		Optimal Motion Planners Rapidly-exploring Random Graph (RRG)	
	Overview of the Lecture		
Improved Sampling-based Motion Planning Methods	Part 1 – Improved Sampling-based Motion Planning Methods	Part I	
Jan Faigl	Optimal Motion Planners	Part 1 – Improved Sampling-based Motion	
Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague	 Rapidly-exploring Random Graph (RRG) 	Planning Methods	
Lecture 06			
B4M36UIR – Artificial Intelligence in Robotics			
Jan Faigl, 2017 B4M36UIR – Lecture 06: Improved Sampling-based Methods 1 / 18 Optimal Motion Planners Rapidly-exploring Random Graph (RRG)	Jan Faigl, 2017 B4M36UIR – Lecture 06: Improved Sampling-based Methods 2 / 18 Optimal Motion Planners Rapidly-exploring Random Graph (RRG)	Jan Faigl, 2017 B4M36UIR - Lecture 06: Improved Sampling-based Methods 3 / 18 Optimal Motion Planners Rapidly-exploring Random Graph (RRG)	
Efficient Sampling-Based Motion Planning PRM and RRT are theoretically probabilistic complete	RRT and Quality of Solution	RRT and Quality of Solution 1/2	
 They provide a feasible solution without quality guarantee Despite that, they are successfully used in many prac- tical applications In 2011, a study of the supercisic head window has been published 	 RRT provides a feasible solution without quality guarantee Despite of that, it is successfully used in many prac- tical applications 	Let Y ^{RRT} be the cost of the best path in the RRT at the end of iteration <i>i</i> .	
 Based on the study, new algorithms have been proposed: RRG and 	In 2011, a systematical study of the asymptotic behaviour of ran- domized sampling-based planners has been published It shows, that in some cases, they converge to a non-	• Y_i^{RRT} converges to a random variable	
optimal RRT (RRT ^{star}) Sampling-based algorithms for optimal motion planning	optimal value with a probability 1. Sampling-based algorithms for optimal motion planning	$\lim_{i \to \infty} Y_i^{RRT} = Y_{\infty}^{RRT}.$ The random variable Y_i^{RRT} is sampled from a distribution with zero	
Sertac Karaman, Emilio Frazzoli International Journal of Robotic Research, 30(7):846–894, 2011.	International Journal of Robotic Research, 30(7):846–894, 2011.	mass at the optimum, and	
		$Pr[Y_{\infty}^{RRT} > c^*] = 1.$	
		The best path in the RRT converges to a sub-optimal solution al- most surely.	
Jan Faigl, 20 Ja	http://sertac.scripts.mit.edu/rrtstar Jan Faigl, 2017 B4M36UIR - Lecture 06: Improved Sampling-based Methods 6 / 18	Jan Faigl, 2017 B4M36UIR – Lecture 06: Improved Sampling-based Methods 7 / 18	
Optimal Motion Planners Rapidly-exploring Random Graph (RRG)	Optimal Motion Planners Rapidly-exploring Random Graph (RRG)	Optimal Motion Planners Rapidly-exploring Random Graph (RRG)	
RRT and Quality of Solution 2/2	Rapidly-exploring Random Graph (RRG)	RRG Expansions	
	Vstup: q_{init} , number of samples n Vietup: $C = (V, E)$	At each iteration, RRG tries to connect new sample to the all vertices in the r _n ball centered at it.	
RRT does not satify a necessary condition for the asymptotic opti- mality	$V \leftarrow \emptyset; E \leftarrow \emptyset;$ for $i = 0,, n$ do	The ball of radius $r(\operatorname{card}(V)) = \min \begin{cases} \log(\operatorname{card}(V)) \end{cases}^{1/d} \\ \eta \end{cases}$	
For $0 < R < \inf_{q \in Q_{goal}} q - q_{init} $, the event $\{\lim_{n \to \infty} Y_n^{RT} = c^*\}$ occurs only if the <i>k</i> -th branch of the RRT contains vertices outside the <i>R</i> -ball centered at q_{init} for infinitely many <i>k</i> .	q_{rand} (sample fee, $q_{nearest} \leftarrow \text{Nearest}(G = (V, E), q_{rand});$ $q_{new} \leftarrow \text{Steer}(q_{nearest}, q_{rand});$ if CollisionFree($q_{averent}, q_{averent}, q_{averent}$) then	where $\langle \operatorname{card}(V) \rangle = \operatorname{min} \left\{ \langle \operatorname{card}(V) \rangle \rangle , \langle \gamma \rangle \right\}$	
See Appendix B in Karaman&Frazzoli, 2011 It is required the root node will have infinitely many subtrees that	$\begin{cases} Q_{near} \leftarrow \operatorname{Near}(G = (V, E), q_{new}, \min\{\gamma_{RRG}(\log(\operatorname{card}(V))/\operatorname{card}(V))^{1/d}, \eta\}); \\ V \leftarrow V \cup \{q_{new}\}; E \leftarrow E \cup \{(a_{nearest}, a_{new}), (a_{new}, a_{nearest})\}; \end{cases}$	<pre> η is the constant of the local steering function $\gamma_{RRG} > \gamma^*_{RRG} = 2(1+1/d)^{1/d} (\mu(\mathcal{C}_{free})/\xi_d)^{1/d}$ $- d$ - dimension of the space: </pre>	
extend at least a distance ϵ away from q_{init} The sub-optimality is caused by disallowing new better paths to be discovered.	foreach $q_{near} \in \hat{Q}_{near}$ do if CollisionFree (q_{near}, q_{new}) then $E \leftarrow E \cup \{(q_{rand}, u), (u, q_{rand})\};$	- $\mu(C_{free})$ - Lebesgue measure of the obstacle-free space; - ξ_d - volume of the unit ball in <i>d</i> -dimensional Euclidean space.	
		The rate of decay \approx the average number of connections	
	Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of Random Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose (1999).	attempted is proportional to log(<i>n</i>)	

Jan Faigl, 2017

B4M36UIR – Lecture 06: Improved Sampling-based Methods

8 / 18 Jan Faigl, 2017 B4M36UIR – Lecture 06:

B4M36UIR - Lecture 06: Improved Sampling-based Methods 10 / 18 Jan Faigl, 2017

B4M36UIR - Lecture 06: Improved Sampling-based Methods 11 / 18

Optimal Motion Planners Rapidly-exploring Random Graph (RRG)	Optimal Motion Planners Rapidly-exploring Random Graph (RRG)	Optimal Motion Planners	Rapidly-exploring Random Graph (RRG)
RRG Properties	Other Variants of the Optimal Motion Planning	Example of Solution 1/2	
 Probabilistically complete Asymptotically optimal Complexity is O(log n) 	 PRM* – it follows standard PRM algorithm where connections are attempted between roadmap vertices that are within connection radius <i>r</i> as a function of <i>n</i> r(n) = γ_{PRM}(log(n)/n)^{1/d} 	RT, n=250 RRT, n=500	RRT, n=2500 RRT, n=10000
Computational efficiency and optimality	= DDT* a modification of the DDC where cycles are avoided		STATISTICS
 Attempt connection to Θ(log n) nodes at each iteration; in average Reduce volume of the "connection" ball as log(n)/n; Increase the number of connections as log(n). 	 RRT* - a modification of the RRG, where cycles are avoided <i>A tree version of the RRG</i> A tree roadmap allows to consider non-holonomic dynamics and kinodynamic constraints. It is basically RRG with "rerouting" the tree when a better path is discovered. 	RRT*, n=250 RRT*, n=500	RRT*, n=2500 RRT*, n=10000 Karaman & Frazzoli, 2011
Jan Faigl, 2017 B4M36UIR – Lecture 06: Improved Sampling-based Methods 12 / 18 Optimal Motion Planners Rapidly-exploring Random Graph (RRG)	Jan Faigl, 2017 B4M36UIR - Lecture 06: Improved Sampling-based Methods 13 / 18 Optimal Motion Planners Rapidly-exploring Random Graph (RRG)	Jan Faigl, 2017 B4M36UIR – Lec Topics Discussed	cture 06: Improved Sampling-based Methods 14 / 18
Example of Solution 2/2 $ \int_{RT, n=20000} \int_$	Algorithm Probabilistic Completeness Asymptotic Optimality sPRM ✓ × k-nearest sPRM × × RRT ✓ × RRG ✓ ✓ PRM* ✓ ✓ Notice, k-nearest variants of RRG, PRM*, and RRT* are complete and optimal as well. Notice is benefitive bound to be an optimal is a first part of the bound to be an optimal is a first part of the bound to be an optimal is a first part of the bound to be an optimal as well.	Summary of	f the Lecture
Jan Faigl, 2017 B4M36UIR - Lecture 06: Improved Sampling-based Methods 15 / 18 Topics Discussed Topics Discussed Improved Sampling-based Methods 15 / 18 Optimal sampling-based motion planning Rapidly-exploring Random Graph (RRG) Next: Robotic information gathering and Data collection planning Next: Robotic information gathering and Data collection planning Improved Sampling-based Methods 	Jan Faigl, 2017 B4M36UIR – Lecture 06: Improved Sampling-based Methods 16 / 18	Jan Faigl, 2017 B4M36UIR – Lec	ture 06: Improved Sampling-based Methods 17 / 18
Jan Faigl, 2017 B4M36UJR - Lecture 06: Improved Sampling-based Methods 18 / 18			