Randomized Sampling-based Motion **Planning Methods**

Jan Faigl

Department of Computer Science

Faculty of Electrical Engineering Czech Technical University in Prague

Lecture 06

B4M36UIR - Artificial Intelligence in Robotics

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

1 / 50 Jan Faigl, 2017 B4M36UIR - Lecture 06: Sampling-based Motion Planning

2 / 50

Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Part I

Part 1 – Sampling-based Motion Planning

Overview of the Lecture

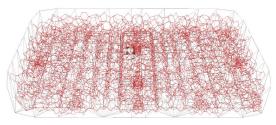
- Part 1 Randomized Sampling-based Motion Planning Methods
 - Sampling-Based Methods
 - Probabilistic Road Map (PRM)
 - Characteristics
 - Rapidly Exploring Random Tree (RRT)
- Part 2 Optimal Sampling-based Motion Planning Methods
 - Optimal Motion Planners
 - Rapidly-exploring Random Graph (RRG)

Sampling-based Motion Planning

- Avoids explicit representation of the obstacles in *C-space*
 - A "black-box" function is used to evaluate a configuration q is a collision free, e.g.,
 - Based on geometrical models and testing collisions of the models
 - In 2D or 3D shape of the robot and environment can be represented as sets of triangles, i.e., tesselated models
 - Collision test an intersection of triangles

E.g., using RAPID library http://gamma.cs.unc.edu/OBB/

- It creates a discrete representation of C_{free}
- $lue{}$ Configurations in \mathcal{C}_{free} are sampled randomly and connected to a roadmap (probabilistic roadmap)
- Rather than full completeness they provides probabilistic com**pleteness** or resolution completeness


Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists)

Probabilistic Roadmaps

A discrete representation of the continuous C-space generated by randomly sampled configurations in C_{free} that are connected into a graph.

- **Nodes** of the graph represent admissible configuration of the robot.
- Edges represent a feasible path (trajectory) between the particular configurations.

Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists)

Having the graph, the final path (trajectory) is found by a graph search technique.

B4M36UIR – Lecture 06: Sampling-based Motion Planning

ampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Probabilistic Roadmap Strategies

Multi-Query - roadmap based

- Generate a single roadmap that is then used for planning queries several times.
- An representative technique is Probabilistic RoadMap (PRM)

 Kavraki, L., Svestka, P., Latombe, J.-C., Overmars, M. H.B (1996): Probabilistic

Roadmaps for Path Planning in High Dimensional Configuration Spaces. T-RO.

Single-Query – incremental

- For each planning problem constructs a new roadmap to characterize the subspace of *C*-space that is relevant to the problem.
 - Rapidly-exploring Random Tree RRT

LaValle, 1998

■ Expansive-Space Tree – EST

Hsu et al., 1997

■ Sampling-based Roadmap of Trees – SRT (combination of multiple-query and single-query approaches) Plaku et al., 2005 Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Incremental Sampling and Searching

- Single query sampling-based algorithms incrementally created a search graph (roadmap)
 - 1. **Initialization** G(V, E) an undirected search graph, V may constain q_{start} , q_{goal} and/or other points in C_{free}
 - 2. Vertex selection method choose a vertex $q_{cur} \in V$ for expansion
 - 3. Local planning method for some $q_{new} \in \mathcal{C}_{free}$, attempt to construct a path $\tau:[0,1] \to \mathcal{C}_{free}$ such that $\tau(0)=q_{cur}$ and $\tau(1)=q_{new}$, τ must be ched to ensure it is collision free
 - If τ is not a collision-free, go to Step 2
 - 4. **Insert an edge in the graph** Insert τ into E as an edge from q_{cur} to q_{new} and insert q_{new} to V if $q_{new} \notin V$
 - 5. Check for a solution Determine if G encodes a solution, e.g., single search tree or graph search
 - Repeat to Step 2 iterate unless a solution has been found or a termination condition is satisfied

LaValle, S. M.: Planning Algorithms (2006), Chapter 5.4

B4M36UIR - Lecture 06: Sampling-based Motion Planning

7 / 50

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Multi-Query Strategy

Build a roadmap (graph) representing the environment

- 1. Learning phase
 - 1.1 Sample *n* points in C_{free}
 - 1.2 Connect the random configurations using a local planner
- 2. Query phase
 - 2.1 Connect start and goal configurations with the PRM

E.g., using a local planner

2.2 Use the graph search to find the path

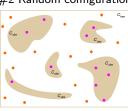
Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces

Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. Overmars,

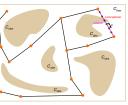
IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996.

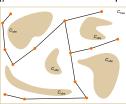
First planner that demonstrates ability to solve general planning problems in more than 4-5 dimensions.

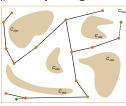
Jan Faigl, 2017

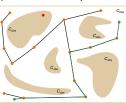

6 / 50

PRM Construction

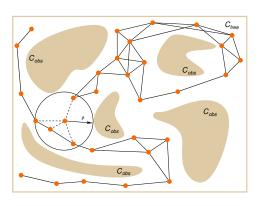

#1 Given problem domain


#2 Random configuration


#3 Connecting samples


#4 Connected roadmap

#5 Query configurations



#6 Final found path

Practical PRM

- Incremental construction
- \blacksquare Connect nodes in a radius ρ
- Local planner tests collisions up to selected resolution δ
- Path can be found by Dijkstra's algorithm

What are the properties of the PRM algorithm?

We need a couple of more formalism.

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

11 / 50

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Path Planning Problem Formulation

Path planning problem is defined by a triplet

$$\mathcal{P} = (\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal}),$$

- $C_{free} = cl(C \setminus C_{obs}), C = (0,1)^d, \text{ for } d \in \mathbb{N}, d \geq 2$
- $q_{init} \in \mathcal{C}_{free}$ is the initial configuration (condition)
- ullet \mathcal{G}_{goal} is the goal region defined as an open subspace of \mathcal{C}_{free}
- Function $\pi:[0,1]\to\mathbb{R}^d$ of bounded variation is called :
 - path if it is continuous;
 - **collision-free path** if it is path and $\pi(\tau) \in \mathcal{C}_{free}$ for $\tau \in [0,1]$;
 - feasible if it is collision-free path, and $\pi(0) = q_{init}$ and $\pi(1) \in \mathsf{cl}(\mathcal{Q}_{\mathsf{goal}}).$
- A function π with the total variation $\mathsf{TV}(\pi) < \infty$ is said to have bounded variation, where $TV(\pi)$ is the total variation

$$\mathsf{TV}(\pi) = \sup_{\{n \in \mathbb{N}, \mathbf{0} = au_{\mathbf{0}} < au_{\mathbf{1}} < \ldots < au_n = s\}} \sum_{i=1}^n |\pi(au_i) - \pi(au_{i-1})|$$

■ The total variation $TV(\pi)$ is de facto a path length.

Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Path Planning Problem

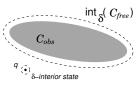
■ Feasible path planning:

For a path planning problem (C_{free} , q_{init} , Q_{goal})

- Find a feasible path $\pi:[0,1]\to \mathcal{C}_{free}$ such that $\pi(0)=q_{init}$ and $\pi(1) \in cl(\mathcal{Q}_{goal})$, if such path exists.
- Report failure if no such path exists.
- Optimal path planning:

The optimality problem ask for a feasible path with the minimum cost.

For $(\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal})$ and a cost function $c: \Sigma \to \mathbb{R}_{\geq 0}$


- Find a feasible path π^* such that $c(\pi^*) = \min\{c(\pi) : \pi \text{ is feasible}\}$
- Report failure if no such path exists.

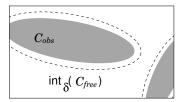
The cost function is assumed to be monotonic and bounded. i.e., there exists k_c such that $c(\pi) \leq k_c \text{TV}(\pi)$.

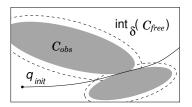
Probabilistic Completeness 1/2

First, we need robustly feasible path planning problem $(\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal})$

lacksquare $q \in \mathcal{C}_{free}$ is δ -interior state of \mathcal{C}_{free} if the closed ball of radius δ centered at alies entirely inside C_{free} .

- lacksquare δ -interior of \mathcal{C}_{free} is $\operatorname{int}_{\delta}(\mathcal{C}_{free}) = \{q \in \mathcal{C}_{free} | \mathcal{B}_{f,\delta} \subseteq \mathcal{C}_{free} \}$. A collection of all δ -interior states.
- A collision free path π has strong δ -clearance, if π lies entirely inside int $_{\delta}(\mathcal{C}_{free})$
- $(C_{free}, q_{init}, Q_{goal})$ is robustly feasible if a solution exists and it is a feasible path with strong δ -clearance, for δ >0.


Probabilistic Completeness 2/2


An algorithm ALG is probabilistically complete if, for any robustly feasible path planning problem $\mathcal{P} = (\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal})$

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

 $\lim_{n\to 0} \Pr(\mathcal{ALG} \text{ returns a solution to } \mathcal{P}) = 1.$

- It is a "relaxed" notion of completeness
- Applicable only to problems with a robust solution.

We need some space, where random configurations can be sampled

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

16 / 50 Jan Faigl, 2017

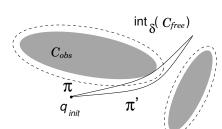
B4M36UIR - Lecture 06: Sampling-based Motion Planning Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Asymptotic Optimality 1/4

Asymptotic optimality relies on a notion of weak δ -clearance

Notice, we use strong δ -clearance for probabilistic completeness


- Function $\psi:[0,1]\to\mathcal{C}_{free}$ is called **homotopy**, if $\psi(0)=\pi_1$ and $\psi(1)=\pi_1$ π_2 and $\psi(\tau)$ is collision-free path for all $\tau \in [0,1]$.
- A collision-free path π_1 is **homotopic** to π_2 if there exists homotopy function ψ .

A path homotopic to π can be continuously transformed to π through \mathcal{C}_{free} .

Asymptotic Optimality 2/4

lacktriangle A collision-free path $\pi:[0,s]
ightarrow \mathcal{C}_{free}$ has weak δ -clearance if there exists a path π' that has strong δ -clearance and homotopy ψ with $\psi(0)=\pi$, $\psi(1)=\pi'$, and for all $\alpha\in(0,1]$ there exists $\delta_{\alpha} > 0$ such that $\psi(\alpha)$ has strong δ -clearance.

> Weak δ -clearance does not require points along a path to be at least a distance δ away from obstacles.

- \blacksquare A path π with a weak δ -clearance
- $\blacksquare \pi'$ lies in $\operatorname{int}_{\delta}(\mathcal{C}_{free})$ and it is the same homotopy class as π

Asymptotic Optimality 3/4

- It is applicable with a **robust optimal solution** that can be obtained as a limit of robust (non-optimal) solutions.
- A collision-free path π^* is robustly optimal solution if it has weak δ -clearance and for any sequence of collision free paths $\{\pi_n\}_{n\in\mathbb{N}}$, $\pi_n\in\mathcal{C}_{free}$ such that $\lim_{n\to\infty}\pi_n=\pi^*$,

$$\lim_{n\to\infty}c(\pi_n)=c(\pi^*).$$

There exists a path with strong δ -clearance, and π^* is homotopic to such path and π^* is of the lower cost.

• Weak δ -clearance implies robustly feasible solution problem

(thus, probabilistic completeness)

Asymptotic Optimality 4/4

An algorithm \mathcal{ALG} is **asymptotically optimal** if, for any path planning problem $\mathcal{P} = (\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal})$ and cost function c that admit a robust optimal solution with the finite cost c^*

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

$$Pr\left(\left\{\lim_{i o\infty}Y_i^{\mathcal{ALG}}=c^*
ight\}
ight)=1.$$

• $Y_i^{\mathcal{ALG}}$ is the extended random variable corresponding to the minimum-cost solution included in the graph returned by \mathcal{ALG} at the end of iteration i.

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

20 / 50 | Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

21 / 50

ampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Properties of the PRM Algorithm

- Completeness for the standard PRM has not been provided when it was introduced
- A simplified version of the PRM (called sPRM) has been mostly studied
- sPRM is probabilistically complete

What are the differences between PRM and sPRM?

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

PRM vs simplified PRM (sPRM)

Algorithm 1: PRM

```
Vstup: q_{init}, number of samples n, radius \rho

Výstup: PRM -G = (V, E)

V \leftarrow \emptyset; E \leftarrow \emptyset;

for i = 0, \ldots, n do

q_{rand} \leftarrow SampleFree;
U \leftarrow Near(G = (V, E), q_{rand}, \rho);
V \leftarrow V \cup \{q_{rand}\};

foreach u \in U, with increasing

||u - q_r|| do

if q_{rand} and u are not in the same connected component of G = (V, E) then

if CollisionFree(q_{rand}, u)

then

E \leftarrow E \cup \{(q_{rand}, u), (u, q_{rand})\};
```

Algorithm 2: sPRM

return G = (V, E);

There are several ways for the set U of vertices to connect them

- lacktriangleq k-nearest neighbors to v
- variable connection radius ρ as a function of n

return G = (V, E);

PRM – Properties

- sPRM (simplified PRM)
 - Probabilistically complete and asymptotically optimal
 - Processing complexity $O(n^2)$
 - Query complexity $O(n^2)$
 - Space complexity $O(n^2)$
- Heuristics practically used are usually not probabilistic complete
 - *k*-nearest sPRM is not probabilistically complete
 - variable radius sPRM is not probabilistically complete

Based on analysis of Karaman and Frazzoli

PRM algorithm:

- + Has very simple implementation
- + Completeness (for sPRM)
- Differential constraints (car-like vehicles) are not straightforward

Jan Faigl, 2017

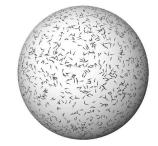
B4M36UIR - Lecture 06: Sampling-based Motion Planning

24 / 50

B4M36UIR - Lecture 06: Sampling-based Motion Planning

Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Comments about Random Sampling 2/2


A solution can be found using only a few samples.

Do you know the Oraculum? (from Alice in Wonderland)

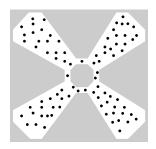
- Sampling strategies are important
 - Near obstacles
 - Narrow passages
 - Grid-based
 - Uniform sampling must be carefully considered.

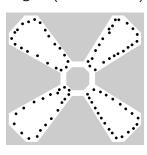
James J. Kuffner (2004):, Effective Sampling and Distance Metrics for 3D Rigid Body Path Planning., ICRA.

Naïve sampling

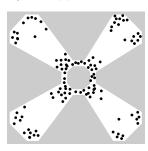
Jan Faigl, 2017

Uniform sampling of SO(3) using Euler angles


B4M36UIR - Lecture 06: Sampling-based Motion Planning


26 / 50

B4M36UIR - Lecture 06: Sampling-based Motion Planning


Comments about Random Sampling 1/2

Different sampling strategies (distributions) may be applied

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

- Notice, one of the main issue of the randomized sampling-based approaches is the narrow passage
- Several modifications of sampling based strategies have been proposed in the last decades

Jan Faigl, 2017 Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Rapidly Exploring Random Tree (RRT)

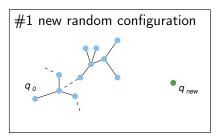
Single-Query algorithm

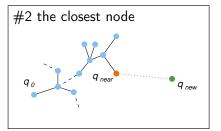
■ It incrementally builds a graph (tree) towards the goal area.

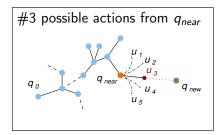
It does not guarantee precise path to the goal configuration.

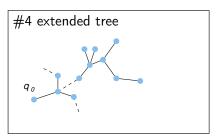
- 1. Start with the initial configuration q_0 , which is a root of the constructed graph (tree)
- 2. Generate a new random configuration q_{new} in C_{free}
- 3. Find the closest node q_{near} to q_{new} in the tree

E.g., using KD-tree implementation like ANN or FLANN libraries


4. Extend q_{near} towards q_{new}


Extend the tree by a small step, but often a direct control $u \in \mathcal{U}$ that will move robot the position closest to q_{new} is selected (applied for δt).


5. Go to Step 2, until the tree is within a sufficient distance from the goal configuration


Or terminates after dedicated running time.

RRT Construction

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

29 / 50

pling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Properties of RRT Algorithms

Rapidly explores the space

q_{new} will more likely be generated in large not yet covered parts.

- Allows considering kinodynamic/dynamic constraints (during the expansion).
- Can provide trajectory or a sequence of direct control commands for robot controllers.
- A collision detection test is usually used as a "black-box".

E.g., RAPID, Bullet libraries.

- Similarly to PRM, RRT algorithms have poor performance in narrow passage problems.
- RRT algorithms provides feasible paths.

It can be relatively far from optimal solution, e.g., according to the length of the path.

Many variants of RRT have been proposed.

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

RRT Algorithm

- Motivation is a single query and *control-based* path finding
- It incrementally builds a graph (tree) towards the goal area.

Algorithm 3: Rapidly Exploring Random Tree (RRT)

```
Vstup: q_{init}, number of samples n

Výstup: Roadmap G = (V, E)

V \leftarrow \{q_{init}\}; E \leftarrow \emptyset;

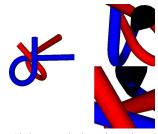
for i = 1, ..., n do

q_{rand} \leftarrow \text{SampleFree};
q_{nearest} \leftarrow \text{Nearest}(G = (V, E), q_{rand});
q_{new} \leftarrow \text{Steer}(q_{nearest}, q_{rand});
if CollisionFree(q_{nearest}, q_{new}) then
V \leftarrow V \cup \{x_{new}\}; E \leftarrow E \cup \{(x_{nearest}, x_{new})\};
return G = (V, E);
```

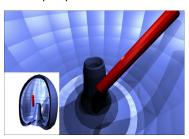
Extend the tree by a small step, but often a direct control $u \in \mathcal{U}$ that will move robot to the position closest to q_{new} is selected (applied for dt).

Rapidly-exploring random trees: A new tool for path planning S. M. LaValle,

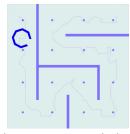
Technical Report 98-11, Computer Science Dept., Iowa State University, 1998

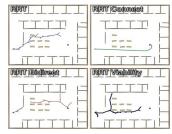

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning


30 / 50

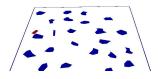
Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)


RRT – Examples 1/2

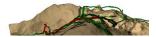

Alpha puzzle benchmark

Bugtrap benchmark

Apply rotations to reach the goal

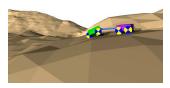


Variants of RRT algorithms


Courtesy of V. Vonásek and P. Vaněk

RRT – Examples 2/2

■ Planning for a car-like robot



■ Planning on a 3D surface

■ Planning with dynamics

(friction forces)

Courtesy of V. Vonásek and P. Vaněk

Characteristics Rapidly Exploring Random Tree (RRT)

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

33 / 50

Jan Faigl, 2017

Optimal Motion Planners

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Car-Like Robot

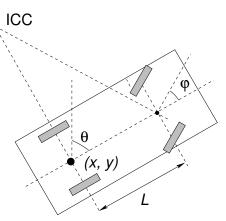
Configuration

$$\overrightarrow{x} = \begin{pmatrix} x \\ y \\ \phi \end{pmatrix}$$

position and orientation

Controls

$$\overrightarrow{\boldsymbol{u}} = \begin{pmatrix} v \\ \varphi \end{pmatrix}$$


forward velocity, steering angle

System equation

$$\dot{x} = v \cos \phi$$

$$\dot{v} = v \sin \phi$$

$$\dot{\varphi} = \frac{v}{I} \tan \varphi$$

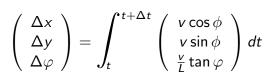
Kinematic constraints $\dim(\overrightarrow{u}) < \dim(\overrightarrow{x})$

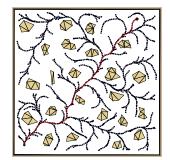
Differential constraints on possible q:

$$\dot{x}\sin(\phi) - \dot{y}\cos(\phi) = 0$$

Rapidly-exploring Random Graph (RRG)

B4M36UIR - Lecture 06: Sampling-based Motion Planning


34 / 50


Control-Based Sampling

■ Select a configuration *q* from the tree *T* of the current configurations

Probabilistic Road Map (PRM)

■ Pick a control input $\overrightarrow{\boldsymbol{u}} = (v, \varphi)$ and integrate system (motion) equation over a short period

■ If the motion is collision-free, add the endpoint to the tree

E.g., considering k configurations for $k\delta t = dt$.

Part II

Part 2 – Optimal Sampling-based Motion Planning Methods

Sampling-Based Motion Planning

- PRM and RRT are theoretically probabilistic complete
- They provide a feasible solution without quality guarantee

Despite of that, they are successfully used in many practical

■ In 2011, a systematical study of the asymptotic behaviour of randomized sampling-based planners has been published

It shows, that in some cases, they converge to a non-optimal

Based on the study, new algorithms have been proposed: RRG and optimal RRT (RRT*)

Karaman, S., Frazzoli, E. (2011):Sampling-based algorithms for optimal motion planning. IJRR.

http://sertac.scripts.mit.edu/rrtstar

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

38 / 50 Jan Faigl, 2017 B4M36UIR - Lecture 06: Sampling-based Motion Planning

39 / 50

Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)

RRT and Quality of Solution 2/2

- RRT does not satify a necessary condition for the asymptotic optimality
 - For $0 < R < \inf_{q \in \mathcal{Q}_{goal}} ||q q_{init}||$, the event $\{\lim_{n \to \infty} Y_n^{RTT} = c^*\}$ occurs only if the k-th branch of the RRT contains vertices outside the R-ball centered at q_{init} for infinitely many k.

See Appendix B in Karaman&Frazzoli, 2011

■ It is required the root node will have infinitely many subtrees that extend at least a distance ϵ away from q_{init}

> The sub-optimality is caused by disallowing new better paths to be discovered.

RRT and Quality of Solution 1/2

- Let Y_i^{RRT} be the cost of the best path in the RRT at the end of iteration i.
- Y_i^{RRT} converges to a random variable

$$\lim_{i\to\infty}Y_i^{RRT}=Y_{\infty}^{RRT}.$$

■ The random variable Y_{∞}^{RRT} is sampled from a distribution with zero mass at the optimum, and

$$Pr[Y_{\infty}^{RRT} > c^*] = 1.$$

Karaman and Frazzoli. 2011

■ The best path in the RRT converges to a sub-optimal solution almost surely.

Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)

Rapidly-exploring Random Graph (RRG)

```
Algorithm 4: Rapidly-exploring Random Graph (RRG)
Vstup: q_{init}, number of samples n
Výstup: G = (V, E)
V \leftarrow \emptyset; E \leftarrow \emptyset;
for i = 0, \ldots, n do
     q_{rand} \leftarrow \mathsf{SampleFree};
     q_{nearest} \leftarrow \text{Nearest}(G = (V, E), q_{rand});
     q_{new} \leftarrow \text{Steer}(q_{nearest}, q_{rand});
     if CollisionFree(q_{nearest}, q_{new}) then
           Q_{near} \leftarrow \text{Near}(G =
          (V, E), q_{new}, \min\{\gamma_{RRG}(\log(\operatorname{card}(V))/\operatorname{card}(V))^{1/d}, \eta\});
           V \leftarrow V \cup \{q_{new}\};
          E \leftarrow E \cup \{(q_{nearest}, q_{new}), (q_{new}, q_{nearest})\};
          foreach q_{near} \in \mathcal{Q}_{near} do
               if CollisionFree(q_{near}, q_{new}) then
                     E \leftarrow E \cup \{(q_{rand}, u), (u, q_{rand})\};
```

```
return G = (V, E):
```

Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of Random Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose (1999)

RRG Expansions

- At each iteration, RRG tries to connect new sample to the all vertices in the r_n ball centered at it.
- The ball of radius

$$r(\operatorname{card}(V)) = \min \left\{ \gamma_{RRG} \left(\frac{\log (\operatorname{card}(V))}{\operatorname{card}(V)} \right)^{1/d}, \eta \right\}$$

where

- \blacksquare η is the constant of the local steering function
- $\gamma_{RRG} > \gamma_{RRG}^* = 2(1 + 1/d)^{1/d} (\mu(\mathcal{C}_{free})/\xi_d)^{1/d}$
 - d dimension of the space:
 - $\mu(\mathcal{C}_{free})$ Lebesgue measure of the obstacle-free space;
 - ξ_d volume of the unit ball in d-dimensional Euclidean space.
- The connection radius decreases with n
- The rate of decay \approx the average number of connections attempted is proportional to log(n)

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

43 / 50 Jan Faigl, 2017 B4M36UIR - Lecture 06: Sampling-based Motion Planning

44 / 50

Optimal Motion Planners

Rapidly-exploring Random Graph (RRG)

Other Variants of the Optimal Motion Planning

■ PRM* – it follows standard PRM algorithm where connections are attempted between roadmap vertices that are within connection radius r as a function of n

$$r(n) = \gamma_{PRM} (\log(n)/n)^{1/d}$$

■ RRT* – a modification of the RRG, where cycles are avoided

A tree version of the RRG

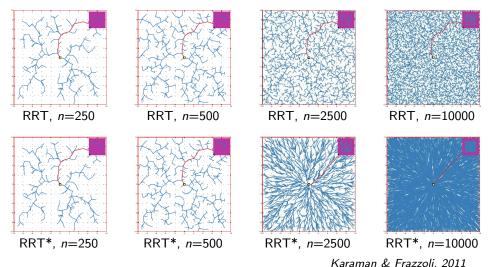
- A tree roadmap allows to consider non-holonomic dynamics and kinodynamic constraints.
- It is basically RRG with "rerouting" the tree when a better path is discovered.

RRG Properties

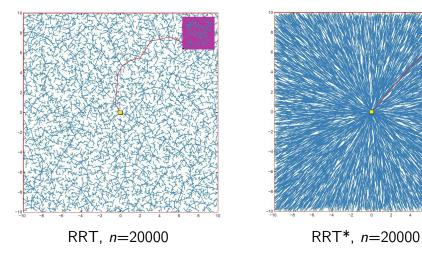
- Probabilistically complete
- Asymptotically optimal
- Complexity is O(log n)

(per one sample)

- Computational efficiency and optimality
 - Attempt connection to $\Theta(\log n)$ nodes at each iteration;


in average

- Reduce volume of the "connection" ball as $\log(n)/n$;
- Increase the number of connections as log(n).


Rapidly-exploring Random Graph (RRG)

Example of Solution 1/2

Optimal Motion Planners

Example of Solution 2/2

Overview of Randomized Sampling-based Algorithms

Algorithm	Probabilistic Completeness	J .
sPRM	✓	×
k-nearest sPRM	×	×
RRT	✓	×
RRG	✓	✓
PRM*	✓	✓
RRT*	~	✓

Notice, k-nearest variants of RRG, PRM*, and RRT* are complete and optimal as well.

Jan Faigl, 2017

B4M36UIR - Lecture 06: Sampling-based Motion Planning

Jan Faigl, 2017

47 / 50

B4M36UIR - Lecture 06: Sampling-based Motion Planning

48 / 50

Topics Discussed

Topics Discussed

Topics Discussed

Summary of the Lecture

- Randomized Sampling-based Methods
- Probabilistic Road Map (PRM)
- Characteristics of path planning problems
- Random sampling
- Rapidly Exploring Random Tree (RRT)
- Optimal sampling-based motion planning
- Rapidly-exploring Random Graph (RRG)
- Next: Multi-Goal Motion Planning and Multi-Goal Path Planning