Randomized Sampling-based Motion **Planning Methods**

Jan Faigl

Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague

Lecture 06

B4M36UIR - Artificial Intelligence in Robotics

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

B4M36UIR - Lecture 06: Sampling-based Motion Planning

lan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

■ Single query sampling-based algorithms incrementally created a

stain q_{start} , q_{goal} and/or other points in \mathcal{C}_{free}

 \blacksquare If au is not a collision-free, go to Step 2

 q_{cur} to q_{new} and insert q_{new} to V if $q_{new} \notin V$

single search tree or graph search

termination condition is satisfied

 q_{new} , τ must be ched to ensure it is collision free

1. Initialization – G(V, E) an undirected search graph, V may con-

2. Vertex selection method – choose a vertex $q_{cur} \in V$ for expansion

3. Local planning method – for some $q_{new} \in \mathcal{C}_{free}$, attempt to con-

4. Insert an edge in the graph – Insert τ into E as an edge from

5. Check for a solution – Determine if G encodes a solution, e.g.,

6. Repeat to Step 2 - iterate unless a solution has been found or a

struct a path $au: [0,1] o \mathcal{C}_{\mathit{free}}$ such that $au(0) = q_{\mathit{cur}}$ and au(1) =

Incremental Sampling and Searching

search graph (roadmap)

Part I

Part 1 – Sampling-based Motion Planning

Sampling-Based Methods Probabilistic Road Man (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Sampling-based Motion Planning

- Avoids explicit representation of the obstacles in C-space
 - A "black-box" function is used to evaluate a configuration q is a collision free, e.g.,
- Based on geometrical models and testing collisions of the models
- In 2D or 3D shape of the robot and environment can be represented as sets of triangles, i.e., tesselated models
- Collision test an intersection of triangles

E.g., using RAPID library http://gamma.cs.unc.edu/OBB/

- It creates a discrete representation of C_{free}
- lacktriangle Configurations in \mathcal{C}_{free} are sampled randomly and connected to a roadmap (probabilistic roadmap)
- Rather than full completeness they provides probabilistic completeness or resolution completeness

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists)

B4M36UIR - Lecture 06: Sampling-based Motion Planning

B4M36UIR - Lecture 06: Sampling-based Motion Planning

LaValle, S. M.: Planning Algorithms (2006), Chapter 5.4

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Probabilistic Roadmap Strategies

Multi-Query - roadmap based

- Generate a single roadmap that is then used for planning queries several times
- An representative technique is Probabilistic RoadMap (PRM) Kavraki, L., Svestka, P., Latombe, J.-C., Overmars, M. H.B (1996): Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces. T-RO.

Single-Query – incremental

- For each planning problem constructs a new roadmap to characterize the subspace of C-space that is relevant to the problem.
 - Rapidly-exploring Random Tree RRT

LaValle, 1998

■ Expansive-Space Tree – EST

Hsu et al., 1997

■ Sampling-based Roadmap of Trees – SRT (combination of multiple-query and single-query approaches)

Plaku et al., 2005

Overview of the Lecture

- Part 1 Randomized Sampling-based Motion Planning Methods
 - Sampling-Based Methods
 - Probabilistic Road Map (PRM)
 - Characteristics
 - Rapidly Exploring Random Tree (RRT)
- Part 2 Optimal Sampling-based Motion Planning Methods
 - Optimal Motion Planners
 - Rapidly-exploring Random Graph (RRG)

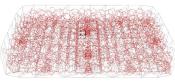
Sampling-Based Methods Probabilistic Road Man (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Probabilistic Roadmaps

A discrete representation of the continuous C-space generated by randomly sampled configurations in C_{free} that are connected into a graph.

- Nodes of the graph represent admissible configuration of the
- Edges represent a feasible path (trajectory) between the particular configurations.

Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists)



Having the graph, the final path (trajectory) is found by a graph search technique.

B4M36UIR - Lecture 06: Sampling-based Motion Planning Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Multi-Query Strategy

Build a roadmap (graph) representing the environment

- 1. Learning phase
 - 1.1 Sample *n* points in C_{free}
 - 1.2 Connect the random configurations using a local planner
- 2. Query phase
 - 2.1 Connect start and goal configurations with the PRM

E.g., using a local planner

2.2 Use the graph search to find the path

Probabilistic Roadmaps for Path Planning in High Dimensional Configuration

Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H.

IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996.

First planner that demonstrates ability to solve general planning problems in more than 4-5 dimensions.

PRM Construction

#1 Given problem domain

#4 Connected roadmap

#2 Random configuration

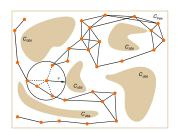
#5 Query configurations

#6 Final found path

#3 Connecting samples

Practical PRM

- Incremental construction
- \blacksquare Connect nodes in a radius ρ
- Local planner tests collisions up to selected resolution δ
- Path can be found by Dijkstra's algorithm



What are the properties of the PRM algorithm?

We need a couple of more formalism.

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

B4M36UIR - Lecture 06: Sampling-based Motion Planning

Path Planning Problem Formulation

Path planning problem is defined by a triplet

 $\mathcal{P} = (\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal}),$

- $\mathcal{C}_{free} = cl(\mathcal{C} \setminus \mathcal{C}_{obs}), \ \mathcal{C} = (0,1)^d, \ \text{for} \ d \in \mathbb{N}, \ d \geq 2$
- $q_{init} \in \mathcal{C}_{free}$ is the initial configuration (condition)
- \mathbf{G}_{goal} is the goal region defined as an open subspace of \mathcal{C}_{free}
- Function $\pi: [0,1] \to \mathbb{R}^d$ of bounded variation is called :
 - **path** if it is continuous:
 - **collision-free path** if it is path and $\pi(\tau) \in \mathcal{C}_{free}$ for $\tau \in [0,1]$;
 - **e feasible** if it is collision-free path, and $\pi(0) = q_{init}$ and $\pi(1) \in cl(\mathcal{Q}_{goal}).$
- A function π with the total variation $TV(\pi) < \infty$ is said to have bounded variation, where $TV(\pi)$ is the total variation $\mathsf{TV}(\pi) = \sup_{\{n \in \mathbb{N}, 0 = \tau_0 < \tau_1 < \dots < \tau_n = s\}} \sum_{i=1}^n |\pi(\tau_i) - \pi(\tau_{i-1})|$

■ The total variation $TV(\pi)$ is de facto a path length.

Sampling-Based Methods Probabilistic Road Man (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Probabilistic Completeness 1/2

First, we need robustly feasible path planning problem $(C_{free}, q_{init}, Q_{goal}).$

 $lacksq q \in \mathcal{C}_{free}$ is δ -interior state of \mathcal{C}_{free} if the closed ball of radius δ centered at alies entirely inside C_{free} .

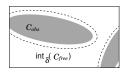
- δ -interior of \mathcal{C}_{free} is $\operatorname{int}_{\delta}(\mathcal{C}_{free}) = \{q \in \mathcal{C}_{free} | \mathcal{B}_{/,\delta} \subseteq \mathcal{C}_{free}\}$.
 - A collection of all δ -interior states.
- A collision free path π has strong δ -clearance, if π lies entirely inside $int_{\delta}(\mathcal{C}_{free})$.
- lacksquare ($\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal}$) is *robustly feasible* if a solution exists and it is a feasible path with strong δ -clearance, for $\delta > 0$.

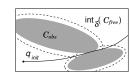
Probabilistic Completeness 2/2

An algorithm \mathcal{ALG} is probabilistically complete if, for any robustly feasible path planning problem $\mathcal{P} = (\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal})$

 $\lim_{n\to 0} \Pr(\mathcal{ALG} \text{ returns a solution to } \mathcal{P}) = 1.$

- It is a "relaxed" notion of completeness
- Applicable only to problems with a robust solution.





We need some space, where random configurations

B4M36UIR - Lecture 06: Sampling-based Motion Planning

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

B4M36UIR - Lecture 06: Sampling-based Motion Planning

B4M36UIR - Lecture 06: Sampling-based Motion Planning

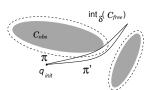
Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT

Asymptotic Optimality 2/4

lacktriangle A collision-free path $\pi:[0,s]
ightarrow \mathcal{C}_{\mathit{free}}$ has weak δ -clearance if there exists a path π' that has strong δ -clearance and homotopy ψ with $\psi(0) = \pi$, $\psi(1) = \pi'$, and for all $\alpha \in (0,1]$ there exists $\delta_{\alpha} > 0$ such that $\psi(\alpha)$ has strong δ -clearance.

> Weak δ -clearance does not require points along a path to be at least a distance δ away from obstacles.



- A path π with a weak δ -clearance
- $\blacksquare \pi'$ lies in $\operatorname{int}_{\delta}(\mathcal{C}_{free})$ and it is the same homotopy class as π

Asymptotic Optimality 3/4

- It is applicable with a robust optimal solution that can be obtained as a limit of robust (non-optimal) solutions.
- A collision-free path π^* is robustly optimal solution if it has weak δ -clearance and for any sequence of collision free paths $\{\pi_n\}_{n\in\mathbb{N}}$, $\pi_n \in \mathcal{C}_{free}$ such that $\lim_{n \to \infty} \pi_n = \pi^*$,

$$\lim_{n\to\infty}c(\pi_n)=c(\pi^*).$$

There exists a path with strong δ -clearance, and π^* is homotopic to such path and π^* is of the lower cost.

• Weak δ -clearance implies robustly feasible solution problem

(thus, probabilistic completeness)

Asymptotic Optimality 4/4

An algorithm ALG is asymptotically optimal if, for any path planning problem $\mathcal{P} = (\mathcal{C}_{\textit{free}}, q_{\textit{init}}, \mathcal{Q}_{\textit{goal}})$ and cost function c that admit a robust optimal solution with the finite cost c^*

$$Pr\left(\left\{\lim_{i\to\infty}Y_i^{\mathcal{ALG}}=c^*
ight\}
ight)=1.$$

 Y_i^{ALG} is the extended random variable corresponding to the minimumcost solution included in the graph returned by ALG at the end of iteration i.

Path Planning Problem

■ Feasible path planning:

For a path planning problem (\mathcal{C}_{free} , q_{init} , \mathcal{Q}_{goal})

- Find a feasible path $\pi:[0,1]\to \mathcal{C}_{free}$ such that $\pi(0)=q_{init}$ and $\pi(1) \in cl(\mathcal{Q}_{goal})$, if such path exists.
- Report failure if no such path exists.
- Optimal path planning:

The optimality problem ask for a feasible path with the minimum cost.

For $(C_{free}, q_{init}, \mathcal{Q}_{goal})$ and a cost function $c: \Sigma \to \mathbb{R}_{\geq 0}$

- Find a feasible path π^* such that
- $c(\pi^*) = \min\{c(\pi) : \pi \text{ is feasible}\}.$ Report failure if no such path exists.
 - The cost function is assumed to be monotonic and bounded, i.e., there exists k_c such that $c(\pi) \leq k_c \text{TV}(\pi)$.

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Asymptotic Optimality 1/4

Asymptotic optimality relies on a notion of weak δ -clearance Notice, we use strong δ -clearance for probabilistic completeness

- Function $\psi:[0,1]\to \mathcal{C}_{free}$ is called **homotopy**, if $\psi(0)=\pi_1$ and $\psi(1)=\pi_1$ π_2 and $\psi(\tau)$ is collision-free path for all $\tau \in [0,1]$.
- A collision-free path π_1 is **homotopic** to π_2 if there exists homotopy function ψ .

A path homotopic to π can be continuously transformed to π through C_{free} .

Properties of the PRM Algorithm

- Completeness for the standard PRM has not been provided when it was introduced
- A simplified version of the PRM (called sPRM) has been mostly studied
- sPRM is probabilistically complete

What are the differences between PRM and sPRM?

PRM vs simplified PRM (sPRM)

PRM

Vstup: q_{init} , number of samples n, radius ρ Výstup: PRM – G = (V, E) $V \leftarrow \emptyset; E \leftarrow \emptyset;$ for $i = 0, \ldots, n$ do $q_{rand} \leftarrow SampleFree;$ $U \leftarrow \text{Near}(G = (V, E), q_{rand}, \rho);$ $V \leftarrow V \cup \{q_{rand}\};$ foreach $u \in U$, with increasing $||u-q_r||$ do $\overrightarrow{\text{if}}\ \overrightarrow{q_{\text{rand}}}\ \text{and}\ u\ \text{are not in the}$ same connected component of G = (V, E) then if CollisionFree(arand, u) then $F \leftarrow F \sqcup$ $\{(q_{rand}, u), (u, q_{rand})\};$

sPRM Algorithm

Vstup: q_{init}, number of samples n radius ρ Výstup: PRM – G = (V, E) $V \leftarrow \{q_{init}\} \cup$ $\{SampleFree_i\}_{i=1,...,n-1}; E \leftarrow \emptyset;$ foreach $v \in V$ do $U \leftarrow \text{Near}(G = (V, E), v, \rho) \setminus \{v\};$ foreach $u \in U$ do if CollisionFree(v, u) then $E \leftarrow E \cup \{(v, u), (u, v)\};$

neturn are selverativays for the set U of vertices to connect them

- k-nearest neighbors to v
- variable connection radius ρ as a function of n

PRM - Properties

- sPRM (simplified PRM)
 - Probabilistically complete and asymptotically optimal
 - Processing complexity $O(n^2)$
 - Query complexity O(n²)
 - Space complexity $O(n^2)$
- Heuristics practically used are usually not probabilistic complete
 - k-nearest sPRM is not probabilistically complete
 - variable radius sPRM is not probabilistically complete Based on analysis of Karaman and Frazzoli

PRM algorithm:

Has very simple implementation

Rapidly Exploring Random Tree (RRT)

+ Completeness (for sPRM)

Single-Query algorithm

constructed graph (tree)

4. Extend q_{near} towards q_{new}

goal configuration

Differential constraints (car-like vehicles) are not straightforward

■ It incrementally builds a graph (tree) towards the goal area.

1. Start with the initial configuration q_0 , which is a root of the

2. Generate a new random configuration q_{new} in C_{free}

3. Find the closest node q_{near} to q_{new} in the tree

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

B4M36UIR - Lecture 06: Sampling-based Motion Planning

B4M36UIR - Lecture 06: Sampling-based Motion Planning Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

It does not guarantee precise path to the goal configuration.

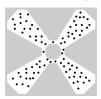
E.g., using KD-tree implementation like ANN or FLANN libraries

Extend the tree by a small step, but often a direct control $u \in \mathcal{U}$ that will move robot the position closest to q_{new} is

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Comments about Random Sampling 1/2

■ Different sampling strategies (distributions) may be applied



- Notice, one of the main issue of the randomized sampling-based approaches is the narrow passage
- Several modifications of sampling based strategies have been proposed in the last decades

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Comments about Random Sampling 2/2

A solution can be found using only a few samples.

Do you know the Oraculum? (from Alice in Wonderland)

- Sampling strategies are important
 - Near obstacles
 - Narrow passages
 - Grid-based

return G = (V, E);

Uniform sampling must be carefully considered.

James J. Kuffner, Effective Sampling and Distance Metrics for 3D Rigid Body Path Planning, ICRA, 2004.

B4M36UIR - Lecture 06: Sampling-based Motion Planning

Naïve sampling

Uniform sampling of SO(3) using Euler angles

selected (applied for δt).

5. Go to Step 2, until the tree is within a sufficient distance from the

Or terminates after dedicated running time

B4M36UIR - Lecture 06: Sampling-based Motion Planning Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

B4M36UIR - Lecture 06: Sampling-based Motion Planning

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Algorithm 1: Rapidly Exploring Random Tree (RRT)

Vstup: q_{init}, number of samples n **Výstup**: Roadmap G = (V, E) $V \leftarrow \{q_{init}\}; E \leftarrow \emptyset;$ $q_{rand} \leftarrow SampleFree;$ $q_{nearest} \leftarrow \text{Nearest}(G = (V, E), q_{rand});$ $q_{new} \leftarrow \text{Steer}(q_{nearest}, q_{rand});$ if CollisionFree(qnearest, qnew) then $V \leftarrow V \cup \{x_{new}\}; E \leftarrow E \cup \{(x_{nearest}, x_{new})\};$

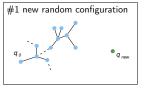
> Extend the tree by a small step, but often a direct control $u \in \mathcal{U}$ that will move robot to the position closest to q_{new} is selected (applied for dt).

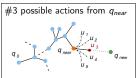
> > B4M36UIR - Lecture 06: Sampling-based Motion Planning

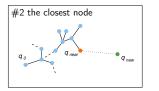
Rapidly-exploring random trees: A new tool for path planning S. M. LaValle,

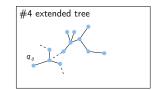
Technical Report 98-11, Computer Science Dept., Iowa State University, 1998

RRT Construction









RRT Algorithm

- Motivation is a single query and *control-based* path finding
- It incrementally builds a graph (tree) towards the goal area.

```
return G = (V, E);
```

B4M36UIR - Lecture 06: Sampling-based Motion Planning

Rapidly explores the space

Properties of RRT Algorithms

q_{new} will more likely be generated in large not yet covered parts.

- Allows considering kinodynamic/dynamic constraints (during the
- Can provide trajectory or a sequence of direct control commands for robot controllers.
- A collision detection test is usually used as a "black-box".

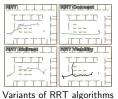
E.g., RAPID, Bullet libraries.

- Similarly to PRM, RRT algorithms have poor performance in narrow passage problems.
- RRT algorithms provides feasible paths. It can be relatively far from optimal solution, e.g., according to the length of the path.
- Many variants of RRT have been proposed.

Alpha puzzle benchmark

Bugtrap benchmark

Apply rotations to reach the goal



Courtesy of V. Vonásek and P. Vaněk

RRT – Examples 2/2

■ Planning for a car-like robot

■ Planning on a 3D surface

■ Planning with dynamics

(friction forces)

Courtesy of V. Vonásek and P. Vaněk

Kinematic constraints $\dim(\overrightarrow{u}) < \dim(\overrightarrow{x})$ Differential constraints on possible q:

Despite that, they are successfully used in many prac-

It shows, that in some case, they converges to a noon-optimal value with a probability 1.

$$\dot{x}\sin(\phi) - \dot{y}\cos(\phi) = 0$$

Part II

Part 2 – Optimal Sampling-based Motion

Planning Methods

optimal RRT (RRT*)

System equation

Car-Like Robot

Configuration

Controls

position and orientation

forward velocity, steering angle

Efficient Sampling-Based Motion Planning ■ PRM and RRT are theoretically probabilistic complete ■ They provide a feasible solution without quality guarantee

tical applications ■ In 2011, a study of the asymptotic behaviour has been published

Based on the study, new algorithms have been proposed: RRG and

International Journal of Robotic Research, 30(7):846-894, 2011

Sampling-based algorithms for optimal motion planning

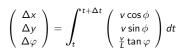
Sertac Karaman, Emilio Frazzoli

B4M36UIR - Lecture 06: Sampling-based Motion Planning

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Control-Based Sampling

- Select a configuration q from the tree T of the current configurations
- Pick a control input $\overrightarrow{\boldsymbol{u}} = (v, \varphi)$ and integrate system (motion) equation over a short period



■ If the motion is collision-free, add the endpoint to the tree

E.g., considering k configurations for $k\delta t = dt$.

B4M36UIR - Lecture 06: Sampling-based Motion Planning

Jan Faigl, 2017

Optimal Motion Planners

B4M36UIR - Lecture 06: Sampling-based Motion Planning

RRT and Quality of Solution

- RRT provides a feasible solution without quality guarantee Despite of that, it is successfully used in many practical applications
- In 2011, a systematical study of the asymptotic behaviour of randomized sampling-based planners has been published

It shows, that in some cases, they converge to a nonoptimal value with a probability 1.

Sampling-based algorithms for optimal motion planning Sertac Karaman, Emilio Frazzoli International Journal of Robotic Research, 30(7):846-894, 2011.

http://sertac.scripts.mit.edu/rrtstar

RRT and Quality of Solution 1/2

- Let Y_i^{RRT} be the cost of the best path in the RRT at the end of iteration i.
- Y_i^{RRT} converges to a random variable

$$\lim_{i\to\infty}Y_i^{RRT}=Y_{\infty}^{RRT}.$$

■ The random variable Y_{∞}^{RRT} is sampled from a distribution with zero mass at the optimum, and

$$Pr[Y_{\infty}^{RRT} > c^*] = 1.$$

Karaman and Frazzoli, 2011

■ The best path in the RRT converges to a sub-optimal solution almost surely.

RRT and Quality of Solution 2/2

- RRT does not satify a necessary condition for the asymptotic opti-
 - For $0 < R < \inf_{q \in \mathcal{Q}_{\text{goal}}} ||q q_{init}||$, the event $\{\lim_{n \to \infty} Y_n^{RTT} = c^*\}$ occurs only if the k-th branch of the RRT contains vertices outside the R-ball centered at q_{init} for infinitely many k.

See Appendix B in Karaman&Frazzoli, 2011

It is required the root node will have infinitely many subtrees that extend at least a distance ϵ away from q_{init}

The sub-optimality is caused by disallowing new better paths

B4M36UIR - Lecture 06: Sampling-based Motion Planning

 $\blacksquare \eta$ is the constant of the local steering function

 $\gamma_{RRG} > \gamma_{RRG}^* = 2(1+1/d)^{1/d} (\mu(\mathcal{C}_{free})/\xi_d)^{1/d}$

 \blacksquare The rate of decay \approx the average number of connections

d – dimension of the space;

 \blacksquare The connection radius decreases with n

attempted is proportional to log(n)

vertices in the r_n ball centered at it.

At each iteration, RRG tries to connect new sample to the all

 $r(\mathsf{card}(V)) = \min \left\{ \gamma_{RRG} \left(\frac{\log \left(\mathsf{card}(V) \right)}{\mathsf{card}(V)} \right)^{1/d}, \eta \right\}$

- $\mu(C_{free})$ - Lebesgue measure of the obstacle-free space;

- ξ_d - volume of the unit ball in d-dimensional Euclidean space.

Rapidly-exploring Random Graph (RRG)

RRG Algorithm

```
Vstup: q<sub>init</sub>, number of samples n
Výstup: G = (V, E)
V \leftarrow \emptyset: E \leftarrow \emptyset:
for i = 0, \ldots, n do
      q_{rand} \leftarrow SampleFree;
      q_{nearest} \leftarrow \text{Nearest}(G = (V, E), q_{rand});
       q_{new} \leftarrow \text{Steer}(q_{nearest}, q_{rand});
      if CollisionFree(q_{nearest}, q_{new}) then Q_{near} \leftarrow \text{Near}(G =
             (V, E), q_{new}, min\{\gamma_{RRG}(\log(\operatorname{card}(V))/\operatorname{card}(V))^{1/d}, \eta\});
             V \leftarrow V \cup \{q_{new}\}; E \leftarrow E \cup \{(q_{nearest}, q_{new}), (q_{new}, q_{nearest})\};
             foreach q_{near} \in \mathcal{Q}_{near} do | if CollisionFree(q_{near}, q_{new}) then
                     return G = (V, E);
      Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of
                         tric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose
```

■ PRM* – it follows standard PRM algorithm where connections are attempted between roadmap vertices that are within connection

 $r(n) = \gamma_{PRM} (\log(n)/n)^{1/d}$

A tree roadmap allows to consider non-holonomic dynamics and

■ It is basically RRG with "rerouting" the tree when a better path is

■ RRT* – a modification of the RRG, where cycles are avoided

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

43 / 51

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

44 / 51

Rapidly-exploring Random Graph (RRG)

Rapidly-exploring Random Graph (RRG)

radius r as a function of n

Other Variants of the Optimal Motion Planning

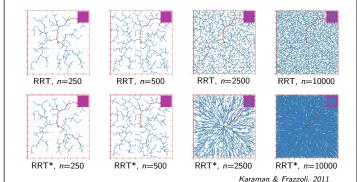
Rapidly-exploring Random Graph (RRG)

Example of Solution 1/2

RRG Expansions

where

■ The ball of radius



Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

kinodynamic constraints.

46 / 51 Jan Faigl, 2017 B4M36UIR - Lecture 06: Sampling-based Motion Planning

Rapidly-exploring Random Graph (RRG)

A tree version of the RRG

Overview of Randomized Sampling-based Algorithms

Algorithm	Probabilistic Completeness	
sPRM	V	×
k-nearest sPRM	×	×
RRT	✓	×
RRG	✓	~
PRM*	✓	~
RRT*	✓	~

Notice, k-nearest variants of RRG, PRM*, and RRT* are complete and optimal as well.

Summary of the Lecture

- Randomized Sampling-based Methods
- Probabilistic Road Map (PRM)
- Characteristics of path planning problems
- Random sampling

Topics Discussed

- Rapidly Exploring Random Tree (RRT)
- Optimal sampling-based motion planning
- Rapidly-exploring Random Graph (RRG)
- Next: Multi-Goal Motion Planning and Multi-Goal Path Planning

RRG Properties

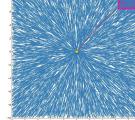
- Probabilistically complete
- Asymptotically optimal
- Complexity is $O(\log n)$

(per one sample)

- Computational efficiency and optimality
 - Attempt connection to $\Theta(\log n)$ nodes at each iteration;
 - in average
 - Reduce volume of the "connection" ball as log(n)/n;
 - Increase the number of connections as log(n).

Jan Faigl, 2017 B4M36UIR - Lecture 06: Sampling-based Motion Planning

Example of Solution 2/2



RRT, n=20000

RRT*, n=20000