Improved Sampling-based Motion Planning Methods

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

■ Part 1 - Improved Sampling-based Motion Planning Methods

Optimal Motion Planners

- Rapidly-exploring Random Graph (RRG)

Lecture 06

B4M36UIR - Artificial Intelligence in Robotics

Part I

Part 1 - Improved Sampling-based Motion Planning Methods

Jan Faigl, 2017	B4M36UIR - Lecture 06: Improved Sampling-based Methods	1/18	Jan Faigl, 2017	B4M36UIR - Lecture 06: Improved Sampling-based Methods	2/18	Jan Faigl, 2017	B4M36UIR - Lecture 06: Improved Sampling-based Methods	8
Optimal Motion Planners	Rapidly-exploring Random	(RRG)	Optimal Motion Planners	Rapilly-exploring Random	(RRG)	Optimal Motion Planners	Rapidly-exploring Random	(RRG)

Efficient Sampling-Based Motion Planning

- PRM and RRT are theoretically probabilistic complete
- They provide a feasible solution without quality guarantee

Despite that, they are successfully used in many pracDespite that, hey

- In 2011, a study of the asymptotic behaviour has been published

It shows, that in some case, they converges to a

- Based on the study, new algorithms have been proposed: RRG and optimal RRT (RRT ${ }^{\text {star }}$)

RRT and Quality of Solution

- RRT provides a feasible solution without quality guarantee Despite of that, it is successfully used in many prac-
- In 2011, a systematical study of the asymptotic behaviour of randomized sampling-based planners has been published
la shows, that in some cases, they cal
optimal value with a probability 1 .
目 Sampling-based algorithms for optimal motion planning Sertac Karaman, Emilio Frazzoli ptic Research, 30(7):846-894, 2011

Sampling-based algorithms for optimal motion planning Sertac Karaman, Emilio Frazzoli
International Journal of Robotic Research, 30(7):846-894, 2011.

RRT and Quality of Solution 1/2

- Let $Y_{i}^{R R T}$ be the cost of the best path in the RRT at the end of iteration i.
- $Y_{i}^{R R T}$ converges to a random variable

$$
\lim _{i \rightarrow \infty} Y_{i}^{R R T}=Y_{\infty}^{R R T}
$$

- The random variable $Y_{\infty}^{R R T}$ is sampled from a distribution with zero mass at the optimum, and

$$
\operatorname{Pr}\left[Y_{\infty}^{R R T}>c^{*}\right]=1 .
$$

Karaman and Frazzoli, 2011

- The best path in the RRT converges to a sub-optimal solution almost surely.

http://sertac.scripts.mit.edu/rrtstar

RRT and Quality of Solution 2/2

- RRT does not satify a necessary condition for the asymptotic optimality
- For $0<R<\inf _{q \in \mathcal{Q}_{\text {goal }}}\left\|q-q_{\text {initit }}\right\|$, the event $\left\{\lim _{n \rightarrow \infty} Y_{n}^{R T T}=c^{*}\right\}$ For $0<R<\inf _{q \in \mathcal{Q}_{\text {goal }}}\left\|q-q_{\text {init }}\right\|$, the event $\left\{\lim _{n \rightarrow \infty} Y_{n}^{R N T}=c^{*}\right\}$ the R-ball centered at $q_{\text {init }}$ for infinitely many k

$$
\text { See Appendix B in Karaman\&Frazzoli, } 2011
$$

- It is required the root node will have infinitely many subtrees that extend at least a distance ϵ away from $q_{\text {init }}$

The sub-optimality is caused by disallowing new better paths to be discovered.

Rapidly-exploring Random Graph (RRG)
RRG Algorithm

Vstup: $q_{\text {init }}$, number of samples n

Výstup: $G=(V, E)$
$V \leftarrow \emptyset ; E \leftarrow \emptyset ;$
for $i=0, \ldots, n$

for $i=0, \ldots, n$ do $q_{\text {rand }} \leftarrow$ SampleFre

$q_{\text {nearest }} \leftarrow \operatorname{Nearest}\left(G=(V, E), q_{\text {rand }}\right)$
$q_{\text {new }} \leftarrow$ Steer $\left(q_{\text {nearest }}, q_{\text {rand }}\right)$;
if CollisionFree (qaearest $\left.^{\text {an }}, q_{\text {new }}\right)$ then
$\mathcal{Q}_{\text {near }} \leftarrow \operatorname{Near}(G=$
$\left.(V, E), q_{\text {new }}, \min \left\{\gamma_{R R G}(\log (\operatorname{card}(V)) / \operatorname{card}(V))^{1 / d}, \eta\right\}\right)$
$V \leftarrow V \cup\left\{q_{\text {new }}\right\} ; E \leftarrow E \cup\left\{\left(q_{\text {nearest }}, q_{\text {new }}\right),\left(q_{\text {new }}, q_{\text {nearest }}\right)\right\} ;$

if CollisionFree $\left(q_{\text {noer }}, q_{\text {nee }}\right)$ then
$\quad E \leftarrow E \cup\left\{\left(q_{\text {rand }}, u\right),\left(u, q_{\text {ne }}\right)\right\}$
$-E \leftarrow E \cup\left\{\left(q_{\text {rand }}, u\right),\left(u, q_{\text {rand }}\right)\right\} ;$
return $G=(V, E)$;
Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of
Random Geometric Graphs (RGG) introduced by Gilbert (19611) and fuuther studied by Penrose
(1090)

RRG Expansions

- At each iteration, RRG tries to connect new sample to the all vertices in the r_{n} ball centered at it.
- The ball of radius

$$
r(\operatorname{card}(V))=\min \left\{\gamma_{R R G}\left(\frac{\log (\operatorname{card}(V))}{\operatorname{card}(V)}\right)^{1 / d}, \eta\right\}
$$

where

- η is the constant of the local steering function
- $\gamma_{R R G}>\gamma_{R R G}^{*}=2(1+1 / d)^{1 / d}\left(\mu\left(\mathcal{C}_{\text {free }}\right) / \xi_{d}\right)^{1 / d}$
d - dimension of the space;
d - dimension of the space;
$\mu\left(\mathcal{C}_{\text {free }}\right)$ - Lebesgue measure of the obstacle-free space;
ξ_{d}-volume of the unit ball in d-dimensional Euclidean space
- The connection radius decreases with n
- The rate of decay \approx the average number of connections attempted is proportional to $\log (n)$

RRG Properties

- Probabilistically complete
- Asymptotically optimal

Complexity is $O(\log n)$
Computational efficiency and optimality

- Attempt connection to $\Theta(\log n)$ nodes at each iteration;
(per one sample)
- Reduce volume of the "connection" ball as $\log (n) / n$;
- Increase the number of connections as $\log (n)$.

RRT, $n=20000$

RRT*, $n=20000$

A tree version of the R

- A tree roadmap allows to consider non-holonomic dynamics and kinodynamic constraints.
- It is basically RRG with "rerouting" the tree when a better path is discovered.
- PRM* - it follows standard PRM algorithm where connections are attempted between roadmap vertices that are within connection radius r as a function of n

$$
r(n)=\gamma_{P R M}(\log (n) / n)^{1 / d}
$$

- RRT* - a modification of the RRG, where cycles are avoided

Other Variants of the Optimal Motion Planning

Example of Solution 1/2

RRT, $n=250$

RRT* ${ }^{*} n=250$

RRT, $n=500$

RRT*, $n=500$

RRT, $n=2500$

RRT* $^{*}, n=2500$

RRT, $n=10000$

RRT*, $n=10000$

■ Optimal sampling-based motion planning

- Rapidly-exploring Random Graph (RRG)
- Next: Robotic information gathering and Data collection planning

