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Improved Sampling-based Motion Planners

Part |

Part 1 — Improved Sampling-based Motion
Planning
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Improved Sampling-based Motion Planners Informed RRT Informed RRT* — Demo
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m Although Asymptotically optimal sampling-based motion planners " . Rigorthm 1: Informed RRT (%o Xgr)
* . . . . m Focused RRT* search to increase the
such RRT* or RRG may provide high-quality or even optimal so- convergence rate
lutions of complex problem, their performance in simple, e.g., 2D ) . o
‘o5 is relativel m Use Euclidean distance as an admissible
scenarios, Is relatively poor In a comparison to the previous approaches heuristic
m They are computationally demanding and performance can be im- m Ellipsoidal informed subset — the current
proved similarly as RRT, e.g., best solution cpest
= Goal blas.m.g, supporting sampling in narrow passages, multi-tree X; = {x € X|[|xstore — xl2 + [[% — Xgoarll2 < Ches}
grows (Bidirectional RRT)
m The general idea of improvements is based on informing the sam-
pling process
m Many modifications of the algorithms exists, selected representative u Directly Based on the RRT*
modifications are = Having a feasible solution I Informed RRT*
= Sampling inside the ellipse
= InformEd RRT* ol https://wuw.youtube.com/watch?v=d7dX5MvDYTc
m Batch Informed Trees (BIT*) Gammell. J. B. Srinivasa, S. . Barfoot, T, D. (2014); Informed RRT*: Opti- Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2014): Informed RRT*: Opti-
. * * mal Sampling-based Path Planning Focused via Direct Sampling of an Admissible mal Sampling-based Path Planning Focused via Direct Sampling of an Admissible
m Regionally Accelerated BIT* (RABIT*) Ellipsoidal Heuristic. IROS. Ellipsoidal Heuristic. IROS.
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Batch Informed Trees (BIT Batch Informed Trees (BIT*) — Demo Regionally Accelerated BIT* (RABIT
m Combining RGG (Random Geometric Graph) with the heuristic in [RRE“ o334 fM[r)rm,w(,r
§ " " € = 00.0343445 0342955
incremental graph search technique, e.g., Lifelong Planning A* (LPA*) ¢ = 01.724808 . . .
T ties of the RGG d4'in the RRG and RRT* m Use local optimizer with the BIT* to improve the convergence speed
m The properties of the are used in the an . o T : )
Batches of | batch starts with d imolicit RGG m Local search Covariant Hamiltonian Optimization for Motion Planning
m Batches of samples — a new batch starts with denser implici (CHOMP) is util ) .
is utilized to connect edges in the search graphs using local
m The search tree is updated using LPA* like incremental search to reuse information about the obstacles.
existing information
Xy x4
Duting each batch, the search| [When a-solution Is found, the| [A new batch of samples is then| [The process repeats indefinitely, Informed RRT* Q S Q - ?
expands outwards - aréund the| [batch finishes and the éxpansion| |added and the search restarts. | [restarting each time an im- t = 00.034316s Kstart Xgoal| | Xstart h Xgoal
minimum  solution using . af lstops, e = = = = . proved solution is found. = Mhado 108 o %A \° L ol
heuristic. CR ‘e? c=01.724528 ‘O o O -
. Xp S TN
¢ @ e N
m Fig. 2. An illustration of how the RABIT* algorithm uses a local optimizer to exploit obstacle information and improve a global search. The glabal search
. is performed, as in BIT*, by incrementally processing an edge queue (dashed lines) into a tree (a). U euristics, the potential edge from x; 10 Xy, is
processed first as it could provide a better solution than an edge from X; to X;. The initial straight-line edge is given to a local optimizer which uses
formtion about obseles 0 ind 4 local opim btween the specied st (0.1 s edee s collison e i s dded o the e and s poentl
. N E outgoing edges are added to the queue. The next-best edge in the queue is then processed in the same fashion, using the local optimizer to once again
@) L ) - (© ) propose a better edge than a straight-line (c).
ohon i ighhghicd i magents. The sbprobiem tht comain any D sohtiom - how o Hak ished e whiethe rogree ot the corent Choudhury, S., Gammell, J. D., Barfoot, T. D, Srinivasa, S. S., Scherer, S. (2016):
L S ) s f e ) s s i v b Netpa:/ /v goutabe. con/wath?v=TqLoCCASgPA Lol nformation into Optimal Path Planing. ICRA. 1+ /1o 10 Integrace
ending when an improved solution is found. An nnmmledlxlltmmunn is available in the attached video. ° Gammell, J. B., Srinivasa, S. 5., Barfoot, T. D. (2015): Batch Informed Trees (B1T%): i i
Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2015): Batch Informed Trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit ran-
Sampling-based optimal planning via the heuristically guided search of implicit ran- dom geometric graphs. ICRA.
dom geometric graphs. ICRA.
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Improved Sampling-based Motion Planners

Regionally Accelerated BIT* (RABIT*) — Demo
RABIT* matches BIT* performance on easy problems (R2)

Informed RRT*
s 00

BIT*
s: 16T

RABIT* has 1.8 times
faster convergence on
hard problems (R8)

Cormpny
o RRT + ARTCome —— RIS

https://wau.youtube. con/watch?v=ngq-DW36jSo

Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa, S. S., Scherer, S. (2016):
Regionally Accelerated Batch Informed Trees (RABIT*): A Framework to Integrate
Local Information into Optimal Path Planning. ICRA.

Jan Faigl, 2017
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Improved Sampling-based Motion Planners

Overview of Improved Algorithm

m Optimal motion planning is an active research field

Approaches Constraints Planning Mode Kinematic Model  Sampling Strategy Metric

I RRT* (7] Holonomic Offline Point Uniform Euclidean

2. Anytime RRT* [4]  Non-holonomic ~ Online Dubin Car Uniform Euclidean + Velocity
3 B-RRT (58] Holonomic Offline Rigid Body Local bias Goal biased

4. RRT*FN [33] Holonomic Offline Robotic Arm Uniform Cumulative Euclidean
5. RRT*-Smart[35]  Holonomic Offline Point Intelligent Euclidean

6. Optimal B-RRT* [36]Holonomic Offline Point Uniform Euclidea

7. RRT# [50] Holonomic Offline Point Uniform Euclidean

8 Q‘fy‘i""“”"w' Non-holonomic ~ Offline Carlike and UAV  Uniform A* Heuristic

9. SRRT* [44] Non-holonomic ~ Offline UAV Uniform Geometric + dynamic constraint
10 jnformed RRT* [34] Holonomic Offline Point Dircct Sampling

1 IBRRT* [37) Holonomic Offline Point Intelligent

12 DT-RRT [39] Non-holonomic ~ Offline Car-like Hybrid Angular + Euclidean
13- RRT*i [3] Non-holonomic ~ Online UAV Local Sampling A* Heuristic

14. RTR+CS* [43] Non-holonomie OfMine Car-like Uniform + Local Planning ~ Angular + Euclidean
15. Mitsubishi RRT* [2] Non-hol Online Car  Two-stage sampling

16. CARRT* [65] Non-holonomic ~ Online Humanoid Uniform

17. pRRT* (48] Non-holonomic ~ Offline P3-DX Uniform

Noreen, I., Khan, A., Habib, Z. (2016): Optimal path planning using RRT* based

approaches: a survey and future directions. IJACSA.
Jan Faigl, 2017
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Part Il

Part 2 — Multi-Goal Path and Motion
Planning

Jan Faigl, 2017 B4M36UIR — Lecture 07: Multi-Goal Planning 13 / 38

Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Multi-Goal Path Planning

Motivation
Having a set of locations (goals) to be visited, determine the
cost-efficient path to visit them and return to a starting location.

m Locations where a robotic arm performs some task

m Locations where a mobile robot has to be navigated
To perform measurements such as scan the environment or
read data from sensors.

Alatartsev et al. (2015) — Robotic Task Sequencing Problem: A Survey
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Multi-Goal Path Planning

Traveling Salesman Problem (TSP)

Given a set of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city exactly once
and returns to the origin city.

Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

m The TSP can be formulated for a graph G(V/, E), where V denotes
a set of locations (cities) and E represents edges connecting two
cities with the associated travel cost ¢ (distance), i.e., for each
vi,vj € V there is an edge e € E, ejj = (v;, v;) with the cost ¢jj.

m |f the associated cost of the edge (v;, v;) is the Euclidean distance
¢jj = |(vi, vj)|, the problem is called the Euclidean TSP (ETSP).

In our case, v € V represents a point in R? and solution of the ETSP
is a path in the plane.

m It is known, the TSP is NP-hard (its decision variant) and several
algorithms can be found in literature.
William J. Cook (2012) — In Pursuit of the Traveling Salesman: Math-
ematics at the Limits of Computation
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Multi-Goal Path Planning

Solutions of the TSP

Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

m Efficient heuristics from the Operational
Research have been proposed

m LKH — K. Helsgaun efficient implementa-
tion of the Lin-Kernighan heuristic (1998)
http://www.akira.ruc.dk/ keld/research/LKH/

m Concorde — Solver with several heuristics

and also optimal solver
http://www.math.uwaterloo.ca/tsp/concorde.html

Problem Berlin52 from the
TSPLIB

Beside the heuristic and approximations algorithms (such as Christofides
3/2-approximation algorithm), other (,soft-computing”) approaches have
been proposed, e.g., based on genetic algorithms, and memetic approaches,
ant colony optimization (ACO), and neural networks.
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Multi-Goal Path Planning Multi-Goal Motion Planning

Multi-Goal Planning in Robotic N

Multi-Goal Path Planning (MTP) Problem

ssions

Given a map of the environment W, mobile robot R, and a set
of locations, what is the shortest possible collision free path that
visits each location exactly once and returns to the origin location.

m MTP problem is de facto the TSP with the
cost associated to the edges as the length of
the shortest path connecting the locations

m For n locations, we need to compute up to n?
shortest paths (solve n? motion planning prob-
lems)

m The paths can be found as the shortest path in
a graph (roadmap), from which the G(V,E)
for the TSP can be constructed

Visibility graph as the roadmap for a point robot provides a straight forward solution,
but such a shortest path may not be necessarily feasible for more complex robots

Jan Faigl, 2017 B4M36UIR — Lecture 07: Multi-Goal Planning 18 / 38

Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Multi-Goal Motion Planning

m In the previous cases, we consider existing roadmap or relatively
“simple” collision free (shortest) paths in the polygonal domain

m However, determination of the collision-free path in a high dimen-
sional configuration space (C-space) can be a challenging problem
itself

m Therefore, we can generalize the MTP to multi-goal motion plan-
ning (MGMP) considering motion (trajectory) planners in C-space.

An example of MGMP can be

Plan a cost efficient trajectory for
hexapod walking robot to visit a
set of target locations.
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Multi-Goal Path Planning Multi-Goal Motion Planning

Problem Statement — MGMP Problem

Multi-Goal Planning in Robotic Missions

m The working environment W C R3 is represented as a set of ob-
stacles O C W and the robot configuration space C describes all
possible configurations of the robot in W

m For g € C, the robot body A(q) at q is collision free if A(g)NO =0
and all collision free configurations are denoted as Cgree

7gn)v 8i € Cfree

m Collision free path from gstart t0 Ggoas is £ : [0,1] — Cfree With
£(0) = Gstart and d(k(1), gena) < €, for an admissible distance e

m Multi-goal path 7 is admissible if 7 : [0,1] — Cfee, 7(0) = 7(1)
and there are n points such that 0 < t; < t, < < tp,
d(7(t;),vi) <, and U1<i§n vi=gG

m Set of n goal locations is G = (g1, . . -

m The problem is to find path 7* for a cost function ¢ such that
c(7*) = min{c(7) | T is admissible multi-goal path}
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Multi-Goal Path Planning

Multi-Goal Path Planning Multi-Goal Motion Planning

Multi-Goal Path Planning Multi-Goal Motion Planning
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Multi-Goal Motion Planning

MGMP — Examples of Solutions

m Determination of all paths connecting any two locations gj, g;
usually very computationally demanding

m Several approaches can be found in literature, e.g.,

m Considering Euclidean distance as approximation in solution of the TSP as the
Minimum Spanning Tree (MST) — Edges in the MST are iteratively refined
using optimal motion planner until all edges represent a feasible solution

Saha, M., Roughgarden, T., Latombe, J.-C., Sanchez-Ante, G. (2006): Planning
Tours of Robotic Arms among Partitioned Goals. IJRR.

m Synergistic Combination of Layers of Planning (SyCLoP)

of route and trajectory planning

Plaku, E., Kavraki, L.E., Vardi, M.Y. (2010): Motion Planning With Dynamics by a
Synergistic Combination of Layers of Planning. T-RO.

m Steering RRG roadmap expansion by unsupervised learning for the TSP

egis

— A combination

Faigl (2016), WSOM
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Multi-Goal Planning in Robotic Missions

Multi-Goal Path Planning in Robotic Missions

Multi-goal path planning
m It builds on a simple path and trajectory planning
m It is a combinatorial optimization problem to determine the se-
quence to visit the given locations
m It allows to solve (or improve performance of) more complex prob-
lems such as
m Inspection planning - Find the shortest tour to see (inspect) the
whole environment
m Data collection planning — Determine a cost efficient path to col-
lect data from the sensor stations (locations)

m Robotic exploration - Create a map of unknown environment as
quickly as possible
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Multi-Goal Planning in Robotic Missions

Inspection Planning
Motivations (examples)
m  Periodically visit particular locations of the environment to check,
e.g., for intruders, and return to the starting locations
m  Based on available plans, provide a guideline how to search a
building to find possible victims as quickly as possible (search
and rescue scenario)

"’:— = &;
i‘h
— 1 o
£ . -
x @
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Inspection Planning — Decoupled Approach

1. Determine sensing locations such that the whole environment
would be inspected (seen) by visiting them
A solution of the Art Gallery Problem
2. Create a roadmap connecting the sensing location
E.g., using visibility graph or randomized sampling based approaches
3. Find the inspection path visiting all the sensing locations as a
solution of the multi-goal path planning
De facto solution of the TSP

Inspection planning is also called coverage path planning in literature.
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Example — Inspection Planning with AUV

m Determine shortest inspection path for Autonomous Underwater
Vehicle (AUV) to inspect a propeller of the vessel

T BN

@ Three-dimensional coverage planning for an underwater inspection robot

Brendan Englot and Franz S. Hover
International Journal of Robotic Research, 32(9-10):1048-1073, 2013.
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Inspection Planning — " Continuous Sensing”

m If we do not prescribe a discrete set of sensing locations, we can
formulate the problem as the Watchman route problem

Given a map of the environment W determine the shortest, closed,
and collision-free path, from which the whole environment is covered
by an omnidirectional sensor with the radius p.

M LaLalg AL

LD W
¢ // ‘

.

—

@ Approximate Solution of the Multiple Watchman Routes Problem with
Restricted Visibility Range
Jan Faigl
IEEE Transactions on Neural Networks, 21(10):1668-1679, 2010.
Jan Faigl, 2017
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Self-Organizing Maps based Solution of the TSP

Kohonen's type of unsupervised two-layered neural network

connections’

1 goal i

m Neurons' weights represent nodes presentsd gon , 9-9,9,)
N ={v1,...,um}) in a plane. o o
= Nodes are organized into a ring.

Sensing locations § = {s1,... sy} are pre-
sented to the network in a random order.

fing of connected
nodes.

Nodes compete to be winner according to
their distance to the presented goal s

9

input layer output units

Best matching unit v to the presented pro-
totype s is determined according to dis-
tance function |D(v, s)|

For the Euclidean TSP, D is the Euclidean
distance

v* = argmin, ey [D(v.5)|

The winner and its neighbouring nodes are
adapted (moved) towards the city accord-
ing to the neighbouring function

However, for problems with obstacles, the

_% multi-goal path planning, D should corre-
flo,d)y=4 € °* ford< m/nf, spond to the length of the shortest, colli-
0 otherwise, sion free path.

B4M36UIR — Lecture
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SOM for the Multi-Goal Path Planning

Unsupervised learning procedure

Algorithm 1: SOM-based MTP solver

N < initialization(v1, . . ., Um);
repeat

error < 0;

foreafh g €MN(S) do

Multi-Goal Planning in Robotic Missions

v
selectWinner argmin .- [S(g,v)|;

adapt(S(g, v), uf (o, /)|5(g7 )i
error <— max{error, |S(g,v*)|};

c+—(1-a) o
until error < §;

m For multi-goal path planning — the selectWinner and adapt
procedures are based on the solution of the path planning problem

@ An Application of Self-Organizing Map in the non-Euclidean Traveling Salesman
Problem
Jan Faigl, Miroslav Kulich, Vojtéch Vonasek and Libor Preucil
Neurocomputing, 74(5):671-679, 2011.

Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

SOM for the TSP in the Watchman Route Problem
During the unsupervised learning, we can compute coverage of W
from the current ring (solution represented by the neurons) and
adapt the network towards uncovered parts of W

m Convex cover set of W created on top of a triangular mesh

= Incident convex polygons with a straight line segment are found by
walking in a triangular mesh technique

]JJM

Jan Faigl (2010), TNN
The
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Multi-Goal Path Planning with Goal Areas

m |t may be sufficient to visit a goal region instead of the particular
point location

E.g., to take a sample measurement at each goal

Not only a sequence of goals visit has to be determined, but also an
appropriate sensing location for each goal need to be found.

The problem with goal regions can be considered as a variant of the
Traveling Salesman Problem with Neighborhoods (TSPN).

Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

Traveling Salesman Problem with Neighborhoods

Given a set of n regions (neighbourhoods), what is the shortest
closed path that visits each region.

m The problem is NP-hard and APX-hard, it cannot be approximated
to within factor 2 — ¢, where ¢ > 0
Safra and Schwartz (2006) — Computational Complexity
m Approximate algorithms exists for particular problem variants
E.g., Disjoint unit disk neighborhoods
m Flexibility of SOM for the TSP allows generalizing the unsupervised
learning procedure to address the TSPN

m TSPN provides a suitable problem formulation for planning
various inspection and data collection missions

Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions

SOM-based Solution of the Traveling Salesman Problem
with Neighborhoods (TSPN)

Non-Convex Goals
n=5, T=0.1s

Convex Cover Set
n=106, T=5.1s

Polygonal Goals
n=9, T=032s

[{ Visiting Convex Regions in a Polygonal Map,
Jan Faigl, Vojéch Vionasek and Libor Preucil
Robotics and Autonomous Systems, 61(10):1070-1083, 2013.
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Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions Multi-Goal Path Planning Multi-Goal Motion Planning Multi-Goal Planning in Robotic Missions Topics Discussed
Example — TSPN for Inspection Planning with UAV Example — TSPN for Planning with Localization Uncertainty

m Selection of waypoints from the neighborhood of each location
m Determine a cost-efficient trajectory from which a given set of m P3AT ground mobile robot in an outdoor environment
target regions is covered
m For each target region a subspace S C R3 from which the target
can be covered is determined S represents the neighbourhood M % S umma ry O-F the Lectu re
m The PRM motion planning algorithm is utilized to construct a - /
. . TSP: [=184 m, TSPN: =202 m,
motion planning roadmap (a graph) Aty PN 202 m
m SOM based solution of the TSP with a graph input is generahzed Real overall error at the goals decreased from 0.89 m — 0.58 m (about 35%)
to the TSPN m Decrease localization error at the target locations (indoor)
Small UGV - MMP5 Small UAV - Parrot AR.Drone
i ," o ,l‘
Janousek and Faigl, (2013) — ICRA
Error decreased from 16.6 cm — 12.8 cm Improved success of the locations’ visits 83%— 95%
Faigl et al., (2012) — ICRA
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Topics Discussed
Topics Discussed

m Improved sampling-based motion planners
m Multi-goal planning
m Robotic variant of the Traveling Salesman Problem (TSP)
m Multi-Goal Path Planning (MTP) problem
m Multi-Goal Motion Planning (MGMP) problem
m Multi-goal planning in robotic missions
m Traveling Salesman Problem with Neighborhoods (TSPN)
m Inspection planning
m Next: Data collection planning
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