Randomized Sampling-based Motion Planning Methods

Jan Faigl

Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague

Lecture 06

B4M36UIR – Artificial Intelligence in Robotics

Overview of the Lecture

- Part 1 Randomized Sampling-based Motion Planning Methods
 - Sampling-Based Methods
 - Probabilistic Road Map (PRM)
 - Characteristics
 - Rapidly Exploring Random Tree (RRT)
- Part 2 Optimal Sampling-based Motion Planning Methods
 - Optimal Motion Planners
 - Rapidly-exploring Random Graph (RRG)

Jan Faigl, 2017	B4M36UIR – Lecture 06: Sampling-based Motion Planning 1	51 Jan Faigl, 2017 B4M36UIR – Lecture 06: Sampling-based Motion Planning 2 / 51
Sampling-Based Methods	Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RR	T) Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)
		(Randomized) Sampling-based Motion Planning
		It uses an explicit representation of the obstacles in C-space
		A "black-box" function is used to evaluate a configuration q is a collision-free, e.g.,
	Part I	Based on geometrical models and testing collisions of the models
Part 1	– Sampling-based Motion Planning	In 2D or 3D shape of the robot and environment can be represented as sets of triangles, i.e., tesselated models
		 Collision test – an intersection of triangles E.g., using RAPID library http://gamma.cs.unc.edu/OBB/
		■ Creates a discrete representation of C _{free}
		 Configurations in C_{free} are sampled randomly and connected to a roadmap (probabilistic roadmap)
		 Rather than full completeness they provide probabilistic completeness ness or resolution completeness Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists)
Jan Faigl, 2017	B4M36UIR – Lecture 06: Sampling-based Motion Planning 3 ,	51 Jan Faigl, 2017 B4M36UIR – Lecture 06: Sampling-based Motion Planning 5 / 51

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)	Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)
Probabilistic Roadmaps	Incremental Sampling and Searching
 A discrete representation of the continuous <i>C</i>-space generated by randomly sampled configurations in <i>C</i>_{free} that are connected into a graph Nodes of the graph represent admissible configuration of the robot Edges represent a feasible path (trajectory) between the particular configurations Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists) <i>Under Graph and the graph the final path (trajectory) is found by a graph search technique</i> 	 Single query sampling-based algorithms incrementally create a search graph (roadmap) 1. Initialization - G(V, E) an undirected search graph, V may contain q_{start}, q_{goal} and/or other points in C_{free} 2. Vertex selection method - choose a vertex q_{cur} ∈ V for expansion 3. Local planning method - for some q_{new} ∈ C_{free}, attempt to construct a path τ : [0,1] → C_{free} such that τ(0) = q_{cur} and τ(1) = q_{new}, τ must be checked to ensure it is collision free If τ is not a collision-free, go to Step 2 4. Insert an edge in the graph - Insert τ into E as an edge from q_{cur} to q_{new} and insert q_{new} to V if q_{new} ∉ V 5. Check for a solution - Determine if G encodes a solution, e.g., single search tree or graph search 6. Repeat to Step 2 - iterate unless a solution has been found or a termination condition is satisfied LaValle, S. M.: Planning Algorithms (2006), Chapter 5.4
Jan Faigl, 2017 B4M36UIR – Lecture 06: Sampling-based Motion Planning 6 / 51	Jan Faigl, 2017 B4M36UIR – Lecture 06: Sampling-based Motion Planning 7 / 51
Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Probabilistic Roadmap Strategies Multi-Query – roadmap based Generate a single roadmap that is then used for planning queries several times.	Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Multi-Query Strategy Build a roadmap (graph) representing the environment 1. Learning phase 1.1 Sample <i>n</i> points in C _{free} 1.2 Connect the random configurations using a local planner
 An representative technique is Probabilistic RoadMap (PRM) Kavraki, L., Svestka, P., Latombe, JC., Overmars, M. H.B (1996): Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces. T-RO. Single-Query – incremental For each planning problem constructs a new roadmap to characterize the subspace of C-space that is relevant to the problem. Rapidly-exploring Random Tree – RRT	 2. Query phase 2.1 Connect start and goal configurations with the PRM <i>E.g.</i>, using a local planner 2.2 Use the graph search to find the path Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces <i>Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H.</i> <i>Overmars</i>, IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996. First planner that demonstrates ability to solve general planning problems in more than 4-5 dimensions.

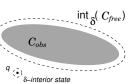
Jan Faigl, 2017

8 / 51 Jan Faigl, 2017

PRM Construction

#1 Given problem domain Image: Constrained of the second of th	#2 Random configurationImage: config	<image/>	 Incremental construction Connect nodes in a radius ρ Local planner tests collisions up to selected resolution δ Path can be found by Dijkstra's algorithm What are the properties 	<image/> <section-header><section-header></section-header></section-header>
Jan Faigl, 2017 Sampling-Based Methods Probabilistic Path Planning Proble		g-based Motion Planning 11 / 51 Rapidly Exploring Random Tree (RRT)		Lecture 06: Sampling-based Motion Planning 12 / 51 RM) Characteristics Rapidly Exploring Random Tree (RRT)
 Path planning problem is defined by a triplet		 Feasible path planning: For a path planning problem (C_{free}, q_{init}, Q_{goal}) Find a feasible path π : [0,1] → C_{free} such that π(0) = q_{init} and π(1) ∈ cl(Q_{goal}), if such path exists Report failure if no such path exists Optimal path planning: The optimality problem asks for a feasible path with the minimum cost For (C_{free}, q_{init}, Q_{goal}) and a cost function c : Σ → ℝ_{≥0} Find a feasible path π* such that c(π*) = min{c(π) : π is feasible} Report failure if no such path exists 		

Practical PRM

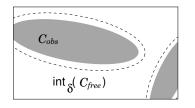

13 / 51 Jan Faigl, 2017

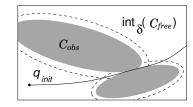
Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Probabilistic Completeness 1/2 Probabilistic Completeness 2/2

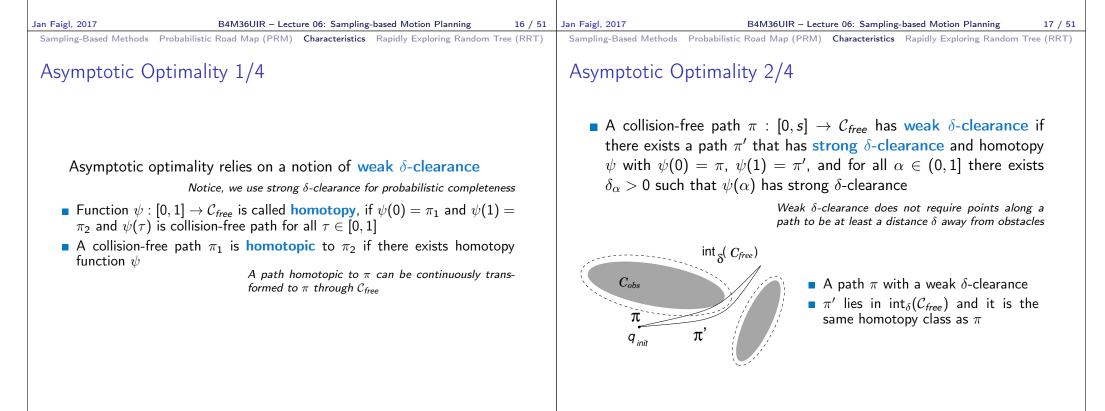
First, we need robustly feasible path planning problem $(\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal})$

a $q \in C_{free}$ is δ -interior state of C_{free} if the closed ball of radius δ centered at alies entirely inside C_{free}


- δ -interior of C_{free} is $\text{int}_{\delta}(C_{\text{free}}) = \{q \in C_{\text{free}} | \mathcal{B}_{/,\delta} \subseteq C_{\text{free}} \}$ A collection of all δ -interior states
- A collision free path π has strong δ -clearance, if π lies entirely inside $int_{\delta}(\mathcal{C}_{free})$
- $(\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal})$ is robustly feasible if a solution exists and it is a feasible path with strong δ -clearance, for δ >0


Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

An algorithm \mathcal{ALG} is probabilistically complete if, for any *robustly* feasible path planning problem $\mathcal{P} = (\mathcal{C}_{\text{free}}, q_{\text{init}}, \mathcal{Q}_{\text{goal}})$


 $\lim_{n\to 0} \Pr(\mathcal{ALG} \text{ returns a solution to } \mathcal{P}) = 1.$

- It is a *"relaxed"* notion of completeness
- Applicable only to problems with a robust solution

We need some space, where random configurations can be sampled

18 / 51 Jan Faigl, 2017

19 / 51

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)	Sampling-Based Methods Probabilistic Road Map (PRM)	Characteristics Rapidly Exploring Random Tree (RRT)	
Asymptotic Optimality 3/4	Asymptotic Optimality 4/4		
 It is applicable with a robust optimal solution that can be obtained as a limit of robust (non-optimal) solutions A collision-free path π* is robustly optimal solution if it has weak δ-clearance and for any sequence of collision free paths {π_n}_{n∈N}, π_n ∈ C_{free} such that lim_{n→∞} π_n = π*, lim_{n→∞} c(π_n) = c(π*) There exists a path with strong δ-clearance, and π* is homotopic to such path and π* is of the lower cost. Weak δ-clearance implies robustly feasible solution problem (thus, probabilistic completeness) 	An algorithm \mathcal{ALG} is asymptotically optimal if, for any path planning problem $\mathcal{P} = (\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal})$ and cost function c that admit a robust optimal solution with the finite cost c^* $Pr\left(\left\{\lim_{i\to\infty}Y_i^{\mathcal{ALG}}=c^*\right\}\right)=1$ • $Y_i^{\mathcal{ALG}}$ is the extended random variable corresponding to the minimum-cost solution included in the graph returned by \mathcal{ALG} at the end of iteration i		
Jan Faigl, 2017 B4M36UIR – Lecture 06: Sampling-based Motion Planning 20 / 51 Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Properties of the PRM Algorithm	Jan Faigl, 2017 B4M36UIR – Lect Sampling-Based Methods Probabilistic Road Map (PRM) PRM vs simplified PRM (sPRM		
 Completeness for the standard PRM has not been provided when it was introduced A simplified version of the PRM (called sPRM) has been mostly studied sPRM is probabilistically complete What are the differences between PRM and sPRM? 	Algorithm 1: PRMVstup: q_{init} , number of samples n , radius ρ Výstup: PRM – $G = (V, E)$ $V \leftarrow \emptyset$; $E \leftarrow \emptyset$;for $i = 0,, n$ do $q_{rand} \leftarrow$ SampleFree; $U \leftarrow$ Near($G = (V, E), q_{rand}, \rho$); $V \leftarrow V \cup \{q_{rand}\}$;foreach $u \in U$, with increasing $ u - q_r $ doif q_{rand} and u are not in thesame connected component of $G = (V, E)$ thenif CollisionFree(q_{rand}, u)then $E \leftarrow E \cup$ $\{(q_{rand}, u), (u, q_{rand})\}$;	Algorithm 2: sPRMVstup: q_{init} , number of samples n , radius ρ Výstup: PRM – $G = (V, E)$ $V \leftarrow \{q_{init}\} \cup$ {SampleFree, $\}_{i=1,,n-1}$; $E \leftarrow \emptyset$; foreach $v \in V$ do $U \leftarrow Near(G = (V, E), v, \rho) \setminus \{v\}$; foreach $u \in U$ do if CollisionFree (v, u) then $L \in E \leftarrow E \cup \{(v, u), (u, v)\}$;return $G = (V, E)$;There are several ways for the set U of vertices to connect them k -nearest neighbors to v variable connection radius ρ as a function of n	

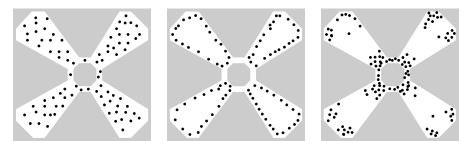
Jan Faigl, 2017

22 / 51 Jan Faigl, 2017

B4M36UIR – Lecture 06: Sampling-based Motion Planning 23 / 51

Comments about Random Sampling 1/2

sPRM (simplified PRM)


PRM – Properties

- Probabilistically complete and asymptotically optimal
- Processing complexity $O(n^2)$
- Query complexity $O(n^2)$
- Space complexity $O(n^2)$
- Heuristics practically used are usually not probabilistic complete
 - k-nearest sPRM is not probabilistically complete
 - variable radius sPRM is not probabilistically complete Based on analysis of Karaman and Frazzoli

PRM algorithm:

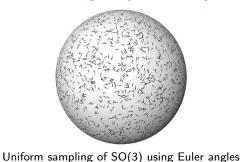
- + Has very simple implementation
- + Completeness (for sPRM)
- Differential constraints (car-like vehicles) are not straightforward

Different sampling strategies (distributions) may be applied

- Notice, one of the main issue of the randomized sampling-based approaches is the narrow passage
- Several modifications of sampling based strategies have been proposed in the last decades

Jan Faigl, 2017	B4M36UIR – Lecture 06: Sampling-based Motion Planning	24 / 51	Jan Faigl, 2017	B4M36UIR – Lecture 06: Sampling-based Motion Planning	25 / 51
Sampling-Based Methods	Probabilistic Road Man (PRM) Characteristics Rapidly Exploring Rando	m Tree (RRT)	Sampling-Based Methods	Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random T	ree (RRT)

Comments about Random Sampling 2/2


A solution can be found using only a few samples.

Do you know the Oraculum? (from Alice in Wonderland)

- Sampling strategies are important
 - Near obstacles
 - Narrow passages
 - Grid-based
 - Uniform sampling must be carefully considered James J. Kuffner (2004): Effective Sampling and Dis-

tance Metrics for 3D Rigid Body Path Planning. ICRA.

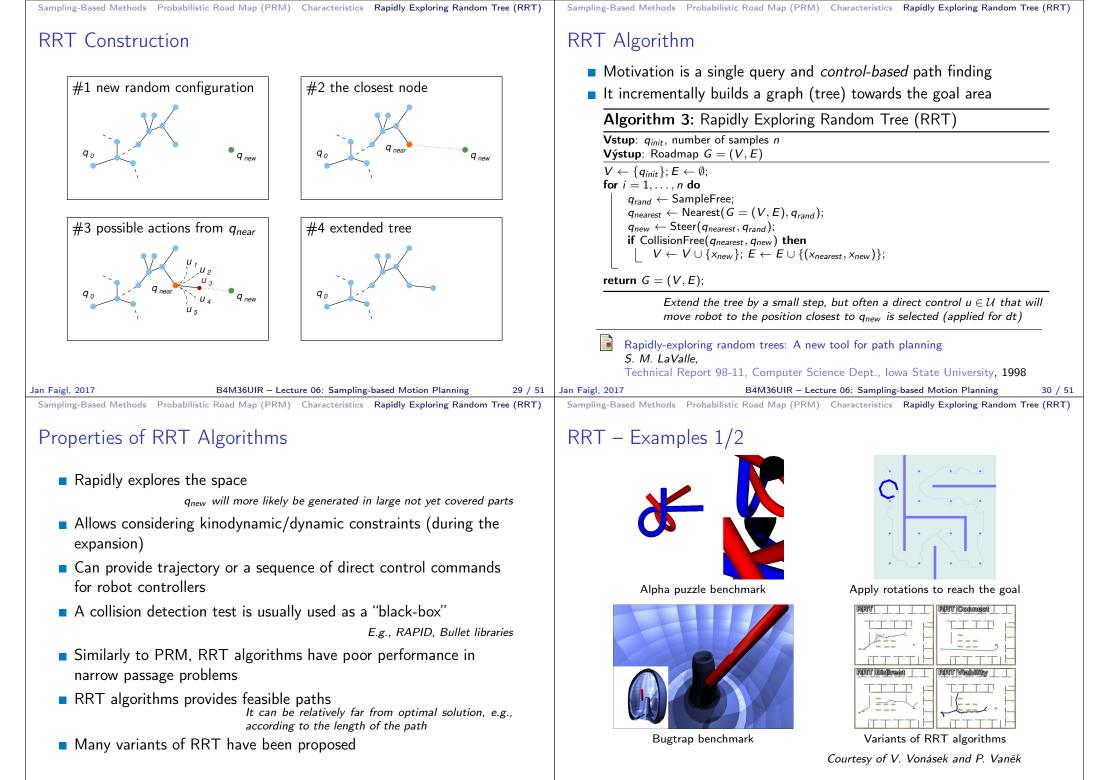
Rapidly Exploring Random Tree (RRT)

Single–Query algorithm

- It incrementally builds a graph (tree) towards the goal area.
 It does not guarantee precise path to the goal configuration.
- 1. Start with the initial configuration q_0 , which is a root of the constructed graph (tree)
- 2. Generate a new random configuration q_{new} in C_{free}
- 3. Find the closest node q_{near} to q_{new} in the tree

E.g., using KD-tree implementation like ANN or FLANN libraries

4. Extend q_{near} towards q_{new}

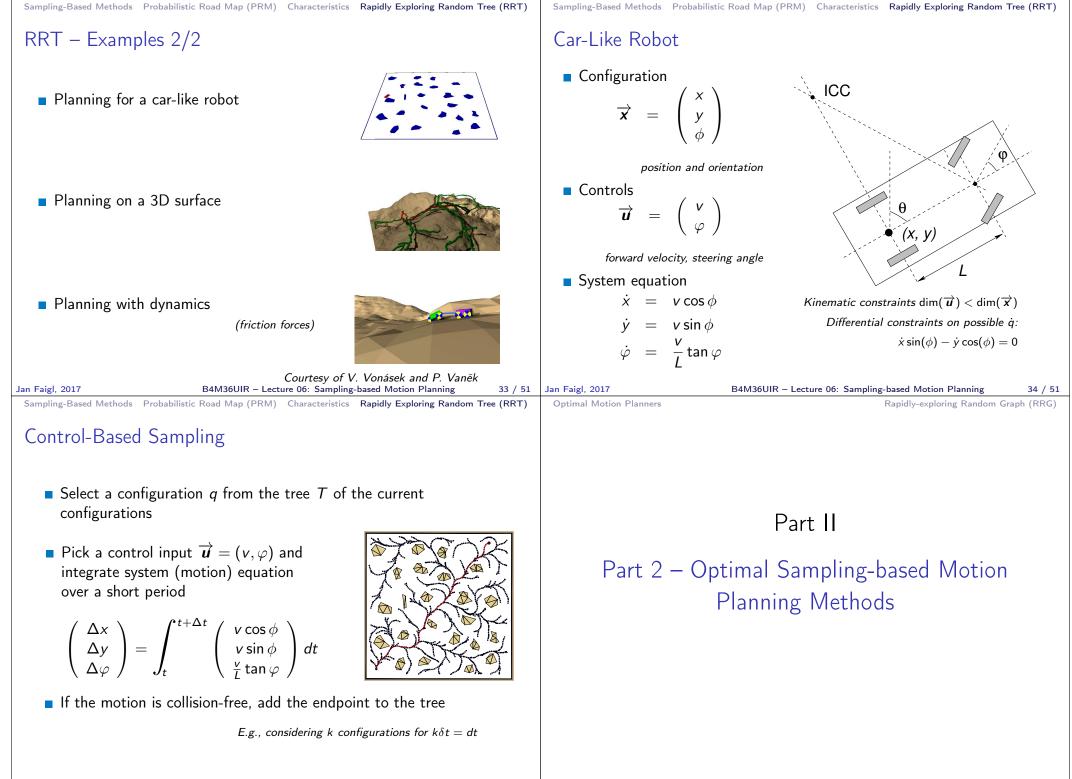

Extend the tree by a small step, but often a direct control $u \in \mathcal{U}$ that will move robot the position closest to q_{new} is selected (applied for δt)

5. Go to Step 2, until the tree is within a sufficient distance from the goal configuration

Or terminates after dedicated running time

Naïve sampling

Jan Faigl, 2017



Jan Faigl, 2017

1 / 51 Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

32 / 51

/ 51 Jan Faigl, 2017

36 / 51

B4M36UIR - Lecture 06: Sampling-based Motion Planning

Optimal Motion Planners

Sampling-Based Motion Planning

- PRM and RRT are theoretically probabilistic complete
- They provide a feasible solution without quality guarantee Despite that, they are successfully used in many practical applications
- In 2011, a systematical study of the asymptotic behavior of randomized sampling-based planners has been published

It shows, that in some cases, they converge to a non-optimal value with a probability $1 \ \ \,$

 Based on the study, new algorithms have been proposed: RRG and optimal RRT (RRT*)

Karaman, S., Frazzoli, E. (2011):Sampling-based algorithms for optimal motion planning. IJRR.

RRT and Quality of Solution 1/2

Optimal Motion Planners

- Let Y_i^{RRT} be the cost of the best path in the RRT at the end of iteration i
- Y_i^{RRT} converges to a random variable

$$\lim_{i\to\infty}Y_i^{RRT}=Y_\infty^{RRT}$$

The random variable Y_{∞}^{RRT} is sampled from a distribution with zero mass at the optimum, and

$$Pr[Y_{\infty}^{RRT} > c^*] = 1$$

Karaman and Frazzoli, 2011

The best path in the RRT converges to a sub-optimal solution almost surely

	http://sertac.scripts.mit.edu/rrtstar				
Jan Faigl, 2017	B4M36UIR – Lecture 06: Sampling-based Motion Planning	38 / 51	Jan Faigl, 2017	B4M36UIR – Lecture 06: Sampling-based Motion Planning	39 / 51
Optimal Motion Planners	Rapidly-exploring Random Gr	raph (RRG)	Optimal Motion Planners	Rapidly-exploring Random G	iraph (RRG)

RRT and Quality of Solution 2/2

- RRT does not satisfy a necessary condition for the asymptotic optimality
 - For $0 < R < \inf_{q \in Q_{goal}} ||q q_{init}||$, the event $\{\lim_{n \to \infty} Y_n^{RTT} = c^*\}$ occurs only if the *k*-th branch of the RRT contains vertices outside the *R*-ball centered at q_{init} for infinitely many *k*

See Appendix B in Karaman&Frazzoli, 2011

It is required the root node will have infinitely many subtrees that extend at least a distance ε away from q_{init}

The sub-optimality is caused by disallowing new better paths to be discovered

```
Rapidly-exploring Random Graph (RRG)
```

Algorithm 4: Rapidly-exploring Random Graph (RRG) Vstup: q_{init}, number of samples n

```
\begin{array}{l} \begin{array}{l} \begin{array}{l} \textbf{V} \not (\textbf{stup:} \ G = (V, E) \\ \hline V \leftarrow \emptyset; E \leftarrow \emptyset; \\ \textbf{for } i = 0, \dots, n \ \textbf{do} \\ \hline q_{rand} \leftarrow \texttt{SampleFree}; \\ q_{nearest} \leftarrow \texttt{Nearest}(G = (V, E), q_{rand}); \\ q_{new} \leftarrow \texttt{Steer}(q_{nearest}, q_{rand}); \\ \textbf{if CollisionFree}(q_{nearest}, q_{rand}); \\ \textbf{if CollisionFree}(q_{nearest}, q_{new}) \ \textbf{then} \\ \hline \mathcal{Q}_{near} \leftarrow \texttt{Near}(G = (V, E), q_{rand}); \\ V \leftarrow V \cup \{q_{new}\}; \\ E \leftarrow E \cup \{(q_{nearest}, q_{new}), (q_{new}, q_{nearest})\}; \\ \textbf{foreach } q_{near} \in \mathcal{Q}_{near} \ \textbf{do} \\ \hline \textbf{if CollisionFree}(q_{near}, q_{new}) \ \textbf{then} \\ \hline E \leftarrow E \cup \{(q_{rand}, u), (u, q_{rand})\}; \\ \textbf{return } G = (V, E); \end{array}
```

Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of Random Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose (1999).

B4M36UIR - Lecture 06: Sampling-based Motion Planning 42 / 51

Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)

RRG Expansions

- At each iteration, RRG tries to connect new sample to all vertices in the r_n ball centered at it.
- The ball of radius

$$r(\operatorname{card}(V)) = \min\left\{\gamma_{RRG}\left(\frac{\log\left(\operatorname{card}(V)\right)}{\operatorname{card}(V)}\right)^{1/d}, \eta\right\}$$

where

- η is the constant of the local steering function
- $\gamma_{RRG} > \gamma^*_{RRG} = 2(1+1/d)^{1/d} (\mu(\mathcal{C}_{free})/\xi_d)^{1/d}$
 - d dimension of the space;
 - $\mu(\mathcal{C}_{\textit{free}})$ Lebesgue measure of the obstacle–free space;
 - ξ_d volume of the unit ball in *d*-dimensional Euclidean space.
- The connection radius decreases with *n*
- The rate of decay ≈ the average number of connections attempted is proportional to log(*n*)

Optimal Motion Planners

RRG Properties

- Probabilistically complete
- Asymptotically optimal
- Complexity is O(log n)

(per one sample)

- Computational efficiency and optimality
 - Attempt connection to $\Theta(\log n)$ nodes at each iteration;

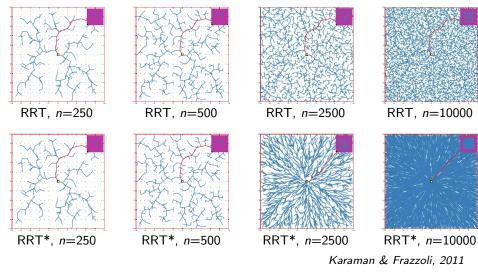
in average

- Reduce volume of the "connection" ball as $\log(n)/n$;
- Increase the number of connections as log(n)

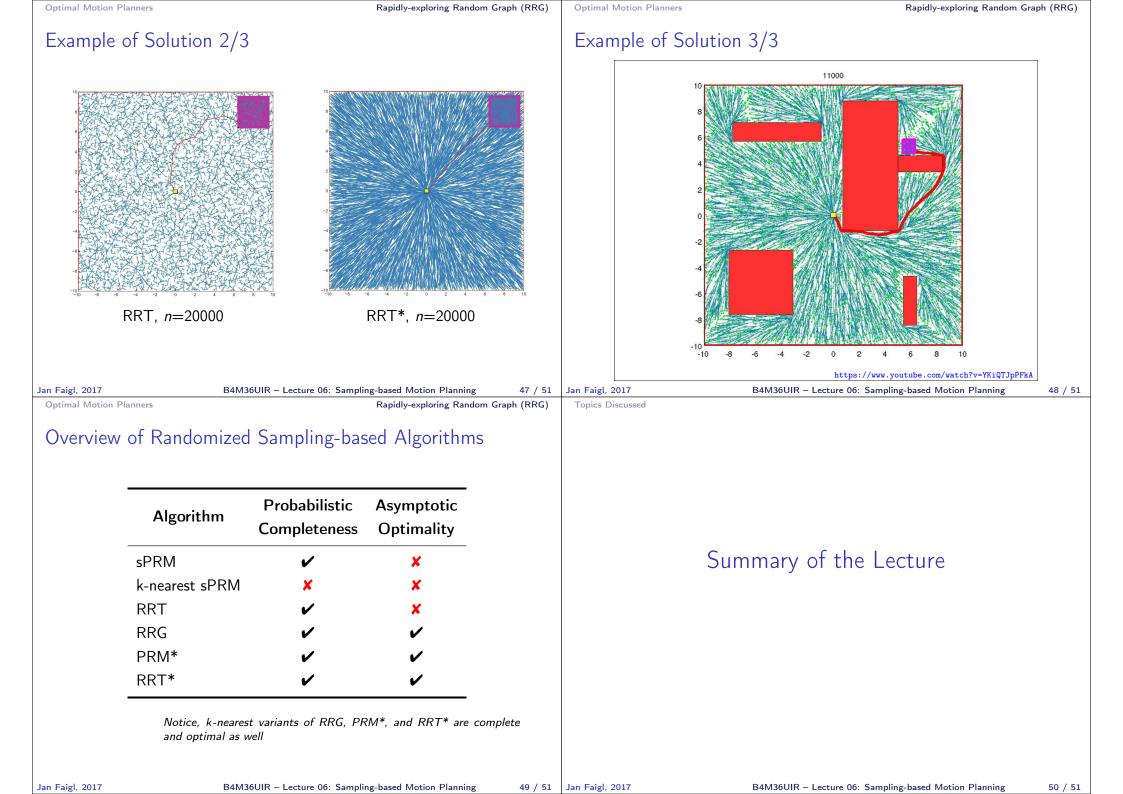
Jan Faigl, 2017	B4M36UIR – Lecture 06: Sampling-based Motion Planning 43 / 51	Jan Faigl, 2017	B4M36UIR – Lecture 06: Sampling-based Motion Planning 44	4 / 51
Optimal Motion Planners	Rapidly-exploring Random Graph (RRG)	Optimal Motion Planners	Rapidly-exploring Random Graph (F	RRG)

Other Variants of the Optimal Motion Planning

PRM* – it follows standard PRM algorithm where connections are attempted between roadmap vertices that are within connection radius r as a function of n


$$r(n) = \gamma_{PRM} (\log(n)/n)^{1/d}$$

■ RRT* – a modification of the RRG, where cycles are avoided


A tree version of the RRG

- A tree roadmap allows to consider non-holonomic dynamics and kinodynamic constraints
- It is basically RRG with "rerouting" the tree when a better path is discovered

Example of Solution 1/3

45 / 51 Jan Faigl, 2017

Topics Discussed

- Randomized Sampling-based Methods
- Probabilistic Road Map (PRM)
- Characteristics of path planning problems
- Random sampling
- Rapidly Exploring Random Tree (RRT)
- Optimal sampling-based motion planning
- Rapidly-exploring Random Graph (RRG)

Next: Multi-G	oal Motion Planning and Multi-Goal Path Plannir	וg
Jan Faigl, 2017	B4M36UIR – Lecture 06: Sampling-based Motion Planning	51 / 51