Improved Sampling-based Motion Planning Methods

Jan Faigl

Department of Computer Science

Faculty of Electrical Engineering Czech Technical University in Prague

Lecture 06

B4M36UIR - Artificial Intelligence in Robotics

Overview of the Lecture

Part 1 – Improved Sampling-based Motion Planning Methods

Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)

Part I

Part 1 – Improved Sampling-based Motion Planning Methods

3 / 18

Jan Faigl, 2017

Efficient Sampling-Based Motion Planning

- PRM and RRT are theoretically probabilistic complete
- They provide a feasible solution without quality guarantee Despite that, they are successfully used in many practical applications
- In 2011, a study of the asymptotic behaviour has been published It shows, that in some case, they converges to a noon-optimal value with a probability 1.
- Based on the study, new algorithms have been proposed: RRG and optimal RRT (RRT^{star})
 - Sampling-based algorithms for optimal motion planning Sertac Karaman, Emilio Frazzoli International Journal of Robotic Research, 30(7):846–894, 2011.

http://sertac.scripts.mit.edu/rrtsta

Efficient Sampling-Based Motion Planning

- PRM and RRT are theoretically probabilistic complete
- They provide a feasible solution without quality guarantee Despite that, they are successfully used in many practical applications
- In 2011, a study of the asymptotic behaviour has been published It shows, that in some case, they converges to a noon-optimal value with a probability 1.
- Based on the study, new algorithms have been proposed: RRG and optimal RRT (RRT^{star})
 - Sampling-based algorithms for optimal motion planning Sertac Karaman, Emilio Frazzoli International Journal of Robotic Research, 30(7):846–894, 2011.

http://sertac.scripts.mit.edu/rrtsta

Efficient Sampling-Based Motion Planning

- PRM and RRT are theoretically probabilistic complete
- They provide a feasible solution without quality guarantee Despite that, they are successfully used in many practical applications
- In 2011, a study of the asymptotic behaviour has been published It shows, that in some case, they converges to a noon-optimal value with a probability 1.
- Based on the study, new algorithms have been proposed: RRG and optimal RRT (RRT^{star})
 - Sampling-based algorithms for optimal motion planning Sertac Karaman, Emilio Frazzoli International Journal of Robotic Research, 30(7):846–894, 2011.

<u>AR</u>

http://sertac.scripts.mit.edu/rrtstar

Jan Faigl, 2017

B4M36UIR - Lecture 06: Improved Sampling-based Methods

Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)

Outline

Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)

Jan Faigl, 2017

RRT and Quality of Solution

RRT provides a feasible solution without quality guarantee Despite of that, it is successfully used in many practical applications

In 2011, a systematical study of the asymptotic behaviour of randomized sampling-based planners has been published It shows that in some cases they converge to a non-

optimal value with a probability 1.

Sampling-based algorithms for optimal motion planning Sertac Karaman, Emilio Frazzoli International Journal of Robotic Research, 30(7):846–894, 2011.

http://sertac.scripts.mit.edu/rrtsta

RRT and Quality of Solution

- RRT provides a feasible solution without quality guarantee Despite of that, it is successfully used in many practical applications
- In 2011, a systematical study of the asymptotic behaviour of randomized sampling-based planners has been published

It shows, that in some cases, they converge to a nonoptimal value with a probability 1.

Sampling-based algorithms for optimal motion planning Sertac Karaman, Emilio Frazzoli International Journal of Robotic Research, 30(7):846–894, 2011.

Jan Faigl, 2017

B4M36UIR - Lecture 06: Improved Sampling-based Methods

RRT and Quality of Solution

- RRT provides a feasible solution without quality guarantee Despite of that, it is successfully used in many practical applications
- In 2011, a systematical study of the asymptotic behaviour of randomized sampling-based planners has been published *It shows, that in some cases, they converge to a non-*

It shows, that in some cases, they converge to a nonoptimal value with a probability 1.

Sampling-based algorithms for optimal motion planning Sertac Karaman, Emilio Frazzoli International Journal of Robotic Research, 30(7):846–894, 2011.

http://sertac.scripts.mit.edu/rrtstar

Jan Faigl, 2017

B4M36UIR - Lecture 06: Improved Sampling-based Methods

RRT and Quality of Solution 1/2

- Let Y_i^{RRT} be the cost of the best path in the RRT at the end of iteration *i*.
- Y_i^{RRT} converges to a random variable

$$\lim_{i\to\infty}Y_i^{RRT}=Y_{\infty}^{RRT}.$$

• The random variable Y_{∞}^{RRT} is sampled from a distribution with zero mass at the optimum, and

$$\Pr[Y_{\infty}^{RRT} > c^*] = 1.$$

Karaman and Frazzoli, 2011

 The best path in the RRT converges to a sub-optimal solution almost surely.

RRT and Quality of Solution 2/2

- RRT does not satify a necessary condition for the asymptotic optimality
 - For $0 < R < \inf_{q \in Q_{goal}} ||q q_{init}||$, the event $\{\lim_{n \to \infty} Y_n^{RTT} = c^*\}$ occurs only if the *k*-th branch of the RRT contains vertices outside the *R*-ball centered at q_{init} for infinitely many *k*.

See Appendix B in Karaman&Frazzoli, 2011

• It is required the root node will have infinitely many subtrees that extend at least a distance ϵ away from q_{init}

The sub-optimality is caused by disallowing new better paths to be discovered.

Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)

Outline

Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)

Jan Faigl, 2017

Rapidly-exploring Random Graph (RRG)

RRG Algorithm

```
Vstup: q<sub>init</sub>, number of samples n
Výstup: G = (V, E)
V \leftarrow \emptyset : F \leftarrow \emptyset:
for i = 0, ..., n do
       q_{rand} \leftarrow SampleFree;
       q_{nearest} \leftarrow \text{Nearest}(G = (V, E), q_{rand});
       q_{new} \leftarrow \text{Steer}(q_{nearest}, q_{rand});
       if CollisionFree(q<sub>nearest</sub>, q<sub>new</sub>) then
              \mathcal{Q}_{near} \leftarrow \text{Near}(G =
              (V, E), q_{new}, \min\{\gamma_{RRG}(\log(\operatorname{card}(V))/\operatorname{card}(V))^{1/d}, \eta\});
              V \leftarrow V \cup \{q_{new}\}; E \leftarrow E \cup \{(q_{nearest}, q_{new}), (q_{new}, q_{nearest})\};
             foreach q_{near} \in Q_{near} do
                    if CollisionFree(q_{near}, q_{new}) then
                     E \leftarrow E \cup \{(q_{rand}, u), (u, q_{rand})\};
return G = (V, E);
```

Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of Random Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose (1999).

RRG Expansions

- At each iteration, RRG tries to connect new sample to the all vertices in the r_n ball centered at it.
- The ball of radius

$$r(\operatorname{card}(V)) = \min\left\{\gamma_{RRG}\left(\frac{\log\left(\operatorname{card}(V)\right)}{\operatorname{card}(V)}\right)^{1/d}, \eta\right\}$$

where

- η is the constant of the local steering function
- $\gamma_{RRG} > \gamma^*_{RRG} = 2(1+1/d)^{1/d} (\mu(\mathcal{C}_{free})/\xi_d)^{1/d}$
 - *d* dimension of the space;
 - $\mu(\mathcal{C}_{free})$ Lebesgue measure of the obstacle–free space;
 - ξ_d volume of the unit ball in *d*-dimensional Euclidean space.
- The connection radius decreases with n
- The rate of decay ≈ the average number of connections attempted is proportional to log(n)

Rapidly-exploring Random Graph (RRG)

RRG Properties

- Probabilistically complete
- Asymptotically optimal
- Complexity is O(log n)

(per one sample)

- Computational efficiency and optimality
 - Attempt connection to $\Theta(\log n)$ nodes at each iteration;

in average

- Reduce volume of the "connection" ball as $\log(n)/n$;
- Increase the number of connections as log(n).

Other Variants of the Optimal Motion Planning

PRM* – it follows standard PRM algorithm where connections are attempted between roadmap vertices that are within connection radius r as a function of n

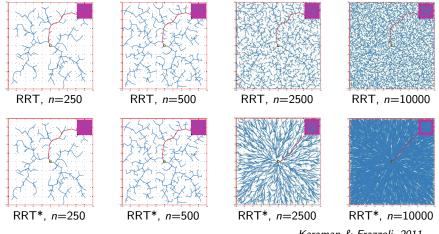
$$r(n) = \gamma_{PRM} (\log(n)/n)^{1/d}$$

RRT* – a modification of the RRG, where cycles are avoided

A tree version of the RRG

- A tree roadmap allows to consider non-holonomic dynamics and kinodynamic constraints.
- It is basically RRG with "rerouting" the tree when a better path is discovered.

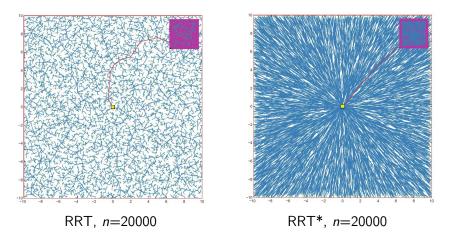
Example of Solution 1/2



Karaman & Frazzoli, 2011

Rapidly-exploring Random Graph (RRG)

Example of Solution 2/2



Jan Faigl, 2017

Overview of Randomized Sampling-based Algorithms

Algorithm	Probabilistic Completeness	Asymptotic Optimality
sPRM	~	×
k-nearest sPRM	×	×
RRT	~	×
RRG	~	~
PRM*	~	~
RRT*	~	✓

Notice, k-nearest variants of RRG, PRM*, and RRT* are complete and optimal as well.

Summary of the Lecture

Jan Faigl, 2017

Topics Discussed

- Optimal sampling-based motion planning
- Rapidly-exploring Random Graph (RRG)
- Next: Robotic information gathering and Data collection planning

Jan Faigl, 2017

Topics Discussed

- Optimal sampling-based motion planning
- Rapidly-exploring Random Graph (RRG)
- Next: Robotic information gathering and Data collection planning

