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Overview of the Lecture

m Part 1 — Improved Sampling-based Motion Planning Methods

= Optimal Motion Planners

= Rapidly-exploring Random Graph (RRG)
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)
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Part 1 — Improved Sampling-based Motion
Planning Methods
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Efficient Sampling—Based Motion Planning

m PRM and RRT are theoretically probabilistic complete
m They provide a feasible solution without quality guarantee

tical applications
m In 2011, a study of the asymptotic behaviour has been published

noon-optimal value with a probability 1.
m Based on the study, new algorithms have been proposed: RRG and
optimal RRT (RRT**")

@ Sampling-based algorithms for optimal motion planning
Sertac Karaman, Emilio Frazzoli
International Journal of Robotic Research, 30(7):846-894, 2011.
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Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)

Despite that, they are successfully used in many prac-

It shows, that in some case, they converges to a
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Optimal Motion Planners

RRT and Quality of Solution

Rapidly-exploring Random Graph (RRG)

m RRT provides a feasible solution without quality guarantee
Despite of that, it is successfully used in many prac-
tical applications

m In 2011, a systematical study of the asymptotic behaviour of ran-
domized sampling-based planners has been published
It shows, that in some cases, they converge to a non-

optimal value with a probability 1.

@ Sampling-based algorithms for optimal motion planning
Sertac Karaman, Emilio Frazzoli
International Journal of Robotic Research, 30(7):846-894, 2011.

http://sertac.scripts.mit.edu/rrtstar
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RRT and Quality of Solution 1/2

Rapidly-exploring Random Graph (RRG)

m Let Y,-RRT be the cost of the best path in the RRT at the end of
iteration .

m YFRT converges to a random variable

lim
i—o00

RRT
Yoo

RRT _ \vRRT
YRRT — yRRT

m The random variable
mass at the optimum, and

is sampled from a distribution with zero

PriYERT > ] = 1.

Karaman and Frazzoli, 2011

m The best path in the RRT converges to a sub-optimal solution al-
most surely.

Rapidly-exploring Random Graph

RRT and Quality of Solution 2/2

m RRT does not satify a necessary condition for the asymptotic opti-
mality

m For 0 < R <infeeq,., |lg — Ginit||, the event {lim,_,oc YT = c*}
occurs only if the k-th branch of the RRT contains vertices outside
the R-ball centered at gy for infinitely many k.

See Appendix B in Karaman&Frazzoli, 2011

m It is required the root node will have infinitely many subtrees that
extend at least a distance e away from gj,;

The sub-optimality is caused by disallowing new better paths
to be discovered.
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(RRG) Optimal Motion Planners Rapidly-exploring Random Graph (RRG) Optimal Motion Planners Rapidly-exploring Random Graph (RRG)
Rapidly-exploring Random Graph (RRG) RRG Expansions
RRG Algorithm . . .
g m At each iteration, RRG tries to connect new sample to the all
Vstup: ginie, number of samples n vertices in the r, ball centered at it.
Vystup: G = (V,E .
yStup (V. E) m The ball of radius
V0, E «0; 1/d
for i=0,...,ndo . log (card(V
Grand  SampleFree; r(card(V)) = min < vrre (M N
Gnearest < Nearest(G = (V, E), Grand); card(V)
Gnew <— Steer(Gnearest, Grand); where
if CollisionFree rest, Gnew ) then A . .
Orear Nggﬁf‘}f“:q”e ) m 1) is the constant of the local steering function
_ 1/d 1/d
(V, E), Gnew, min{yrre(log(card(V))/ card(V))*/, n}); B YRRG > Vrre = 2(1+1/d) / (1(Chree) /€a) /
V <~ VU {qnew}; E < E U {(Gnearest, Gnew ) (Gnew, Gnearest) }; - d - dimension of the space;
forea_;:lzzqﬁga,' EFQm(r do th - 11(Cree) — Lebesgue measure of the obstacle—free space;
1t Lollisionreelnear, dnew ) then - — volume of the unit ball in d-dimensional Euclidean space.
L [ E < EU{(qrand u), 211, Grand) } N . . : ’
m The connection radius decreases with n
return G = (V, E); m The rate of decay ~ the average number of connections
Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of attempted is proportional to |og(n)
Random Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose
(1999).
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Optimal Motion Planners

RRG Properties

Rapidly-exploring Random Graph (RRG)

m Probabilistically complete
m Asymptotically optimal
m Complexity is O(log n)
(per one sample)
m Computational efficiency and optimality

m Attempt connection to ©(log n) nodes at each iteration;
in average
® Reduce volume of the “connection” ball as log(n)/n;
® Increase the number of connections as log(n).

Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Other Variants of the Optimal Motion Planning

m PRM* — it follows standard PRM algorithm where connections are
attempted between roadmap vertices that are within connection
radius r as a function of n

r(n) = yprum(log(n)/n)*/

m RRT* - a modification of the RRG, where cycles are avoided
A tree version of the RRG

m A tree roadmap allows to consider non-holonomic dynamics and
kinodynamic constraints.

m It is basically RRG with “rerouting” the tree when a better path is
discovered.

Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Example of Solution 1/2
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RRT, n=250
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RRT*, n=250
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RRT*, n=2500 RRT*, n=10000
Karaman & Frazzoli, 2011

RRT*, n=500
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG) Optimal Motion Planners Rapidly-exploring Random Graph (RRG) Topics Discussed
Example of Solution 2/2 Overview of Randomized Sampling-based Algorithms
. Probabilistic  Asymptotic
Algorithm Y . P .
Completeness Optimality
sPRM v x Summary of the Lecture
k-nearest sPRM X X
RRT v X
RRG v v
PRM* v v
S raalii e RRT* v v
RRT, n=2 RRT*, n=2
' n 0000 o 0000 Notice, k-nearest variants of RRG, PRM*, and RRT* are complete
and optimal as well.
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Topics Discussed

Topics Discussed

m Optimal sampling-based motion planning
m Rapidly-exploring Random Graph (RRG)

m Next: Robotic information gathering and Data collection planning
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