RRT* search to increase the
convergence rate
Use Euclidean distance as an admissible
heuristic
Ellipsoidal informed subset – the current
best solution cbest

Xf̂ = {x ∈ X |||xstart − x||2 + ||x− xgoal ||2 ≤ cbest}

Directly Based on the RRT*

Having a feasible solution

Sampling inside the ellipse

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2014): Informed RRT*: Opti-
mal Sampling-based Path Planning Focused via Direct Sampling of an Admissible
Ellipsoidal Heuristic. IROS.
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Improved Sampling-based Motion Planners

Informed RRT* – Demo

https://www.youtube.com/watch?v=d7dX5MvDYTc

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2014): Informed RRT*: Opti-
mal Sampling-based Path Planning Focused via Direct Sampling of an Admissible
Ellipsoidal Heuristic. IROS.
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Improved Sampling-based Motion Planners

Batch Informed Trees (BIT*)
Combining RGG (Random Geometric Graph) with the heuristic in
incremental graph search technique, e.g., Lifelong Planning A* (LPA*)

The properties of the RGG are used in the RRG and RRT*
Batches of samples – a new batch starts with denser implicit RGG
The search tree is updated using LPA* like incremental search to reuse
existing information

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2015): Batch Informed Trees (BIT*):
Sampling-based optimal planning via the heuristically guided search of implicit ran-
dom geometric graphs. ICRA.
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Improved Sampling-based Motion Planners

Batch Informed Trees (BIT*) – Demo

https://www.youtube.com/watch?v=TQIoCC48gp4

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2015): Batch Informed Trees (BIT*):
Sampling-based optimal planning via the heuristically guided search of implicit ran-
dom geometric graphs. ICRA.
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Improved Sampling-based Motion Planners

Regionally Accelerated BIT* (RABIT*)

Use local optimizer with the BIT* to improve the convergence speed
Local search Covariant Hamiltonian Optimization for Motion Planning
(CHOMP) is utilized to connect edges in the search graphs using local
information about the obstacles.

Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa, S. S., Scherer, S. (2016):
Regionally Accelerated Batch Informed Trees (RABIT*): A Framework to Integrate
Local Information into Optimal Path Planning. ICRA.

Jan Faigl, 2017 B4M36UIR – Lecture 07: Multi-Goal Planning 10 / 38



Improved Sampling-based Motion Planners

Regionally Accelerated BIT* (RABIT*) – Demo

https://www.youtube.com/watch?v=mgq-DW36jSo

Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa, S. S., Scherer, S. (2016):
Regionally Accelerated Batch Informed Trees (RABIT*): A Framework to Integrate
Local Information into Optimal Path Planning. ICRA.
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Improved Sampling-based Motion Planners

Overview of Improved Algorithm
Optimal motion planning is an active research field

Noreen, I., Khan, A., Habib, Z. (2016): Optimal path planning using RRT* based
approaches: a survey and future directions. IJACSA.

Jan Faigl, 2017 B4M36UIR – Lecture 07: Multi-Goal Planning 12 / 38
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Part II

Part 2 – Multi-Goal Path and Motion
Planning

Jan Faigl, 2017 B4M36UIR – Lecture 07: Multi-Goal Planning 13 / 38



Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Multi-Goal Path Planning
Motivation

Having a set of locations (goals) to be visited, determine the
cost-efficient path to visit them and return to a starting location.

Locations where a robotic arm performs some task
Locations where a mobile robot has to be navigated

To perform measurements such as scan the environment or
read data from sensors.

Alatartsev et al. (2015) – Robotic Task Sequencing Problem: A Survey
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Traveling Salesman Problem (TSP)
Given a set of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city exactly once
and returns to the origin city.

The TSP can be formulated for a graph G (V ,E ), where V denotes
a set of locations (cities) and E represents edges connecting two
cities with the associated travel cost c (distance), i.e., for each
vi , vj ∈ V there is an edge eij ∈ E , eij = (vi , vj) with the cost cij .

If the associated cost of the edge (vi , vj) is the Euclidean distance
cij = |(vi , vj)|, the problem is called the Euclidean TSP (ETSP).

In our case, v ∈ V represents a point in R2 and solution of the ETSP
is a path in the plane.

It is known, the TSP is NP-hard (its decision variant) and several
algorithms can be found in literature.

William J. Cook (2012) – In Pursuit of the Traveling Salesman: Math-
ematics at the Limits of Computation

Jan Faigl, 2017 B4M36UIR – Lecture 07: Multi-Goal Planning 16 / 38



Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Solutions of the TSP

Efficient heuristics from the Operational
Research have been proposed
LKH – K. Helsgaun efficient implementa-
tion of the Lin-Kernighan heuristic (1998)

http://www.akira.ruc.dk/~keld/research/LKH/

Concorde – Solver with several heuristics
and also optimal solver
http://www.math.uwaterloo.ca/tsp/concorde.html

Problem Berlin52 from the
TSPLIB

Beside the heuristic and approximations algorithms (such as Christofides
3/2-approximation algorithm), other („soft-computing”) approaches have
been proposed, e.g., based on genetic algorithms, and memetic approaches,
ant colony optimization (ACO), and neural networks.
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Multi-Goal Path Planning (MTP) Problem

Given a map of the environment W, mobile robot R, and a set
of locations, what is the shortest possible collision free path that
visits each location exactly once and returns to the origin location.

MTP problem is de facto the TSP with the
cost associated to the edges as the length of
the shortest path connecting the locations
For n locations, we need to compute up to n2

shortest paths (solve n2 motion planning prob-
lems)
The paths can be found as the shortest path in
a graph (roadmap), from which the G (V ,E )
for the TSP can be constructed
Visibility graph as the roadmap for a point robot provides a straight forward solution,
but such a shortest path may not be necessarily feasible for more complex robots
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Multi-Goal Motion Planning

In the previous cases, we consider existing roadmap or relatively
“simple” collision free (shortest) paths in the polygonal domain
However, determination of the collision-free path in a high dimen-
sional configuration space (C-space) can be a challenging problem
itself
Therefore, we can generalize the MTP to multi-goal motion plan-
ning (MGMP) considering motion (trajectory) planners in C-space.

An example of MGMP can be

Plan a cost efficient trajectory for
hexapod walking robot to visit a
set of target locations.
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Problem Statement – MGMP Problem

The working environment W ⊂ R3 is represented as a set of ob-
stacles O ⊂ W and the robot configuration space C describes all
possible configurations of the robot in W
For q ∈ C, the robot body A(q) at q is collision free if A(q)∩O = ∅
and all collision free configurations are denoted as Cfree
Set of n goal locations is G = (g1, . . . , gn), gi ∈ Cfree
Collision free path from qstart to qgoal is κ : [0, 1] → Cfree with
κ(0) = qstart and d(κ(1), qend) < ε, for an admissible distance ε
Multi–goal path τ is admissible if τ : [0, 1] → Cfree , τ(0) = τ(1)
and there are n points such that 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn,
d(τ(ti ), vi ) < ε, and

⋃
1<i≤n vi = G

The problem is to find path τ∗ for a cost function c such that
c(τ∗) = min{c(τ) | τ is admissible multi–goal path}
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MGMP – Examples of Solutions
Determination of all paths connecting any two locations gi , gj ∈ G is
usually very computationally demanding
Several approaches can be found in literature, e.g.,

Considering Euclidean distance as approximation in solution of the TSP as the
Minimum Spanning Tree (MST) – Edges in the MST are iteratively refined
using optimal motion planner until all edges represent a feasible solution

Saha, M., Roughgarden, T., Latombe, J.-C., Sánchez-Ante, G. (2006): Planning
Tours of Robotic Arms among Partitioned Goals. IJRR.

Synergistic Combination of Layers of Planning (SyCLoP) – A combination
of route and trajectory planning

Plaku, E., Kavraki, L.E., Vardi, M.Y. (2010): Motion Planning With Dynamics by a
Synergistic Combination of Layers of Planning. T-RO.

Steering RRG roadmap expansion by unsupervised learning for the TSP

Faigl (2016), WSOM
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Multi-Goal Path Planning in Robotic Missions

Multi-goal path planning
It builds on a simple path and trajectory planning
It is a combinatorial optimization problem to determine the se-
quence to visit the given locations
It allows to solve (or improve performance of) more complex prob-
lems such as

Inspection planning - Find the shortest tour to see (inspect) the
whole environment
Data collection planning – Determine a cost efficient path to col-
lect data from the sensor stations (locations)
Robotic exploration - Create a map of unknown environment as
quickly as possible
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Inspection Planning
Motivations (examples)

Periodically visit particular locations of the environment to check,
e.g., for intruders, and return to the starting locations
Based on available plans, provide a guideline how to search a
building to find possible victims as quickly as possible (search
and rescue scenario)
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Inspection Planning – Decoupled Approach

1. Determine sensing locations such that the whole environment
would be inspected (seen) by visiting them

A solution of the Art Gallery Problem

2. Create a roadmap connecting the sensing location
E.g., using visibility graph or randomized sampling based approaches

3. Find the inspection path visiting all the sensing locations as a
solution of the multi-goal path planning

De facto solution of the TSP

Inspection planning is also called coverage path planning in literature.
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Example – Inspection Planning with AUV

Determine shortest inspection path for Autonomous Underwater
Vehicle (AUV) to inspect a propeller of the vessel

Three-dimensional coverage planning for an underwater inspection robot
Brendan Englot and Franz S. Hover
International Journal of Robotic Research, 32(9-10):1048–1073, 2013.
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Inspection Planning – “Continuous Sensing ”

If we do not prescribe a discrete set of sensing locations, we can
formulate the problem as the Watchman route problem

Given a map of the environment W determine the shortest, closed,
and collision-free path, from which the whole environment is covered
by an omnidirectional sensor with the radius ρ.

Approximate Solution of the Multiple Watchman Routes Problem with
Restricted Visibility Range
Jan Faigl
IEEE Transactions on Neural Networks, 21(10):1668–1679, 2010.
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Self-Organizing Maps based Solution of the TSP

Kohonen’s type of unsupervised two-layered neural network

Neurons’ weights represent nodes
N = {ν1, . . . , νm}) in a plane.

Nodes are organized into a ring.

Sensing locations S = {s1, . . . sn} are pre-
sented to the network in a random order.

Nodes compete to be winner according to
their distance to the presented goal s

ν∗ = argminν∈N |D(ν, s)|

The winner and its neighbouring nodes are
adapted (moved) towards the city accord-
ing to the neighbouring function
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{
e
− d2

σ2 for d < m/nf ,
0 otherwise,

g

g = (g  , g   )
i,2i,1

i
g = (g  , g   )

i,2i,1

νν
j,1 j,2

goal   i

i,1
g

i,2

i+2

g

g

i+1

i−1
g

i

  

  

connections’

presented goal

input layer output units

ring of connected
nodes

m

m−1

j

2

1
weights

ν
j,1

ν
j,2

(     ,     )

j

Best matching unit ν to the presented pro-
totype s is determined according to dis-
tance function |D(ν, s)|
For the Euclidean TSP, D is the Euclidean
distance

However, for problems with obstacles, the
multi-goal path planning, D should corre-
spond to the length of the shortest, colli-
sion free path.
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SOM for the Multi-Goal Path Planning
Unsupervised learning procedure

Algorithm 1: SOM-based MTP solver
N ← initialization(ν1, . . . , νm);
repeat

error ← 0;
foreach g ∈ Π(S) do

ν∗ ←
selectWinner argminν∈N |S(g , ν)|;
adapt(S(g , ν), µf (σ, l)|S(g , ν)|);
error ← max{error , |S(g , ν?)|};

σ ← (1− α) · σ;
until error ≤ δ;

For multi-goal path planning – the selectWinner and adapt
procedures are based on the solution of the path planning problem

An Application of Self-Organizing Map in the non-Euclidean Traveling Salesman
Problem
Jan Faigl, Miroslav Kulich, Vojtěch Vonásek and Libor Přeučil
Neurocomputing, 74(5):671–679, 2011.
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SOM for the TSP in the Watchman Route Problem
During the unsupervised learning, we can compute coverage of W
from the current ring (solution represented by the neurons) and
adapt the network towards uncovered parts of W
Convex cover set of W created on top of a triangular mesh
Incident convex polygons with a straight line segment are found by
walking in a triangular mesh technique

Jan Faigl (2010), TNN

The
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Multi-Goal Path Planning with Goal Areas

It may be sufficient to visit a goal region instead of the particular
point location

E.g., to take a sample measurement at each goal

Snapshot of the goal area

Camera for

navigation

Camera for

navigation

Snapshot of the goal areaSnapshot of the goal areaSnapshot of the goal area

Camera for sampling

the goal area

Camera for sampling

the goal area

Camera for sampling

the goal area

Camera for

navigation

Camera for

navigation

the goal area

Camera for sampling

Snapshot of the goal area

Camera for

navigation

Not only a sequence of goals visit has to be determined, but also an
appropriate sensing location for each goal need to be found.

The problem with goal regions can be considered as a variant of the
Traveling Salesman Problem with Neighborhoods (TSPN).
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Traveling Salesman Problem with Neighborhoods

Given a set of n regions (neighbourhoods), what is the shortest
closed path that visits each region.

The problem is NP-hard and APX-hard, it cannot be approximated
to within factor 2− ε, where ε > 0

Safra and Schwartz (2006) – Computational Complexity

Approximate algorithms exists for particular problem variants
E.g., Disjoint unit disk neighborhoods

Flexibility of SOM for the TSP allows generalizing the unsupervised
learning procedure to address the TSPN

TSPN provides a suitable problem formulation for planning
various inspection and data collection missions
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SOM-based Solution of the Traveling Salesman Problem
with Neighborhoods (TSPN)

Polygonal Goals
n=9, T= 0.32 s

Convex Cover Set
n=106, T=5.1 s

Non-Convex Goals
n=5, T=0.1 s

Visiting Convex Regions in a Polygonal Map,
Jan Faigl, Vojěch Vonásek and Libor Přeučil
Robotics and Autonomous Systems, 61(10):1070–1083, 2013.
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Example – TSPN for Inspection Planning with UAV

Determine a cost-efficient trajectory from which a given set of
target regions is covered
For each target region a subspace S ⊂ R3 from which the target
can be covered is determined S represents the neighbourhood

The PRM motion planning algorithm is utilized to construct a
motion planning roadmap (a graph)
SOM based solution of the TSP with a graph input is generalized
to the TSPN

Janoušek and Faigl, (2013) – ICRA
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Example – TSPN for Planning with Localization Uncertainty
Selection of waypoints from the neighborhood of each location
P3AT ground mobile robot in an outdoor environment

TSP: L=184 m,
Eavg=0.57 m

TSPN: L=202 m,
Eavg=0.35 m

Real overall error at the goals decreased from 0.89 m → 0.58 m (about 35%)

Decrease localization error at the target locations (indoor)
Small UGV - MMP5

Error decreased from 16.6 cm → 12.8 cm

Small UAV - Parrot AR.Drone

Improved success of the locations’ visits 83%→95%

Faigl et al., (2012) – ICRA
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Topics Discussed

Summary of the Lecture
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Topics Discussed

Improved sampling-based motion planners
Multi-goal planning

Robotic variant of the Traveling Salesman Problem (TSP)
Multi-Goal Path Planning (MTP) problem
Multi-Goal Motion Planning (MGMP) problem

Multi-goal planning in robotic missions
Traveling Salesman Problem with Neighborhoods (TSPN)
Inspection planning

Next: Data collection planning
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