	Overview of the Lecture
Improved Sampling-based Motion Planning Methods	Part 1 – Improved Sampling-based Motion Planning Methods
Jan Faigl Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague Lecture 06	 Optimal Motion Planners Rapidly-exploring Random Graph (RRG)
Jan Faigl, 2017 B4M36UIR – Lecture 06: Improved Sampling-based Methods 1 / 18	Jan Faigl, 2017 B4M36UIR – Lecture 06: Improved Sampling-based Methods 2 / 18
Optimal Motion Planners Part I Part 1 – Improved Sampling-based Motion Planning Methods	 Optimal Motion Planners Rapidly-exploring Random Graph (RRG) Efficient Sampling-Based Motion Planning PRM and RRT are theoretically probabilistic complete They provide a feasible solution without quality guarantee
Jan Faigl, 2017 B4M36UIR – Lecture 06: Improved Sampling-based Methods 3 / 18	Jan Faigl, 20 Jan Faigl, 20 Jan Faigl 20 Jan

Optimal Motion Planners

RRT and Quality of Solution

- RRT provides a feasible solution without quality guarantee Despite of that, it is successfully used in many practical applications
- In 2011, a systematical study of the asymptotic behaviour of randomized sampling-based planners has been published

It shows, that in some cases, they converge to a nonoptimal value with a probability 1.

Sampling-based algorithms for optimal motion planning Sertac Karaman. Emilio Frazzoli International Journal of Robotic Research, 30(7):846-894, 2011.

http://sertac.scripts.mit.edu/rrtstar

Jan Faigl, 2017 **Optimal Motion Planners**

RRT and Quality of Solution 2/2

B4M36

- RRT does not satify a necessary condition for the asymptotic optimality
 - For $0 < R < \inf_{q \in \mathcal{Q}_{goal}} ||q q_{init}||$, the event $\{\lim_{n \to \infty} Y_n^{RTT} = c^*\}$ occurs only if the k-th branch of the RRT contains vertices outside the *R*-ball centered at q_{init} for infinitely many *k*.

See Appendix B in Karaman&Frazzoli, 2011

It is required the root node will have infinitely many subtrees that extend at least a distance ϵ away from q_{init}

> The sub-optimality is caused by disallowing new better paths to be discovered.

RRT and Quality of Solution 1/2

- Let Y_i^{RRT} be the cost of the best path in the RRT at the end of iteration *i*.
- Y_i^{RRT} converges to a random variable

$$\lim_{i\to\infty}Y_i^{RRT}=Y_\infty^{RRT}.$$

• The random variable Y_{∞}^{RRT} is sampled from a distribution with zero mass at the optimum, and

$$\Pr[Y_{\infty}^{RRT} > c^*] = 1.$$

Karaman and Frazzoli, 2011

The best path in the RRT converges to a sub-optimal solution almost surely.

36UIR – Lecture 06: Improved Sampling-based Methods	6 / 18	Jan Faigl, 2017	B4M36UIR – Lecture 06: Improved Sampling-based Methods	7 / 18
Rapidly-exploring Random Graph (RRG) Opt		Optimal Motion Planners	Rapidly-exploring Random Gra	ph (RRG)

Rapidly-exploring Random Graph (RRG)

RRG Algorithm

```
Vstup: q<sub>init</sub>, number of samples n
Výstup: G = (V, E)
V \leftarrow \emptyset : E \leftarrow \emptyset:
for i = 0, ..., n do
         q_{rand} \leftarrow SampleFree;
        q_{nearest} \leftarrow \text{Nearest}(G = (V, E), q_{rand});
        q_{new} \leftarrow \text{Steer}(q_{nearest}, q_{rand});
        if CollisionFree(q_{nearest}, q_{new}) then
                 Q_{near} \leftarrow \text{Near}(G =
                 (V, E), q_{new}, \min\{\gamma_{RRG}(\log(\operatorname{card}(V))/\operatorname{card}(V))^{1/d}, \eta\});
                 V \leftarrow V \cup \{q_{new}\}; E \leftarrow E \cup \{(q_{nearest}, q_{new}), (q_{new}, q_{nearest})\};
                \begin{array}{l} \text{foreach } q_{\textit{near}} \in \mathcal{Q}_{\textit{near}} \text{ do} \\ \mid \quad \text{if CollisionFree}(q_{\textit{near}}, q_{\textit{new}}) \text{ then} \end{array}
                                 E \leftarrow E \cup \{(q_{rand}, u), (u, q_{rand})\};
```

```
return G = (V, E);
```

Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of Random Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose (1999).

Jan Faigl, 2017

Optimal	Motion	Planners	

RRG Expansions

- At each iteration, RRG tries to connect new sample to the all vertices in the r_n ball centered at it.
- The ball of radius

$$r(\operatorname{card}(V)) = \min \left\{ \gamma_{RRG} \left(\frac{\log (\operatorname{card}(V))}{\operatorname{card}(V)} \right)^{1/d}, \eta
ight\}$$

where

- η is the constant of the local steering function
- $\gamma_{RRG} > \gamma_{RRG}^* = 2(1+1/d)^{1/d} (\mu(\mathcal{C}_{free})/\xi_d)^{1/d}$
 - d dimension of the space;
 - $\mu(\mathcal{C}_{free})$ Lebesgue measure of the obstacle–free space;
 - ξ_d volume of the unit ball in *d*-dimensional Euclidean space.
- The connection radius decreases with n
- The rate of decay \approx the average number of connections attempted is proportional to log(n)

Optimal Motion Planners

- Probabilistically complete
- Asymptotically optimal
- Complexity is O(log n)

(per one sample)

- Computational efficiency and optimality
 - Attempt connection to $\Theta(\log n)$ nodes at each iteration;

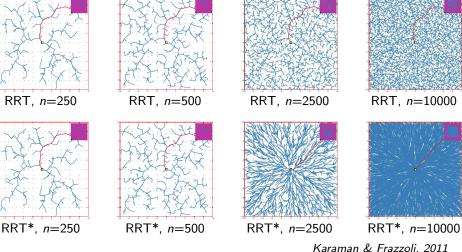
in average

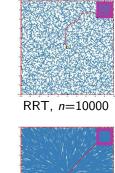
- Reduce volume of the "connection" ball as $\log(n)/n$;
- Increase the number of connections as $\log(n)$.

Jan Faigl, 2017	B4M36UIR – Lecture 06: Improved Sampling-based Methods 11 / 18	Jan Faigl, 2017	B4M36UIR – Lecture 06: Improved Sampling-based Methods 12 / 18
Optimal Motion Planners	Rapidly-exploring Random Graph (RRG)	Optimal Motion Planners	Rapidly-exploring Random Graph (RRG)

Other Variants of the Optimal Motion Planning

PRM* – it follows standard PRM algorithm where connections are attempted between roadmap vertices that are within connection radius r as a function of n


$$r(n) = \gamma_{PRM} (\log(n)/n)^{1/d}$$


RRT* – a modification of the RRG, where cycles are avoided

A tree version of the RRG

- A tree roadmap allows to consider non-holonomic dynamics and kinodynamic constraints.
- It is basically RRG with "rerouting" the tree when a better path is discovered.

Example of Solution 1/2

Jan Faigl, 2017

Example of Solution 2/2

Overview of Randomized Sampling-based Algorithms

					Algorithm	Probabilistic Completeness	Asymptotic Optimality	
					sPRM	~	×	
		0			k-nearest sPRM	×	×	
		-2			RRT	\checkmark	×	
					RRG	\checkmark	~	
					PRM*	~	~	
		-8 -10			RRT*	~	✓	
-10 -0 -0 -4 RR ⁻	T, <i>n</i> =20000	RRT*, <i>n</i> =20000	8 10		Notice, k-neares and optimal as v		RM*, and RRT* are co	mplete
an Faigl, 2017	B4M36UIR – Lectu	re 06: Improved Sampling-based Methods	15 / 18	Jan Faigl, 2017	B4M36	5UIR – Lecture 06: Improve	d Sampling-based Methods	16 / 1
Topics Discussed				Topics Discussed				
				Topics Di	scussed			
	Summary of	the Lecture		Optima	al sampling-based r	motion planning		
	Summary of				y-exploring Randon			
				Next:	Robotic informatio	n gathering and D	ata collection plan	ining
an Faigl, 2017	B4M36UIR – Lectu	ire 06: Improved Sampling-based Methods	17 / 18	Jan Faigl, 2017	B4M36	5UIR – Lecture 06: Improve	d Sampling-based Methods	18 / 1