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Overview of the Lecture

m Part 1 — Randomized Sampling-based Motion Planning Methods

= Sampling-Based Methods

= Probabilistic Road Map (PRM)

= Characteristics

= Rapidly Exploring Random Tree (RRT)

m Part 2 — Optimal Sampling-based Motion Planning Methods

= Optimal Motion Planners

= Rapidly-exploring Random Graph (RRG)
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Part |

Part 1 — Sampling-based Motion Planning

Jan Faigl, 2017 B4M36UIR — Lecture 06: Sampling-based Motion Planning 3 /51

Sampling-Based Methods Probabilistic Road Map (PRM)  Characteristics  Rapidly Exploring Random Tree (RRT)

Sampling-based Motion Planning

m Avoids explicit representation of the obstacles in C-space

B A "black-box" function is used to evaluate
a configuration q is a collision free, e.g.,

B Based on geometrical models and testing
collisions of the models

B In 2D or 3D shape of the robot and en-
vironment can be represented as sets of
triangles, i.e., tesselated models

m Collision test — an intersection of triangles
E.g., using RAPID library http://gamma.cs.unc.edu/0BB/

m |t creates a discrete representation of Crree

m Configurations in Cgee are sampled randomly and connected to a
roadmap (probabilistic roadmap)

m Rather than full completeness they provides probabilistic com-

pleteness or resolution completeness
Probabilistic complete algorithms: with increasing number of samples
an admissible solution would be found (if exists)
Jan Faigl, 2017
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Probabilistic Roadmaps

A discrete representation of the continuous C-space generated by ran-
domly sampled configurations in Csee that are connected into a graph.

= Nodes of the graph represent admissible configuration of the
robot.

m Edges represent a feasible path (trajectory) between the particular
configurations.

Probabilistic complete algorithms: with increasing number of samples
an admissible solution would be found (if exists)

Having the graph, the final path (trajectory) is found by a graph search technique.
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Incremental Sampling and Searching

m Single query sampling-based algorithms incrementally created a
search graph (roadmap)
1. Initialization — G(V/, E) an undirected search graph, V may con-
stain Gstart, Ggoar and/or other points in Cree
2. Vertex selection method — choose a vertex g, € V for expansion
3. Local planning method — for some gpenw € Cree, attempt to con-

struct a path 7 : [0,1] — Cpee such that 7(0) = g, and 7(1) =
Gnew, T Must be ched to ensure it is collision free

m If 7 is not a collision-free, go to Step 2
4. Insert an edge in the graph — Insert 7 into E as an edge from
Geur O Qnew and insert gpew to V if Gpew ¢ V
5. Check for a solution — Determine if G encodes a solution, e.g.,
single search tree or graph search
6. Repeat to Step 2 — iterate unless a solution has been found or a
termination condition is satified

LaValle, S. M.: Planning Algorithms (2006), Chapter 5.4
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Probabilistic Roadmap Strategies

Multi-Query — roadmap based

m Generate a single roadmap that is then used for planning queries
several times.

m An representative technique is Probabilistic RoadMap (PRM)

Kavraki, L., Svestka, P., Latombe, J.-C., Overmars, M. H.B (1996): Probabilistic
Roadmaps for Path Planning in High Dimensional Configuration Spaces. T-RO.

Single-Query — incremental

m For each planning problem constructs a new roadmap to character-
ize the subspace of C-space that is relevant to the problem.

m Rapidly-exploring Random Tree — RRT LaValle, 1998

m Expansive-Space Tree — EST Hsu et al., 1007

m Sampling-based Roadmap of Trees — SRT
(combination of multiple—query and single—query approaches)
Plaku et al., 2005
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Multi-Query Strategy

Build a roadmap (graph) representing the environment

1. Learning phase

1.1 Sample n points in Cgee

1.2 Connect the random configurations using a local planner
2. Query phase

2.1 Connect start and goal configurations with the PRM
E.g., using a local planner

2.2 Use the graph search to find the path

@ Probabilistic Roadmaps for Path Planning in High Dimensional Configuration
Spaces
Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H.
Overmars,
IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996.

First planner that demonstrates ability to solve general planning prob-
lems in more than 4-5 dimensions.
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PRM Construction

##1 Given problem domain #2 Random configuration

Ciee . Cree

Cos Cans
Cave Cone

Cve Cone
Cos Cons

Cos

#4 Connected roadmap

Cie

#5 Query configurations

Cieo

#6 Final found path
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Sampling-Based Methods Probabilistic Road Map (PRM)

Practical PRM

Characteristics

Rapidly Exploring Random Tree (RRT)

m Incremental construction
m Connect nodes in a radius p

m Local planner tests collisions up
to selected resolution §

m Path can be found by Dijkstra’s
algorithm

What are the properties of the PRM algorithm?

We need a couple of more formalism.
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Characteristics

Path Planning Problem Formulation

m Path planning problem is defined by a triplet
P = (Cfreea dinit, ngal)7
8 Cpree = cl(C\ Cops), C = (0,1)4, ford €N, d > 2
B Ginit € Cree is the initial configuration (condition)
B Ggoar is the goal region defined as an open subspace of Cree

m Function 7 : [0,1] — R9 of bounded variation is called :
m path if it is continuous;
m collision-free path if it is path and 7(7) € Cpee for 7 € [0,1];
m feasible if it is collision-free path, and 7(0) = gjnix and

(1) € cl(Qgoar)-

m A function 7 with the total variation TV(7) < oo is said to have bounded
variation, where TV(7) is the total variation

TV(7) = SUP{nen,0mrg<ry<...<rpms} 2oiza [T(73) = T(7i-1)]

m The total variation TV(7) is de facto a path length.
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Path Planning Problem

m Feasible path planning:

For a path planning problem (Cree, Ginit, Qgoal)
m Find a feasible path 7 : [0, 1] — Cfee such that 7(0) = ginir and
(1) € cl(Qgoar), if such path exists.
m Report failure if no such path exists.

m Optimal path planning:
The optimality problem ask for a feasible path with the minimum cost.
For (Cfree, Qinit, Qgoal) and a cost function ¢ : ¥ — Rx>g
m Find a feasible path 7* such that
c(m*) = min{c(n) : 7 is feasible}.
m Report failure if no such path exists.

The cost function is assumed to be monotonic and bounded,
i.e., there exists k. such that c(m) < ke TV(7).
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Probabilistic Completeness 1/2

First, we need robustly feasible path planning problem
(Cfreea dinit, ngal)-
B g € Cqee is O-interior state of Cpee if

the closed ball of radius § centered at g
lies entirely inside Cree.

" s—interior state

m O-interior of Crree is ints(Crree) = {q € Cfree’B/75 C Chree }-

A collection of all é-interior states.
m A collision free path 7 has strong J-clearance, if 7 lies entirely
inside ints(Cfree)-
8 (Cfree, Ginits Qgoal) is robustly feasible if a solution exists and it is a
feasible path with strong d-clearance, for §>0.
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Rapidly Exploring Random Tree (RRT)
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Probabilistic Completeness 2/2

An algorithm ALG is probabilistically complete if, for any robustly
feasible path planning problem P = (Ctree, Ginit, Lgoal)

lim Pr(ALG returns a solution to P) = 1.
n—0

m It is a “relaxed’ notion of completeness
m Applicable only to problems with a robust solution.

We need some space, where random configurations
can be sampled
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Jan Faigl, 2017
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Probabilistic Road Map (PRM)

Asymptotic Optimality 1/4

Asymptotic optimality relies on a notion of weak J-clearance

Notice, we use strong §-clearance for probabilistic completeness

m Function ¢ : [0, 1] — Cfee is called homotopy, if (0) = 7 and (1) =
m and ¢(7) is collision-free path for all 7 € [0, 1].
m A collision-free path 71 is homotopic to 7, if there exists homotopy

function 1.
A path homotopic to m can be continuously trans-

formed to w through Cree.

Jan Faigl, 2017 B4M36UIR — Lecture 06: Sampling-based Motion Planning

Rapidly Exploring Random Tree (RRT)

18 / 51

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics

Asymptotic Optimality 2/4

m A collision-free path 7 : [0,s] — Cgee has weak o-clearance if
there exists a path 7’ that has strong ¢-clearance and homotopy
¥ with ¥(0) = 7, (1) = 7/, and for all « € (0,1] there exists
da > 0 such that ¢(«) has strong d-clearance.

Weak d-clearance does not require points along a
path to be at least a distance § away from obstacles.

m A path 7 with a weak §-clearance

m 7' lies in ints(Chee) and it is the
same homotopy class as 7
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Asymptotic Optimality 3/4

m It is applicable with a robust optimal solution that can be obtained
as a limit of robust (non-optimal) solutions.

m A collision-free path 7* is robustly optimal solution if it has weak
d-clearance and for any sequence of collision free paths {m,}en,
Tn € Cree such that lim,_,o m, = 7%,

nimm c(mn) = (7).

There exists a path with strong 6-clearance, and ©* is
homotopic to such path and ©* is of the lower cost.
m Weak d-clearance implies robustly feasible solution problem

(thus, probabilistic completeness)

Jan Faigl, 2017 B4M36UIR — Lecture 06: Sampling-based Motion Planning

Rapidly Exploring Random Tree (RRT)

20 / 51

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Asymptotic Optimality 4/4

An algorithm ALG is asymptotically optimal if, for any path plan-
ning problem P = (Cree, Ginit, Lgoar) and cost function ¢ that admit
a robust optimal solution with the finite cost c*

(-l

n Y,-Aﬁg is the extended random variable corresponding to the minimum-
cost solution included in the graph returned by ALG at the end of
iteration /.

lim
i—00
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Properties of the PRM Algorithm

m Completeness for the standard PRM has not been provided when
it was introduced

m A simplified version of the PRM (called sPRM) has been mostly
studied

m sPRM is probabilistically complete

What are the differences between PRM and sPRM?
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Sampling-Based Methods

PRM vs simplified PRM (sPRM)

PRM sPRM Algorithm

Vstup: gjniz, number of samples n, radius p Vstup: ginir, number of samples n,

Vystup: PRM = G = (V, E) radius p
V 0, E 0 Vystup: PRM - G = (V, E)
fori=0,...,ndo V  {Qinit} U

Grand < SampleFree;
U<« Near(G = (V: E)a Arand, p);
V< Vu {qrand};
foreach u € U, with increasing
llu— gr|| do
if grang and u are not in the
same connected component of
G = (V,E) then

if CollisionFree(grand, U)

then

E+~ EU

{(qrand» U)v (u7 qrand)};

{SampleFree;}i=1, . n—1; E < 0;
foreach v € V do
U +Near(G = (V, E), v, p)\ {v};
foreach u € U do
L if CollisionFree(v, u) then

L E +— EU{(v,u),(u,v)};
ety ofe ?e(lt\:/raﬁ\)\iays for the set U of

vertices to connect them

m k-nearest neighbors to v

m variable connection radius p as a
function of n

return G = (V, E);
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PRM — Properties Comments about Random Sampling 1/2
m sPRM (simplified PRM) m Different sampling strategies (distributions) may be applied
m Probabilistically complete and asymptotically optimal . . = -
m Processing complexity O(n?) N ) (D A I A D,
= Query complexity O(n?) S KX . WS . : . >
m Space complexity O(n?) T et TR T et
B ]
m Heuristics practically used are usually not probabilistic complete el Lot e, Ladlend.
m k-nearest sPRM is not probabilistically complete L AL R L. 4 N,
m variable radius sSPRM is not probabilistically complete L ool - .. ot
Based on analysis of Karaman and Frazzoli : . o Teer 2
PRM algorithm: m Notice, one of the main issue of the randomized sampling-based
+ Has very simple implementation approaches is the narrow passage
+ Completeness (for sSPRM) m Several modifications of sampling based strategies have been pro-
— Differential constraints (car-like vehicles) are not straightforward posed in the last decades
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Comments about Random Sampling 2/2

m A solution can be found using only a few samples.
Do you know the Oraculum? (from Alice in Wonderland)
m Sampling strategies are important
m Near obstacles
m Narrow passages
m Grid-based
]

Uniform sampling must be carefully considered.
James J. Kuffner, Effective Sampling and Distance
Metrics for 3D Rigid Body Path Planning, |CRA, 2004.

Uniform sampling of SO(3) using Euler angles

Naive sampling
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Rapidly Exploring Random Tree (RRT)

Single—Query algorithm
m It incrementally builds a graph (tree) towards the goal area.
It does not guarantee precise path to the goal configuration.
1. Start with the initial configuration qg, which is a root of the
constructed graph (tree)

Generate a new random configuration gnew in Cfree

3. Find the closest node gnear tO Gnew in the tree
E.g., using KD-tree implementation like ANN or FLANN libraries
4. Extend qpear towards gpew
Extend the tree by a small step, but often a direct control

u € U that will move robot the position closest to Qnew is
selected (applied for dt).

5. Go to Step 2, until the tree is within a sufficient distance from the
goal configuration
Or terminates after dedicated running time.
B4M36UIR — Lecture 06: Sampling-based Motion Planning
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RRT Construction

#1 new random configuration #2 the closest node

/
- N .

[ ]
9 new

V.
/

- 9 near [ ]
9 new

#4 extended tree

/
e

9o %
/\

\ Us \

\ \
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RRT Algorithm

m Motivation is a single query and control-based path finding

Probabilistic Road Map (PRM)

m It incrementally builds a graph (tree) towards the goal area.
Algorithm 1: Rapidly Exploring Random Tree (RRT)

Vstup: gjni:, number of samples n
Vystup: Roadmap G = (V, E)
V < {qinit}; E < 0;
fori=1,...,ndo
Grand < SampleFree;
Qnearest <— NearESt(G = (V7 E): qrand);
Qnew < Steer(Qnearesh qrand);
if CollisionFree(gnearest, Gnew ) then
L V< Vu {Xnew}; E+ EU {(Xneareshxnew)};

return G = (V, E);

Extend the tree by a small step, but often a direct control u € U that will
move robot to the position closest to qnew is selected (applied for dt).

D Rapidly-exploring random trees: A new tool for path planning
S. M. LaValle,
Technical Report 98-11, Computer Science Dept., lowa State University, 1998
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Properties of RRT Algorithms

m Rapidly explores the space

Gnew Will more likely be generated in large not yet covered parts.

m Allows considering kinodynamic/dynamic constraints (during the
expansion).

m Can provide trajectory or a sequence of direct control commands
for robot controllers.

m A collision detection test is usually used as a “black-box".
E.g., RAPID, Bullet libraries.

m Similarly to PRM, RRT algorithms have poor performance in
narrow passage problems.

m RRT algorithms provides feasible paths.

It can be relatively far from optimal solution, e.g.,
according to the length of the path.

m Many variants of RRT have been proposed.
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RRT — Examples 1/2

o

Alpha puzzle benchmark Apply rotations to reach the goal

[BET. | | | | ||*Hvicemnest | |
TTT =

e R =

i TH—_—e=— )
TTTTIHL TTTTIH
[RETEdres | | | [FHTVabiy | |
T [l TR [
| b Fl| [Ees . ¢
~ = |
TTTTIHL TTTTIH

Variants of RRT algorithms
Courtesy of V. Vonasek and P. Vanék

Bugtrap benchmark
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RRT — Examples 2/2

m Planning for a car-like robot

= Planning on a 3D surface

m Planning with dynamics

(friction forces)

Courtesy of V. Vonasek and P. Vanék
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Car-Like Robot

Characteristics

Rapidly Exploring Random Tree (RRT)

m Configuration |

2 = [

position and orientation

forward velocity, steering angle

m System equation

X = VCoso Kinematic constraints dim(d) < dim(X)
)'/ = vsin ¢ Differential constraints on possible §:
) v xsin(¢) — y cos(¢) =0
p = n tanp
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Control-Based Sampling

m Select a configuration g from the tree T of the current
configurations

Rapidly Exploring Random Tree (RRT)

= Pick a control input ¥ = (v, ¢) and
integrate system (motion) equation
over a short period

t+At

Ax V COS ¢
Ay | = vsing | dt
Ay ¢ 7tany

m If the motion is collision-free, add the endpoint to the tree

E.g., considering k configurations for kit = dt.
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Part I

Part 2 — Optimal Sampling-based Motion
Planning Methods
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Efficient Sampling—Based Motion Planning

m PRM and RRT are theoretically probabilistic complete

m They provide a feasible solution without quality guarantee
Despite that, they are successfully used in many prac-
tical applications

m In 2011, a study of the asymptotic behaviour has been published
It shows, that in some case, they converges to a
noon-optimal value with a probability 1.

m Based on the study, new algorithms have been proposed: RRG and

optimal RRT (RRT™)

@ Sampling-based algorithms for optimal motion planning

Sertac Karaman, Emilio Frazzoli
International Journal of Robotic Research, 30(7):846-894, 2011.
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Optimal Motion Planners

RRT and Quality of Solution

Rapidly-exploring Random Graph (RRG)

m RRT provides a feasible solution without quality guarantee
Despite of that, it is successfully used in many prac-
tical applications

m In 2011, a systematical study of the asymptotic behaviour of ran-

domized sampling-based planners has been published

It shows, that in some cases, they converge to a non-
optimal value with a probability 1.

@ Sampling-based algorithms for optimal motion planning

Sertac Karaman, Emilio Frazzoli
International Journal of Robotic Research, 30(7):846-894, 2011.

http://sertac.scripts.mit.edu/rrtstar
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Optimal Motion Planners

RRT and Quality of Solution 1/2

Rapidly-exploring Random Graph (RRG)

m Let YRT be the cost of the best path in the RRT at the end of

iteration /.
m YRRT converges to a random variable
- RRT RRT
lim Y/ =Yy 300
1—00
m The random variable YRT is sampled from a distribution with zero

mass at the optimum, and

PrlYRRT > ¢*] = 1.
Karaman and Frazzoli, 2011

m The best path in the RRT converges to a sub-optimal solution al-
most surely.
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Optimal Motion Planners

RRT and Quality of Solution 2/2

Rapidly-exploring Random Graph (RRG)

m RRT does not satify a necessary condition for the asymptotic opti-
mality

m For 0 < R < infgeq,.., ||g — Ginit||, the event {lim,_,o YT = c*}
occurs only if the k-th branch of the RRT contains vertices outside

the R-ball centered at g, for infinitely many k.
See Appendix B in Karaman&Frazzoli, 2011

m It is required the root node will have infinitely many subtrees that

extend at least a distance € away from gjyj:

The sub-optimality is caused by disallowing new better paths
to be discovered.
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Rapidly-exploring Random Graph (RRG) RRG Expansions
RRG Algorithm

m At each iteration, RRG tries to connect new sample to the all

Vstup: @init, number of samples n vertices in the r, ball centered at it.
Vystup: G = (V,E .
ystup (V.E) m The ball of radius
ey | d(V))\ V¢
ori=0,...,ndo ) og (car
Grand < éampIeFree; r(card(V)) = Min { YRRG <M> ,
Gnearest < Nearest(G = (V/, E), Grand); Card( V)
'qfn%v:v |<|_ SteFer(Qnearesty Qrand); h Where
isi nearest y new t . . .
I OQLS::nJeNeng(G t:q ) then m 7) is the constant of the local steering function
_ 1/d 1/d
(V, E), Gnew, min{yrrc(log(card(V))/ card(V))*9, n}); ® YRRG > Vhre = 2(1+1/d) / (14(Cfree)/€a) /
V <~ VU {qnew}; E < E U {(qnearest; Gnew)s (Qnew, Gnearest) }; - d — dimension of the space;
foreach gpear € Qpesr do - p(Cfree) — Lebesgue measure of the obstacle—free space;
L 'chog'j'_m;:fof{(&nea: qufwguﬂ;]end)}' - &4 — volume of the unit ball in d-dimensional Euclidean space.
L m The connection radius decreases with n

return G = (V, E); m The rate of decay ~ the average number of connections

Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of attem pted is proportional to |Og(n)
Random Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose
(1999).
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Rapidly-exploring Random Graph (RRG)

RRG Properties Other Variants of the Optimal Motion Planning

m PRM* — it follows standard PRM algorithm where connections are
m Probabilistically complete attempted between roadmap vertices that are within connection
= Asymptotically optimal radius r as a function of n
m Complexity is O(log n)

(per one sample) I’(I‘I) = ’VPRM(log(n)/n)l/d

m Computational efficiency and optimality m RRT* — a modification of the RRG, where cycles are avoided

m Attempt connection to ©(log n) nodes at each iteration; A tree version of the RRG

ih average m A tree roadmap allows to consider non-holonomic dynamics and
B Reduce vc;:ume oLthe fconnectlF:n baIII as log(n)/n; kinodynamic constraints.
m Increase the number of connections as log(n). m It is basically RRG with “rerouting” the tree when a better path is
discovered.
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Optimal Motion Planners

Example of Solution 1/2

RRT, n=250 RRT, n=500

RRT*, n=250 RRT*, n=500 RRT*, n=2500

RRT*, n=10000

Rapidly-exploring Random Graph (RRG)

Karaman & Frazzoli, 2011
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Optimal Motion Planners Rapidly-exploring Random Graph (RRG)

Example of Solution 2/2

RRT, n=20000 RRT*, n=20000
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Optimal Motion Planners

Overview of Randomized Sampling-based Algorithms

) Probabilistic ~ Asymptotic
Algorithm L

Completeness Optimality
sPRM v b 4
k-nearest sPRM b 4 b 4
RRT v b 4
RRG v v
PRM* v v
RRT* v v

Rapidly-exploring Random Graph (RRG)

Notice, k-nearest variants of RRG, PRM*, and RRT* are complete

and optimal as well.
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Topics Discussed

Summary of the Lecture
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Topics Discussed

Topics Discussed

Randomized Sampling-based Methods
Probabilistic Road Map (PRM)
Characteristics of path planning problems
Random sampling

Rapidly Exploring Random Tree (RRT)
Optimal sampling-based motion planning
Rapidly-exploring Random Graph (RRG)

m Next: Multi-Goal Motion Planning and Multi-Goal Path Planning
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