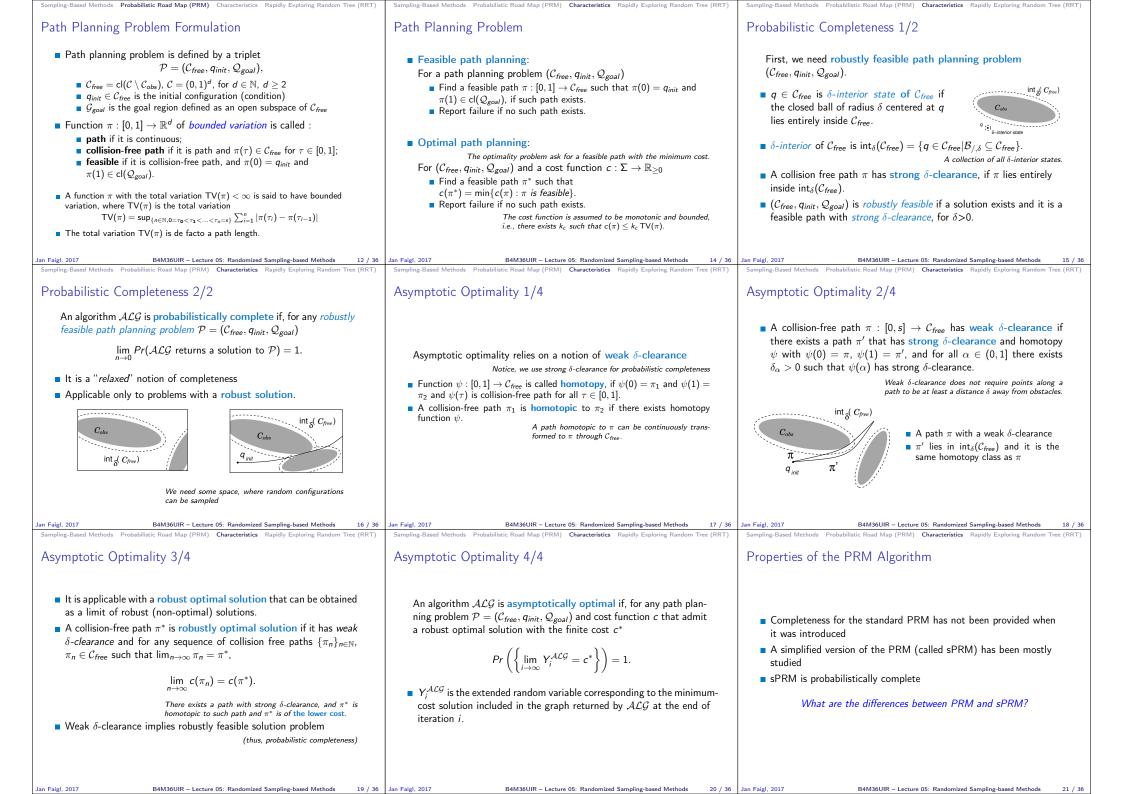
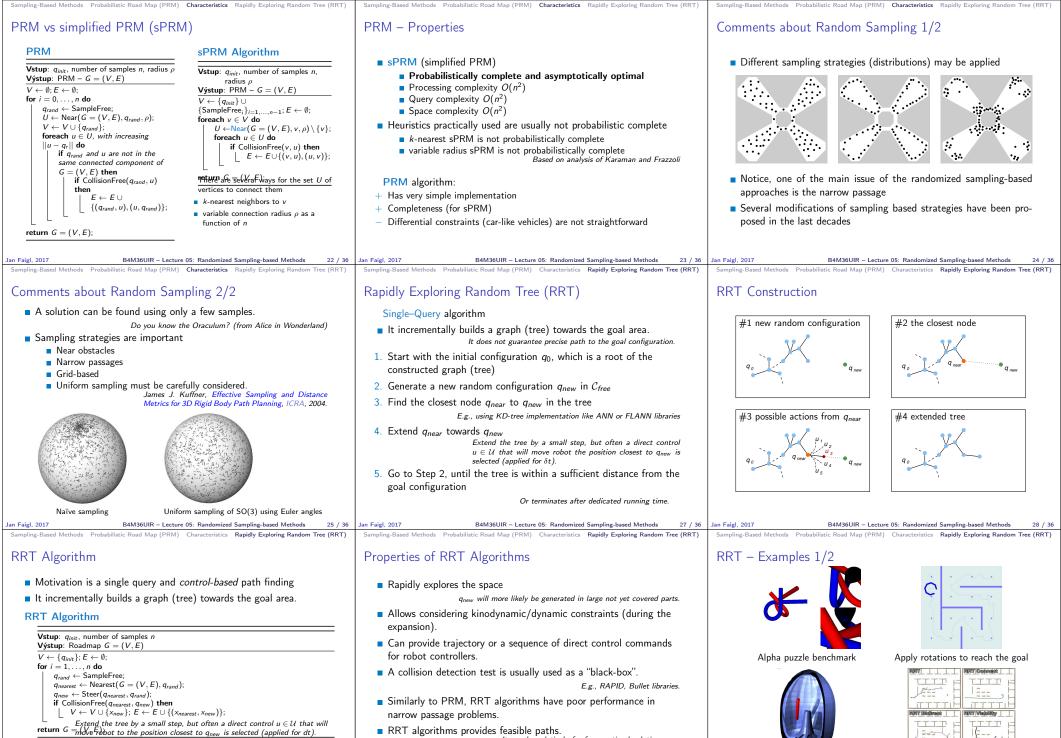
Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT Overview of the Lecture **Randomized Sampling-based Motion** Part 1 – Randomized Sampling-based Motion Planning Methods **Planning Methods** Part I Sampling-Based Methods Jan Faigl Part 1 – Roadmap-based Planning Methods Probabilistic Road Map (PRM) Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague Characteristics Lecture 05 Rapidly Exploring Random Tree (RRT) B4M36UIR - Artificial Intelligence in Robotics Jan Faigl, 2017 B4M36UIR - Lecture 05: Randomized Sampling-based Methods 1 / 36 Jan Faigl, 2017 B4M36UIR - Lecture 05: Randomized Sampling-based Methods an Faigl, 2017 B4M36UIR - Lecture 05: Randomized Sampling-based Methods 2 / 36 Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Sampling-based Motion Planning Probabilistic Roadmaps Probabilistic Roadmap Strategies Multi-Query A discrete representation of the continuous C-space generated by randomly sampled configurations in C_{free} that are connected into a graph. Generate a single roadmap that is then used for planning queries Avoids explicit representation of the obstacles in *C-space* several times. **Nodes** of the graph represent admissible configuration of the An representative technique is Probabilistic RoadMap (PRM) A "black-box" function is used to evaluate a configuration q is a robot. collision free Probabilistic Roadmaps for Path Planning in High Dimensional Configuration **Edges** represent a feasible path (trajectory) between the particular (E.g., based on geometrical models and testing Spaces collisions of the models) configurations. Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. Overmars. It creates a discrete representation of C_{free} Probabilistic complete algorithms: with increasing number of samples IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996. an admissible solution would be found (if exists) • Configurations in C_{free} are sampled randomly and connected to a Single-Query roadmap (probabilistic roadmap) For each planning problem constructs a new roadmap to character-Rather than full completeness they provides probabilistic comize the subspace of C-space that is relevant to the problem. **pleteness** or resolution completeness Rapidly-exploring Random Tree – RRT Probabilistic complete algorithms: with increasing number of samples LaValle, 1998 an admissible solution would be found (if exists) Expansive-Space Tree – EST Hsu et al., 1997 Sampling-based Roadmap of Trees – SRT Having the graph, the final path (trajectory) is found by a graph search technique. (combination of multiple-query and single-query approaches) Plaku et al., 2005 B4M36UIR - Lecture 05: Randomized Sampling-based Methods B4M36UIR - Lecture 05: Randomized Sampling-based Methods an Faigl, 2017 B4M36UIR - Lecture 05: Randomized Sampling-based Methods Jan Faigl, 2017 5 / 36 an Eaigl, 2017 6 / 36 Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Practical PRM Multi-Query Strategy PRM Construction Build a roadmap (graph) representing the environment #1 Given problem domain #2 Random configuration #3 Connecting samples Incremental construction 1. Learning phase Connect nodes in a radius ρ 1.1 Sample *n* points in C_{free} 1.2 Connect the random configurations using a local planner Local planner tests collisions up to selected resolution δ 2. Query phase 2.1 Connect start and goal configurations with the PRM Path can be found by Dijkstra's E.g., using a local planner algorithm 2.2 Use the graph search to find the path #4 Connected roadmap #5 Query configurations #6 Final found path Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. What are the properties of the PRM algorithm? Overmars. IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996. First planner that demonstrates ability to solve general planning prob-We need a couple of more formalism. lems in more than 4-5 dimensions.

Jan Faigl, 2017

B4M36UIR - Lecture 05: Randomized Sampling-based Methods


9 / 36


Jan Faigl, 2017

B4M36UIR - Lecture 05: Randomized Sampling-based Methods 10 / 36

Jan Faigl, 2017

B4M36UIR - Lecture 05: Randomized Sampling-based Methods 11 / 36

- RRT algorithms provides feasible paths. It can be relatively far from optimal solution, e.g., according to the length of the path.
- Many variants of RRT have been proposed.

Jan Faigl, 2017

29 / 36

Rapidly-exploring random trees: A new tool for path planning

Technical Report 98-11, Computer Science Dept., Iowa State University, 1998

B4M36UIR - Lecture 05: Randomized Sampling-based Methods

S. M. LaValle.

Jan Faigl, 2017

B4M36UIR - Lecture 05: Randomized Sampling-based Methods 31 /

Variants of RRT algorithms

Courtesv of V. Vonásek and P. Vaněk

Bugtrap benchmark

RRT - Examples 2/2Car-Like RobotCar-Like Robot• Planning or a 3D surface $\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ return and with dynamics (return with dynamics) (return with dynamic	Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)	Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)	Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)
Image: Planning for a car-like robot $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and orientation $\vec{x} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$ position and constraints and $\vec{x} = d(\vec{x})$ Differential constraints and $\vec{x} = d(\vec{x})$ Differential constraints and $\vec{x} = d(\vec{x})$ Differential constraints and $\vec{x} = d(\vec{x})$ $\vec{x} = d(\vec{x})$ $\vec{x} = $	RRT – Examples 2/2	Car-Like Robot	Control-Based Sampling
$\frac{1}{y = 1} \frac{1}{y = 1} \frac{1}$		$\vec{\mathbf{x}} = \begin{pmatrix} x \\ y \\ \phi \end{pmatrix}$ position and orientation $\vec{\mathbf{u}} = \begin{pmatrix} v \\ v \end{pmatrix}$ θ	configurations Pick a control input $\vec{u} = (v, \varphi)$ and integrate system (motion) equation over a short period
Summary of the Lecture Randomized Sampling-based Methods Probabilistic Road Map (PRM) Characteristics of path planning problems Random sampling Rapidly Exploring Random Tree (RRT) 	(friction forces) Courtesy of V. Vonásek and P. Vaněk Jan Faigl, 2017 B4M36UIR – Lecture 05: Randomized Sampling-based Methods 32 / 36	forward velocity, steering angle System equation $\dot{x} = v \cos \phi$ Kinematic constraints dim $(\vec{u}) < \dim(\vec{x})$ $\dot{y} = v \sin \phi$ Differential constraints on possible \dot{q} : $\dot{\varphi} = \frac{v}{L} \tan \varphi$ $\dot{z} \sin(\phi) - \dot{y} \cos(\phi) = 0$ Jan Faigl, 2017 B4M36UIR - Lecture 05: Randomized Sampling-based Methods 33 / 36	 If the motion is collision-free, add the endpoint to the tree E.g., considering k configurations for kôt = dt.
Jan Faigl, 2017 B4M36UIR - Lecture 05: Randomized Sampling-based Methods 35 / 36 Jan Faigl, 2017 B4M36UIR - Lecture 05: Randomized Sampling-based Methods 36 / 36	Summary of the Lecture	 Randomized Sampling-based Methods Probabilistic Road Map (PRM) Characteristics of path planning problems Random sampling Rapidly Exploring Random Tree (RRT) Next: Improved randomized sampling-based methods 	