Randomized Sampling-based Motion
 Planning Methods

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague
Lecture 06
B4M36UIR - Artificial Intelligence in Robotics

Part 1

Part 1 - Sampling-based Motion Planning

Overview of the Lecture

- Part 1 - Randomized Sampling-based Motion Planning Methods
- Sampling-Based Methods
- Probabilistic Road Map (PRM)
- Characteristics
- Rapidly Exploring Random Tree (RRT)

■ Part 2 - Optimal Sampling-based Motion Planning Methods

- Optimal Motion Planners
- Rapidly-exploring Random Graph (RRG)

Jan Faigl, 2017
B4M36UIR - Lecture 06: Sampling-based Motion Planning
Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

(Randomized) Sampling-based Motion Planning

- It uses an explicit representation of the obstacles in \mathcal{C}-space
- A "black-box" function is used to evaluate a configuration q is a collision-free, e.g.,
- Based on geometrical models and testing collisions of the models

■ In 2D or 3D shape of the robot and environment can be represented as sets of triangles, i.e., tesselated models

- Collision test - an intersection of triangles
E.g., using RAPID library http://gamma.cs.unc.edu/OBB/
- Creates a discrete representation of $\mathcal{C}_{\text {free }}$
- Configurations in $\mathcal{C}_{\text {free }}$ are sampled randomly and connected to a roadmap (probabilistic roadmap)
- Rather than full completeness they provide probabilistic completeness or resolution completeness

Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists)

Probabilistic Roadmaps

A discrete representation of the continuous \mathcal{C}-space generated by randomly sampled configurations in $\mathcal{C}_{\text {free }}$ that are connected into a graph.

- Nodes of the graph represent admissible configuration of the robot.
- Edges represent a feasible path (trajectory) between the particular configurations.

Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists)

Having the graph, the final path (trajectory) is found by a graph search technique.

Jan Faigl, 2017
B4M36UIR - Lecture 06: Sampling-based Motion Planning
Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Probabilistic Roadmap Strategies

Multi-Query - roadmap based

- Generate a single roadmap that is then used for planning queries several times.
- An representative technique is Probabilistic RoadMap (PRM)

Kavraki, L., Svestka, P., Latombe, J.-C., Overmars, M. H.B (1996): Probabilistic
Roadmaps for Path Planning in High Dimensional Configuration Spaces. T-RO.

Single-Query - incremental

- For each planning problem constructs a new roadmap to characterize the subspace of \mathcal{C}-space that is relevant to the problem.
- Rapidly-exploring Random Tree - RRT

LaValle, 1998

- Expansive-Space Tree - EST

Hsu et al., 1997

- Sampling-based Roadmap of Trees - SRT
(combination of multiple-query and single-query approaches)
Plaku et al., 2005

Incremental Sampling and Searching

- Single query sampling-based algorithms incrementally created a search graph (roadmap)

1. Initialization $-G(V, E)$ an undirected search graph, V may contain $q_{\text {start }}, q_{\text {goal }}$ and/or other points in $\mathcal{C}_{\text {free }}$
2. Vertex selection method - choose a vertex $q_{c u r} \in V$ for expansion
3. Local planning method - for some $q_{\text {new }} \in \mathcal{C}_{\text {free }}$, attempt to construct a path $\tau:[0,1] \rightarrow \mathcal{C}_{\text {free }}$ such that $\tau(0)=q_{\text {cur }}$ and $\tau(1)=$ $q_{\text {new }}, \tau$ must be checked to ensure it is collision free

$$
\text { - If } \tau \text { is not a collision-free, go to Step } 2
$$

4. Insert an edge in the graph - Insert τ into E as an edge from $q_{\text {cur }}$ to $q_{\text {new }}$ and insert $q_{\text {new }}$ to V if $q_{\text {new }} \notin V$
5. Check for a solution - Determine if G encodes a solution, e.g., single search tree or graph search
6. Repeat to Step 2 - iterate unless a solution has been found or a termination condition is satisfied

LaValle, S. M.: Planning Algorithms (2006), Chapter 5.4

Multi-Query Strategy

Build a roadmap (graph) representing the environment

1. Learning phase
1.1 Sample n points in $\mathcal{C}_{\text {free }}$
1.2 Connect the random configurations using a local planner
2. Query phase
2.1 Connect start and goal configurations with the PRM
E.g., using a local planner
2.2 Use the graph search to find the path

1 Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces
Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. Overmars,
IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996
First planner that demonstrates ability to solve general planning problems in more than 4-5 dimensions.

PRM Construction

Sampling-Based Methods Probabilistic Road Map (PRM)

Practical PRM

- Incremental construction
- Connect nodes in a radius ρ
- Local planner tests collisions up to selected resolution δ
- Path can be found by Dijkstra's algorithm

What are the properties of the PRM algorithm?

We need a couple of more formalisms.

Jan Faigl, 2017
B4M36UIR - Lecture 06: Sampling-based Motion Planning $11 / 51$

Jan Faigl, 2017 | Faigl, 2017 | B4M36UIR - Lecture 06: Sampling-based Motion Planning | $12 / 51$ | |
| :--- | :--- | :--- | :--- |
| Sampling-Based Methods | Probabilistic Road Map (PRM) | Characteristics | Rapidly Exploring Random Tree (RRT) |

Path Planning Problem

- Feasible path planning:

For a path planning problem $\left(\mathcal{C}_{\text {free }}, q_{\text {init }}, \mathcal{Q}_{\text {goal }}\right)$

- Find a feasible path $\pi:[0,1] \rightarrow \mathcal{C}_{\text {free }}$ such that $\pi(0)=q_{\text {init }}$ and $\pi(1) \in \mathrm{cl}\left(\mathcal{Q}_{\text {goal }}\right)$, if such path exists.
- Report failure if no such path exists.
- Optimal path planning:

The optimality problem asks for a feasible path with the minimum cost.
For $\left(\mathcal{C}_{\text {free }}\right.$, qinit, $\left.\mathcal{Q}_{\text {goal }}\right)$ and a cost function $c: \Sigma \rightarrow \mathbb{R}_{\geq 0}$

- Find a feasible path π^{*} such that $c\left(\pi^{*}\right)=\min \{c(\pi): \pi$ is feasible $\}$.
- Report failure if no such path exists.

The cost function is assumed to be monotonic and bounded,
i.e., there exists k_{c} such that $c(\pi) \leq k_{c} \operatorname{TV}(\pi)$.

Probabilistic Completeness 1/2

First, we need robustly feasible path planning problem $\left(\mathcal{C}_{\text {free }}, q_{\text {init }}, \mathcal{Q}_{\text {goal }}\right)$.

- $q \in \mathcal{C}_{\text {free }}$ is δ-interior state of $\mathcal{C}_{\text {free }}$ if the closed ball of radius δ centered at q lies entirely inside $\mathcal{C}_{\text {free }}$.

- δ-interior of $\mathcal{C}_{\text {free }}$ is $\operatorname{int}_{\delta}\left(\mathcal{C}_{\text {free }}\right)=\left\{q \in \mathcal{C}_{\text {free }} \mid \mathcal{B}_{/, \delta} \subseteq \mathcal{C}_{\text {free }}\right\}$.

A collection of all δ-interior states.

- A collision free path π has strong δ-clearance, if π lies entirely inside $\operatorname{int}_{\delta}\left(\mathcal{C}_{\text {free }}\right)$.
- $\left(\mathcal{C}_{\text {free }}, q_{\text {init }}, \mathcal{Q}_{\text {goal }}\right)$ is robustly feasible if a solution exists and it is a feasible path with strong δ-clearance, for $\delta>0$.

Probabilistic Completeness 2/2

An algorithm $\mathcal{A L G}$ is probabilistically complete if, for any robustly feasible path planning problem $\mathcal{P}=\left(\mathcal{C}_{\text {free }}, \boldsymbol{q}_{\text {init }}, \mathcal{Q}_{\text {goal }}\right)$

$$
\lim _{n \rightarrow 0} \operatorname{Pr}(\mathcal{A L G} \text { returns a solution to } \mathcal{P})=1
$$

- It is a "relaxed" notion of completeness
- Applicable only to problems with a robust solution.

We need some space, where random configurations can be sampled

Jan Faigl, 2017 34M36UIR - Lecture 06: Sampling-based Motion Planning \qquad Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Asymptotic Optimality 2/4

- A collision-free path $\pi:[0, s] \rightarrow \mathcal{C}_{\text {free }}$ has weak δ-clearance if there exists a path π^{\prime} that has strong δ-clearance and homotopy ψ with $\psi(0)=\pi, \psi(1)=\pi^{\prime}$, and for all $\alpha \in(0,1]$ there exists $\delta_{\alpha}>0$ such that $\psi(\alpha)$ has strong δ-clearance.

Weak δ-clearance does not require points along a path to be at least a distance δ away from obstacles.

- A path π with a weak δ-clearance
- π^{\prime} lies in int $\mathcal{D}_{\delta}\left(\mathcal{C}_{\text {free }}\right)$ and it is the same homotopy class as π

Asymptotic Optimality 3/4

- It is applicable with a robust optimal solution that can be obtained as a limit of robust (non-optimal) solutions.
- A collision-free path π^{*} is robustly optimal solution if it has weak δ-clearance and for any sequence of collision free paths $\left\{\pi_{n}\right\}_{n \in \mathbb{N}}$, $\pi_{n} \in \mathcal{C}_{\text {free }}$ such that $\lim _{n \rightarrow \infty} \pi_{n}=\pi^{*}$,

$$
\lim _{n \rightarrow \infty} c\left(\pi_{n}\right)=c\left(\pi^{*}\right) .
$$

There exists a path with strong δ-clearance, and π^{*} is homotopic to such path and π^{*} is of the lower cost.

- Weak δ-clearance implies robustly feasible solution problem
(thus, probabilistic completeness)

Jan Faigl, 2017
B4M36UIR - Lecture 06: Sampling-based Motion Planning $20 / 51$
Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Properties of the PRM Algorithm

- Completeness for the standard PRM has not been provided when it was introduced
- A simplified version of the PRM (called sPRM) has been mostly studied
- sPRM is probabilistically complete

What are the differences between PRM and sPRM?

Jan Faigl, 2017 B4M36UIR - Lecture 06: Sampling-based Motion Planning
An algorithm $\mathcal{A} \mathcal{L G}$ is asymptotically optimal if, for any path planning problem $\mathcal{P}=\left(\mathcal{C}_{\text {free }}, q_{\text {init }}, \mathcal{Q}_{\text {goal }}\right)$ and cost function c that admit a robust optimal solution with the finite $\operatorname{cost} c^{*}$

$$
\operatorname{Pr}\left(\left\{\lim _{i \rightarrow \infty} Y_{i}^{\mathcal{A L G}}=c^{*}\right\}\right)=1
$$

- $Y_{i}^{\mathcal{A} \mathcal{L G}}$ is the extended random variable corresponding to the minimumcost solution included in the graph returned by $\mathcal{A L G}$ at the end of iteration i.

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

PRM vs simplified PRM (sPRM)

```
```

Algorithm 1: PRM

```
```

Algorithm 1: PRM
$\overline{\text { Vstup: }} q_{\text {init }}$, number of samples n, radius ρ
$\overline{\text { Vstup: }} q_{\text {init }}$, number of samples n, radius ρ
Výstup: PRM $-G=(V, E)$
Výstup: PRM $-G=(V, E)$
$V \leftarrow \emptyset ; E \leftarrow \emptyset ;$
$V \leftarrow \emptyset ; E \leftarrow \emptyset ;$
for $i=0, \ldots, n$ do
for $i=0, \ldots, n$ do
$q_{\text {rand }} \leftarrow$ SampleFree;
$q_{\text {rand }} \leftarrow$ SampleFree;
$U \leftarrow \operatorname{Near}\left(G=(V, E), q_{r a n d}, \rho\right) ;$
$U \leftarrow \operatorname{Near}\left(G=(V, E), q_{r a n d}, \rho\right) ;$
$V \leftarrow V \cup\left\{q_{\text {rand }}\right\}$;
$V \leftarrow V \cup\left\{q_{\text {rand }}\right\}$;
foreach $u \in U$, with increasing
foreach $u \in U$, with increasing
$\left\|u-q_{r}\right\|$ do
$\left\|u-q_{r}\right\|$ do
if $q_{\text {rand }}$ and u are not in the
if $q_{\text {rand }}$ and u are not in the
same connected component of
same connected component of
$G=(V, E)$ then
$G=(V, E)$ then
if CollisionFree $\left(q_{\text {rand }}, u\right)$
if CollisionFree $\left(q_{\text {rand }}, u\right)$
then
then
$E \leftarrow E \cup$
$E \leftarrow E \cup$
$\left\{\left(q_{\text {rand }}, u\right),\left(u, q_{\text {rand }}\right)\right\} ;$
$\left\{\left(q_{\text {rand }}, u\right),\left(u, q_{\text {rand }}\right)\right\} ;$
return $G=(V, E)$;

```
return \(G=(V, E)\);
```

```
\(V \leftarrow \emptyset, E \leftarrow \emptyset\),
```

```
\(V \leftarrow \emptyset, E \leftarrow \emptyset\),
```

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics
Rapidly Exploring Random Tree (RRT

Asymptotic Optimality 4/4

Algorithm 2: sPRM
Vstup: $q_{\text {init }}$, number of samp radius ρ
Výstup: PRM - $G=(V, E)$
```\(V \leftarrow\left\{q_{\text {init }}\right\} \cup\) \(\left\{\text { SampleFree }_{i}\right\}_{i=1, \ldots, n-1} ; E \leftarrow \emptyset\); foreach \(v \in V\) do \(U \leftarrow \operatorname{Near}(G=(V, E), v, \rho) \backslash\{v\} ;\) foreach \(u \in U\) do if CollisionFree \((v, u)\) then \(E \leftarrow E \cup\{(v, u),(u, v)\} ;\)```
return $G=(V, E)$;
There are several ways for the set $U$ of vertices to connect them
- k-nearest neighbors to $v$   - variable connection radius $\rho$ as a function of $n$

## PRM - Properties

- sPRM (simplified PRM)
- Probabilistically complete and asymptotically optimal
- Processing complexity $O\left(n^{2}\right)$
- Query complexity $O\left(n^{2}\right)$
- Space complexity $O\left(n^{2}\right)$
- Heuristics practically used are usually not probabilistic complete

■ $k$-nearest sPRM is not probabilistically complete

- variable radius sPRM is not probabilistically complete

Based on analysis of Karaman and Frazzoli

## PRM algorithm:

+ Has very simple implementation
+ Completeness (for sPRM)
- Differential constraints (car-like vehicles) are not straightforward


## Comments about Random Sampling 1/2

- Different sampling strategies (distributions) may be applied

- Notice, one of the main issue of the randomized sampling-based approaches is the narrow passage
- Several modifications of sampling based strategies have been proposed in the last decades

Jan Faigl, 2017
B4M36UIR - Lecture 06: Sampling-based Motion Planning $\qquad$
Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

## Comments about Random Sampling 2/2

- A solution can be found using only a few samples.

Do you know the Oraculum? (from Alice in Wonderland)
■ Sampling strategies are important

- Near obstacles
- Narrow passages
- Grid-based

■ Uniform sampling must be carefully considered.
James J. Kuffner (2004): Effective Sampling and Distance Metrics for 3D Rigid Body Path Planning. ICRA.


Naïve sampling


Uniform sampling of $\mathrm{SO}(3)$ using Euler angles

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

## RRT Construction



Jan Faigl, 2017
B4M36UIR - Lecture 06: Sampling-based Motion Planning $29 / 51$
Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

## Properties of RRT Algorithms

- Rapidly explores the space
$q_{\text {new }}$ will more likely be generated in large not yet covered parts.
- Allows considering kinodynamic/dynamic constraints (during the expansion).
- Can provide trajectory or a sequence of direct control commands for robot controllers.
- A collision detection test is usually used as a "black-box".
E.g., RAPID, Bullet libraries.
- Similarly to PRM, RRT algorithms have poor performance in narrow passage problems.
- RRT algorithms provides feasible paths.

It can be relatively far from optimal solution, e.g., according to the length of the path.

- Many variants of RRT have been proposed.

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics

Rapidly Exploring Random Tree (RRT)

## RRT Algorithm

- Motivation is a single query and control-based path finding
- It incrementally builds a graph (tree) towards the goal area.

Algorithm 3: Rapidly Exploring Random Tree (RRT)
Vstup: $q_{\text {init }}$, number of samples $n$
Výstup: Roadmap $G=(V, E)$
$V \leftarrow\left\{q_{\text {init }}\right\} ; E \leftarrow \emptyset$;
for $i=1, \ldots, n$ do
$q_{\text {rand }} \leftarrow$ SampleFree;
$q_{\text {nearest }} \leftarrow \operatorname{Nearest}\left(G=(V, E), q_{\text {rand }}\right)$;
$q_{\text {new }} \leftarrow \operatorname{Steer}\left(q_{\text {nearest }}, q_{\text {rand }}\right)$;
if CollisionFree $\left(q_{\text {nearest }}, q_{\text {new }}\right)$ then
$V \leftarrow V \cup\left\{x_{\text {new }}\right\} ; E \leftarrow E \cup\left\{\left(x_{\text {nearest }}, x_{\text {new }}\right)\right\} ;$
return $G=(V, E)$;
Extend the tree by a small step, but often a direct control $u \in \mathcal{U}$ that will move robot to the position closest to $q_{\text {new }}$ is selected (applied for $d t$ ).

Rapidly-exploring random trees: A new tool for path planning S. M. LaValle,

Technical Report 98-11, Computer Science Dept., Iowa State University, 1998
Jan Faigl, 2017 B4M36UIR - Lecture 06: Sampling-based Motion Planning $30 / 51$ Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

## RRT - Examples 1/2



Alpha puzzle benchmark


Bugtrap benchmark


Apply rotations to reach the goal


Variants of RRT algorithms

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

## RRT - Examples 2/2

- Planning for a car-like robot

- Planning on a 3D surface

- Planning with dynamics
(friction forces)


	Courtesy of V. Vonásek and P. Vaněk			
Jan Faigl, 2017	B4M36UIR - Lecture 06: Sampling-based Motion Planning	$33 / 51$		
Sampling-Based Methods	Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)			

Control-Based Sampling

- Select a configuration $q$ from the tree $T$ of the current configurations
- Pick a control input $\overrightarrow{\boldsymbol{u}}=(v, \varphi)$ and integrate system (motion) equation over a short period

$$
\left(\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta \varphi
\end{array}\right)=\int_{t}^{t+\Delta t}\left(\begin{array}{c}
v \cos \phi \\
v \sin \phi \\
\frac{v}{L} \tan \varphi
\end{array}\right) d t
$$



- If the motion is collision-free, add the endpoint to the tree

$$
\text { E.g., considering } k \text { configurations for } k \delta t=d t
$$

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

## Car-Like Robot

- Configuration

$$
\vec{x}=\left(\begin{array}{l}
x \\
y \\
\phi
\end{array}\right)
$$

. ICC
position and orientation

- Controls

$$
\overrightarrow{\boldsymbol{u}}=\binom{v}{\varphi}
$$

forward velocity, steering angle

- System equation

$$
\begin{aligned}
\dot{x} & =v \cos \phi \\
\dot{y} & =v \sin \phi \\
\dot{\varphi} & =\frac{v}{L} \tan \varphi
\end{aligned}
$$

$\overrightarrow{\mathbf{u}}$


- $(x, y)$

$$
\text { Kinematic constraints } \operatorname{dim}(\overrightarrow{\boldsymbol{u}})<\operatorname{dim}(\overrightarrow{\boldsymbol{x}})
$$ Differential constraints on possible $\dot{q}$ :

$$
\dot{x} \sin (\phi)-\dot{y} \cos (\phi)=0
$$

Jan Faigl, 2017
B4M36UIR - Lecture 06: Sampling-based Motion Planning $\qquad$ $34 / 51$ Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)

## RRT and Quality of Solution 1/2

- Let $Y_{i}^{R R T}$ be the cost of the best path in the RRT at the end of iteration $i$.
- $Y_{i}^{R R T}$ converges to a random variable

$$
\lim _{i \rightarrow \infty} Y_{i}^{R R T}=Y_{\infty}^{R R T}
$$

- The random variable $Y_{\infty}^{R R T}$ is sampled from a distribution with zero mass at the optimum, and

$$
\operatorname{Pr}\left[Y_{\infty}^{R R T}>c^{*}\right]=1 .
$$

Karaman and Frazzoli, 2011

- The best path in the RRT converges to a sub-optimal solution almost surely.

Jan Faigl, 2017 B4M36UIR - Lecture 06: Sampling-based Motion Planning Rapidly-exploring Random Graph (RRG)
Optimal Motion Planners

```
Rapidly-exploring Random Graph (RRG)
```

```
Algorithm 4: Rapidly-exploring Random Graph (RRG)
Vstup: \(q_{\text {init }}\), number of samples \(n\)
Výstup: \(G=(V, E)\)
\(V \leftarrow \emptyset ; E \leftarrow \emptyset\);
for \(i=0, \ldots, n\) do
 \(q_{\text {rand }} \leftarrow\) SampleFree;
 \(q_{\text {nearest }} \leftarrow \operatorname{Nearest}\left(G=(V, E), q_{\text {rand }}\right)\);
 \(q_{\text {new }} \leftarrow \operatorname{Steer}\left(q_{\text {nearest }}, q_{\text {rand }}\right)\);
 if CollisionFree \(\left(q_{\text {nearest }}, q_{\text {new }}\right)\) then
 \(\mathcal{Q}_{\text {near }} \leftarrow \operatorname{Near}(G=\)
 \(\left.(V, E), q_{\text {new }}, \min \left\{\gamma_{R R G}(\log (\operatorname{card}(V)) / \operatorname{card}(V))^{1 / d}, \eta\right\}\right)\);
 \(V \leftarrow V \cup\left\{q_{\text {new }}\right\}\);
 \(E \leftarrow E \cup\left\{\left(q_{\text {nearest }}, q_{\text {new }}\right),\left(q_{\text {new }}, q_{\text {nearest }}\right)\right\}\);
 foreach \(q_{\text {near }} \in \mathcal{Q}_{\text {near }}\) do
 if CollisionFree \(\left(q_{\text {near }}, q_{\text {new }}\right)\) then
 \(E \leftarrow E \cup\left\{\left(q_{\text {rand }}, u\right),\left(u, q_{\text {rand }}\right)\right\} ;\)
```

return $G=(V, E)$;

Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of Random Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose (1999).

## RRG Expansions

■ At each iteration, RRG tries to connect new sample to all vertices in the $r_{n}$ ball centered at it.

- The ball of radius

$$
r(\operatorname{card}(V))=\min \left\{\gamma_{R R G}\left(\frac{\log (\operatorname{card}(V))}{\operatorname{card}(V)}\right)^{1 / d}, \eta\right\}
$$

where

- $\eta$ is the constant of the local steering function
- $\gamma_{R R G}>\gamma_{R R G}^{*}=2(1+1 / d)^{1 / d}\left(\mu\left(\mathcal{C}_{\text {free }}\right) / \xi_{d}\right)^{1 / d}$
- $d$ - dimension of the space;
- $\mu\left(\mathcal{C}_{\text {free }}\right)$ - Lebesgue measure of the obstacle-free space;
- $\xi_{d}$ - volume of the unit ball in $d$-dimensional Euclidean space.

■ The connection radius decreases with $n$

- The rate of decay $\approx$ the average number of connections attempted is proportional to $\log (n)$

Jan Faigl, 2017	B4M36UIR - Lecture 06: Sampling-based Motion Planning	$43 / 51$
Optimal Motion Planners	Rapidly-exploring Random Graph (RRG)	

## Other Variants of the Optimal Motion Planning

■ PRM* - it follows standard PRM algorithm where connections are attempted between roadmap vertices that are within connection radius $r$ as a function of $n$

$$
r(n)=\gamma_{P R M}(\log (n) / n)^{1 / d}
$$

■ RRT* - a modification of the RRG, where cycles are avoided A tree version of the RRG

- A tree roadmap allows to consider non-holonomic dynamics and kinodynamic constraints.
■ It is basically RRG with "rerouting" the tree when a better path is discovered.


## RRG Properties

- Probabilistically complete
- Asymptotically optimal

■ Complexity is $O(\log n)$

- Computational efficiency and optimality
- Attempt connection to $\Theta(\log n)$ nodes at each iteration;
in average
- Reduce volume of the "connection" ball as $\log (n) / n$;
- Increase the number of connections as $\log (n)$.

Jan Faigl, 2017
B4M36UIR - Lecture 06: Sampling-based Motion Planning
Rapidly-exploring Random Graph (RRG)

## Example of Solution 1/3



RRT, $n=250$


RRT*, $n=250$


RRT, $n=500$


RRT*, $n=500$


RRT, $n=2500$


RRT*, $n=2500$


RRT, $n=10000$


RRT*, $n=10000$

Karaman \& Frazzoli, 2011

Optimal Motion Planners
Optimal Motion Planners
Rapidly-exploring Random Graph (RRG)
Example of Solution 2/3


RRT, $n=20000$


RRT*, $n=20000$

Example of Solution 3/3

https://www. youtube.com/watch?v=YKiQTJpPFkA
Jan Faigl, 2017 B4M36UIR - Lecture 06: Sampling-based Motion Planning
Topics Discussed $48 / 51$ $48 / 51$
Optimal Motion Planners
B4M36UIR - Lecture 06: Sampling-based Motion Planning 47 / 5
Rapidly-exploring Random Graph (RRG)
Overview of Randomized Sampling-based Algorithms

Algorithm	Probabilistic   Completeness	Asymptotic Optimality
sPRM	$\checkmark$	$x$
k-nearest sPRM	$x$	$x$
RRT	$\checkmark$	$x$
RRG	$\checkmark$	$\checkmark$
PRM*	$\checkmark$	$\checkmark$
RRT*	$\checkmark$	$\checkmark$

Notice, k-nearest variants of $R R G, P R M^{*}$, and $R R T^{*}$ are complete and optimal as well.

Topics Discussed
Topics Discussed

■ Randomized Sampling-based Methods
■ Probabilistic Road Map (PRM)

- Characteristics of path planning problems
- Random sampling

■ Rapidly Exploring Random Tree (RRT)
■ Optimal sampling-based motion planning

- Rapidly-exploring Random Graph (RRG)

■ Next: Multi-Goal Motion Planning and Multi-Goal Path Planning

