
	Overview of the Lecture
Randomized Sampling-based Motion Planning Methods	Part 1 – Randomized Sampling-based Motion Planning Methods
Jan Faigl Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague Lecture 05 B4M36UIR – Artificial Intelligence in Robotics	 Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)
Jan Faigl, 2017B4M36UIR – Lecture 05: Randomized Sampling-based Methods1 / 36Sampling-Based MethodsProbabilistic Road Map (PRM)CharacteristicsRapidly Exploring Random Tree (RRT)	Jan Faigl, 2017 B4M36UIR – Lecture 05: Randomized Sampling-based Methods 2 / 36 Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Sampling-based Motion Planning
Part I Part 1 – Roadmap-based Planning Methods	 Avoids explicit representation of the obstacles in <i>C-space</i> A "black-box" function is used to evaluate a configuration <i>q</i> is a collision free (<i>E.g.</i>, based on geometrical models and testing collisions of the models) It creates a discrete representation of <i>C</i>_{free} Configurations in <i>C</i>_{free} are sampled randomly and connected to a roadmap (probabilistic roadmap) Rather than full completeness they provides probabilistic completeness or resolution completeness <i>Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists)</i>

A discrete representation of the continuous C-space generated by randomly sampled configurations in C_{free} that are connected into a graph.

- **Nodes** of the graph represent admissible configuration of the robot.
- **Edges** represent a feasible path (trajectory) between the particular configurations.

Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists)

Having the graph, the final path (trajectory) is found by a graph search technique.

Jan Faigl, 2017	B4M36UIR – Lecture 05: Randomized Sampling-based Methods	6 / 36	Jan Faigl, 2017	B4M36UIR – Lecture 05: Randomized Sampling-based Methods	8 / 36
Sampling-Based Methods	Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random T	ree (RRT)	Sampling-Based Methods	Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tr	ee (RRT)

Multi-Query Strategy

Build a roadmap (graph) representing the environment

- 1. Learning phase
 - 1.1 Sample *n* points in C_{free}
 - 1.2 Connect the random configurations using a local planner
- 2. Query phase
 - 2.1 Connect start and goal configurations with the PRM

E.g., using a local planner

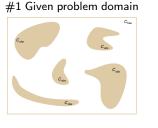
2.2 Use the graph search to find the path

Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces

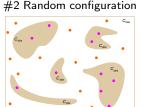
Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. Overmars,

IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996.

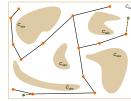
First planner that demonstrates ability to solve general planning problems in more than 4-5 dimensions

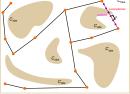

Multi-Query

- Generate a single roadmap that is then used for planning queries several times.
- An representative technique is Probabilistic RoadMap (PRM)
 - Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. Overmars. IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996.

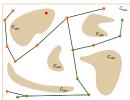

Single-Query

- For each planning problem constructs a new roadmap to characterize the subspace of C-space that is relevant to the problem.
 - Rapidly-exploring Random Tree RRT LaValle, 1998
 - Expansive-Space Tree EST Hsu et al., 1997
 - Sampling-based Roadmap of Trees SRT (combination of multiple-query and single-query approaches) Plaku et al., 2005


PRM Construction

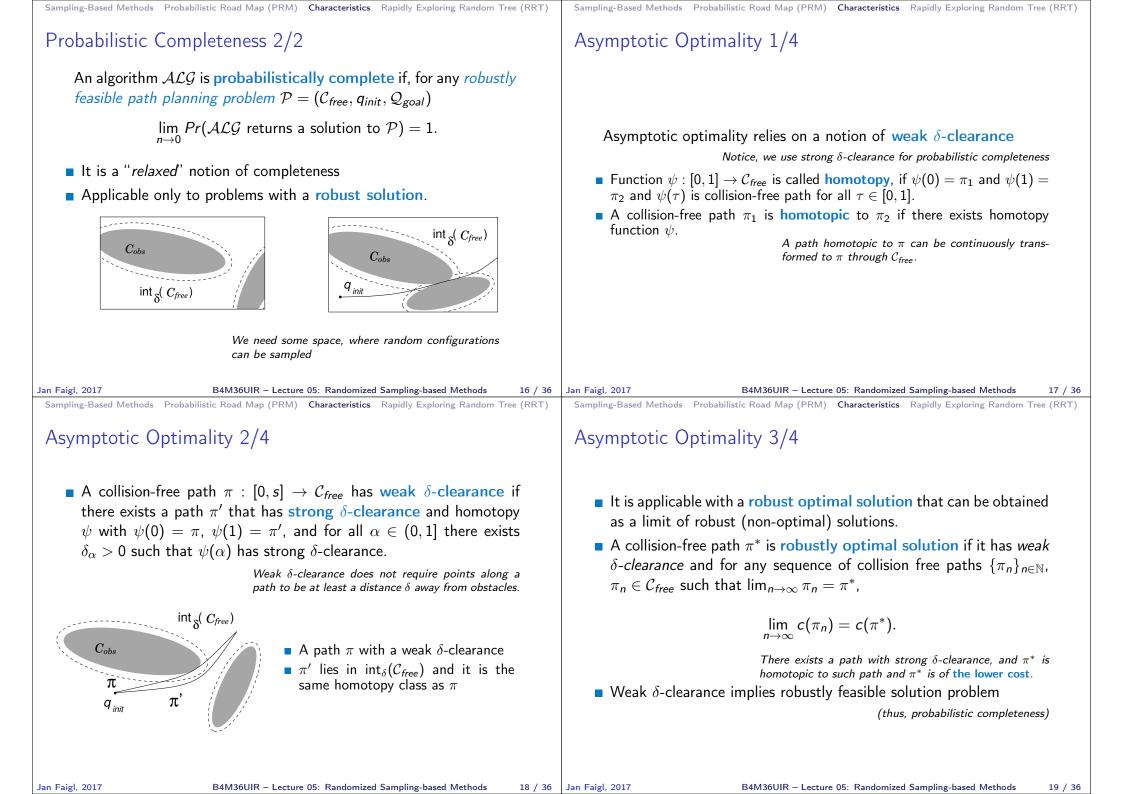


#4 Connected roadmap



#5 Query configurations

#6 Final found path

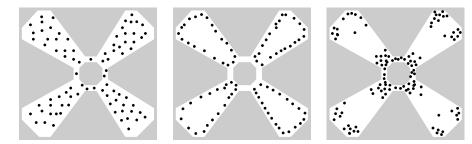

Jan Faigl, 2017

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)	Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)			
Practical PRM	Path Planning Problem Formulation			
 Incremental construction Connect nodes in a radius ρ Local planner tests collisions up to selected resolution δ Path can be found by Dijkstra's algorithm 	 Path planning problem is defined by a triplet			
What are the properties of the PRM algorithm? We need a couple of more formalism.	 A function π with the total variation TV(π) < ∞ is said to have bounded variation, where TV(π) is the total variation TV(π) = sup_{n∈ℕ,0=τ₀<τ₁<<τ_n=s} ∑_{i=1}ⁿ π(τ_i) - π(τ_{i-1}) The total variation TV(π) is de facto a path length. 			
Jan Faigl, 2017 B4M36UIR – Lecture 05: Randomized Sampling-based Methods 11 / 36 Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)	Jan Faigl, 2017 B4M36UIR – Lecture 05: Randomized Sampling-based Methods 12 / 36 Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)			
Path Planning Problem	Probabilistic Completeness 1/2			
 Feasible path planning: For a path planning problem (C_{free}, q_{init}, Q_{goal}) Find a feasible path π : [0, 1] → C_{free} such that π(0) = q_{init} and π(1) ∈ cl(Q_{goal}), if such path exists. Report failure if no such path exists. Optimal path planning: The optimality problem ask for a feasible path with the minimum cost. For (C_{free}, q_{init}, Q_{goal}) and a cost function c : Σ → ℝ_{≥0} Find a feasible path π* such that c(π*) = min{c(π) : π is feasible}. Report failure if no such path exists. 	 First, we need robustly feasible path planning problem (C_{free}, q_{init}, Q_{goal}). q ∈ C_{free} is δ-interior state of C_{free} if the closed ball of radius δ centered at q lies entirely inside C_{free}. δ-interior of C_{free} is int_δ(C_{free}) = {q ∈ C_{free} B_{/,δ} ⊆ C_{free}}. A collection of all δ-interior states. A collision free path π has strong δ-clearance, if π lies entirely inside int_δ(C_{free}). (C_{free}, q_{init}, Q_{goal}) is robustly feasible if a solution exists and it is a feasible path with strong δ-clearance, for δ>0. 			

Jan Faigl, 2017

B4M36UIR – Lecture 05: Randomized Sampling-based Methods

15 / 36



a robust optimal solution with the finite cost c^* $Pr\left(\left\{\lim_{i \to \infty} Y_i^{A\mathcal{LG}} = c^*\right\}\right) = 1.$ it was introduced $Pr\left(\left\{\lim_{i \to \infty} Y_i^{A\mathcal{LG}} = c^*\right\}\right) = 1.$ it was introduced $Pr\left(\left\{\lim_{i \to \infty} Y_i^{A\mathcal{LG}} = c^*\right\}\right) = 1.$ it was introduced $Pr\left(\left\{\lim_{i \to \infty} Y_i^{A\mathcal{LG}} = c^*\right\}\right) = 1.$ it was introduced $Pr\left(\left\{\lim_{i \to \infty} Y_i^{A\mathcal{LG}} = c^*\right\}\right) = 1.$ it was introduced $Pr\left(\left\{\lim_{i \to \infty} Y_i^{A\mathcal{LG}} = c^*\right\}\right) = 1.$ $Pr\left(\left\{\lim_{i \to \infty$				
ning problem $\mathcal{P} = (\mathcal{C}_{rres}, q_{unit}, \mathcal{Q}_{gool})$ and cost function c that admit a robust optimal solution with the finite cost c^* $Pr\left(\left\{\lim_{l \to \infty} Y_l^{ACG} = c^*\right\}\right) = 1.$ Y_l^{ACG} is the extended random variable corresponding to the minimum- cost solution included in the graph returned by ACG at the end of iteration <i>i</i> . Y_l^{ACG} is the extended random variable corresponding to the minimum- cost solution included in the graph returned by ACG at the end of iteration <i>i</i> . Y_l^{ACG} is the extended random variable corresponding to the minimum- cost solution included in the graph returned by ACG at the end of iteration <i>i</i> . Y_l^{ACG} is the extended random variable corresponding to the minimum- cost solution included in the graph returned by ACG at the end of iteration <i>i</i> . Y_l^{ACG} is the extended random variable corresponding based Methods Y_l^{ACG} is the extended random variable random returned (NT) $Probabilistically complete and asymptotically optimal Y_l^{ACG} = (V, E), then ext if q_{and} and us a not in thesame connect do completer (V, E), (q_{and}, l)V = (q_$	symptotic Optimality 4/4		Properties of the PRM Algorithm	
$\begin{array}{c} \label{eq:product} \end{tabular} \end$	ning problem $\mathcal{P} = (\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal})$ a robust optimal solution with the f $Pr\left(\left\{\lim_{i\to\infty}Y_i^{\mathcal{ALG}}\right\}$ • $Y_i^{\mathcal{ALG}}$ is the extended random varial cost solution included in the graph) and cost function c that admit finite cost c^* $= c^* brace$ $= 1.$	 A simplified version of the PRM (called sPRM) has been mostly studied sPRM is probabilistically complete 	
Vstup: q_{init} , number of samples n , radius ρ Vstup: q_{init} , number of samples n , radius ρ Vistup: $PRM - G = (V, E)$, v_i (Vistup: $PRM - G = (V, E)$, v_i (Vistup: $PRM - G = (V, E)$ <th col<="" td=""><td>npling-Based Methods Probabilistic Road Map (PRM)</td><td></td><td>Jan Faigl, 2017 B4M36UIR – Lecture 05: Randomized Sampling-based Methods Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree</td></th>	<td>npling-Based Methods Probabilistic Road Map (PRM)</td> <td></td> <td>Jan Faigl, 2017 B4M36UIR – Lecture 05: Randomized Sampling-based Methods Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree</td>	npling-Based Methods Probabilistic Road Map (PRM)		Jan Faigl, 2017 B4M36UIR – Lecture 05: Randomized Sampling-based Methods Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree
$ \left[\begin{array}{c} \left[\left(q_{rand}, u \right), \left(u, q_{rand} \right) \right]; \\ \text{variable connection radius } \rho \text{ as a} \\ \text{function of } n \end{array} \right] + Completeness (for sPRM) \\ - \text{Differential constraints (car-like vehicles) are not straightforward} \right] $	KIVI VS SIMPLIFIED PRIM (SPRM	1)	PRM – Properties	
	PRMVstup: q_{init} , number of samples n , radius ρ Výstup: PRM – $G = (V, E)$ $V \leftarrow \emptyset$; $E \leftarrow \emptyset$;for $i = 0,, n$ do $q_{rand} \leftarrow$ SampleFree; $U \leftarrow$ Near($G = (V, E), q_{rand}, \rho$); $V \leftarrow V \cup \{q_{rand}\}$;foreach $u \in U$, with increasing $ u - q_r $ doif q_{rand} and u are not in thesame connected component of $G = (V, E)$ thenif CollisionFree(q_{rand}, u)then $E \leftarrow E \cup$	sPRM AlgorithmVstup: q_{init} , number of samples n , radius ρ Výstup: PRM – $G = (V, E)$ $V \leftarrow \{q_{init}\} \cup$ {SampleFree} $_i\}_{i=1,,n-1}; E \leftarrow \emptyset;$ foreach $v \in V$ do $U \leftarrow Near(G = (V, E), v, \rho) \setminus \{v\};$ foreach $u \in U$ do $if CollisionFree(v, u)$ then $L \in E \leftarrow E \cup \{(v, u), (u, v)\};$ Meters after set Vera Fivial s for the set U of vertices to connect them	 sPRM (simplified PRM) Probabilistically complete and asymptotically optimal Processing complexity O(n²) Query complexity O(n²) Space complexity O(n²) Heuristics practically used are usually not probabilistic complete k-nearest sPRM is not probabilistically complete variable radius sPRM is not probabilistically complete PRM algorithm: + Has very simple implementation 	
	PRM Vstup: q_{init} , number of samples n , radius ρ Výstup: PRM – $G = (V, E)$ $V \leftarrow \emptyset$; $E \leftarrow \emptyset$;for $i = 0,, n$ do $q_{rand} \leftarrow$ SampleFree; $U \leftarrow$ Near($G = (V, E), q_{rand}, \rho$); $V \leftarrow V \cup \{q_{rand}\}$;foreach $u \in U$, with increasing $ u - q_r $ doif q_{rand} and u are not in the same connected component of $G = (V, E)$ thenif CollisionFree(q_{rand}, u)then $E \leftarrow E \cup$ $\{(q_{rand}, u), (u, q_{rand})\}$;	SPRM Algorithm Vstup: q_{init} , number of samples n , radius ρ Výstup: PRM – $G = (V, E)$ $V \leftarrow \{q_{init}\} \cup$ {SampleFree _i } $i=1,,n-1$; $E \leftarrow \emptyset$; foreach $v \in V$ do $U \leftarrow \text{Near}(G = (V, E), v, \rho) \setminus \{v\}$; foreach $u \in U$ do if CollisionFree (v, u) then $L \in E \leftarrow E \cup \{(v, u), (u, v)\}$; Primer are selvera Evarys for the set U of vertices to connect them • k -nearest neighbors to v • variable connection radius ρ as a	 sPRM (simplified PRM) Probabilistically complete and asymptotically optimal Processing complexity O(n²) Query complexity O(n²) Space complexity O(n²) Heuristics practically used are usually not probabilistic complete k-nearest sPRM is not probabilistically complete variable radius sPRM is not probabilistically complete PRM algorithm: Has very simple implementation Completeness (for sPRM) 	

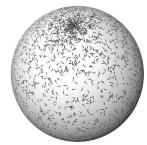
Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Sampling-Based Methods

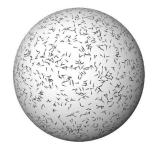
Comments about Random Sampling 1/2

Different sampling strategies (distributions) may be applied

- Notice, one of the main issue of the randomized sampling-based approaches is the narrow passage
- Several modifications of sampling based strategies have been proposed in the last decades

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)


Comments about Random Sampling 2/2


A solution can be found using only a few samples.

Do you know the Oraculum? (from Alice in Wonderland)

- Sampling strategies are important
 - Near obstacles
 - Narrow passages
 - Grid-based
 - Uniform sampling must be carefully considered.

James J. Kuffner, Effective Sampling and Distance Metrics for 3D Rigid Body Path Planning, ICRA, 2004.

Naïve sampling

Uniform sampling of SO(3) using Euler angles

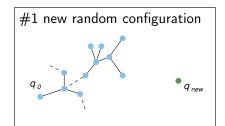
Jan Faigl, 2017	B4M36UIR – Lectur	e 05: Randomized Sampling-based Methods	24 / 36	Jan Faigl, 2017	B4M36UIR – Lecture	05: Randomized	Sampling-based Methods	25 / 36
Sampling-Based Methods	Probabilistic Road Map (PRM)	Characteristics Rapidly Exploring Random	Tree (RRT)	Sampling-Based Methods	Probabilistic Road Map (PRM)	Characteristics	Rapidly Exploring Random 7	Гree (RRT)

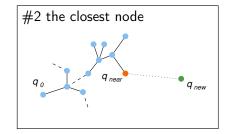
Rapidly Exploring Random Tree (RRT)

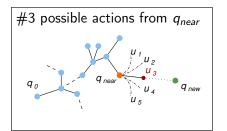
${\small {\sf Single-Query\ algorithm}}$

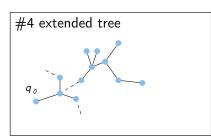
- It incrementally builds a graph (tree) towards the goal area.
 It does not guarantee precise path to the goal configuration.
- 1. Start with the initial configuration q_0 , which is a root of the constructed graph (tree)
- 2. Generate a new random configuration q_{new} in \mathcal{C}_{free}
- 3. Find the closest node q_{near} to q_{new} in the tree

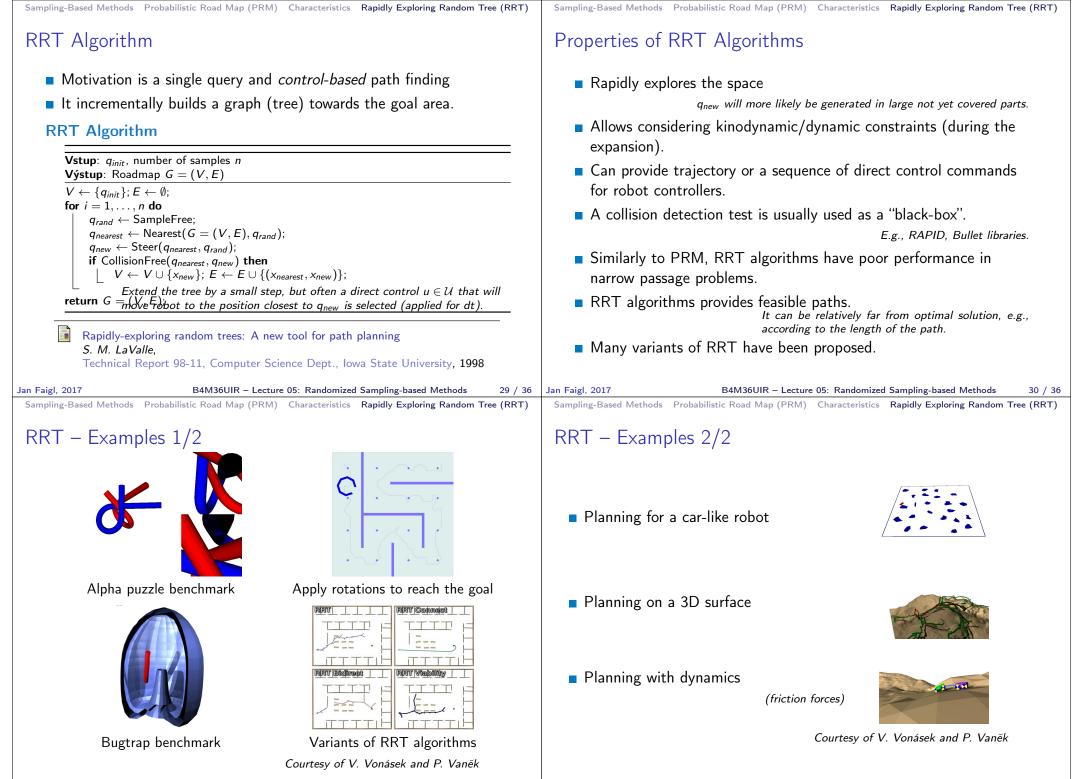
E.g., using KD-tree implementation like ANN or FLANN libraries

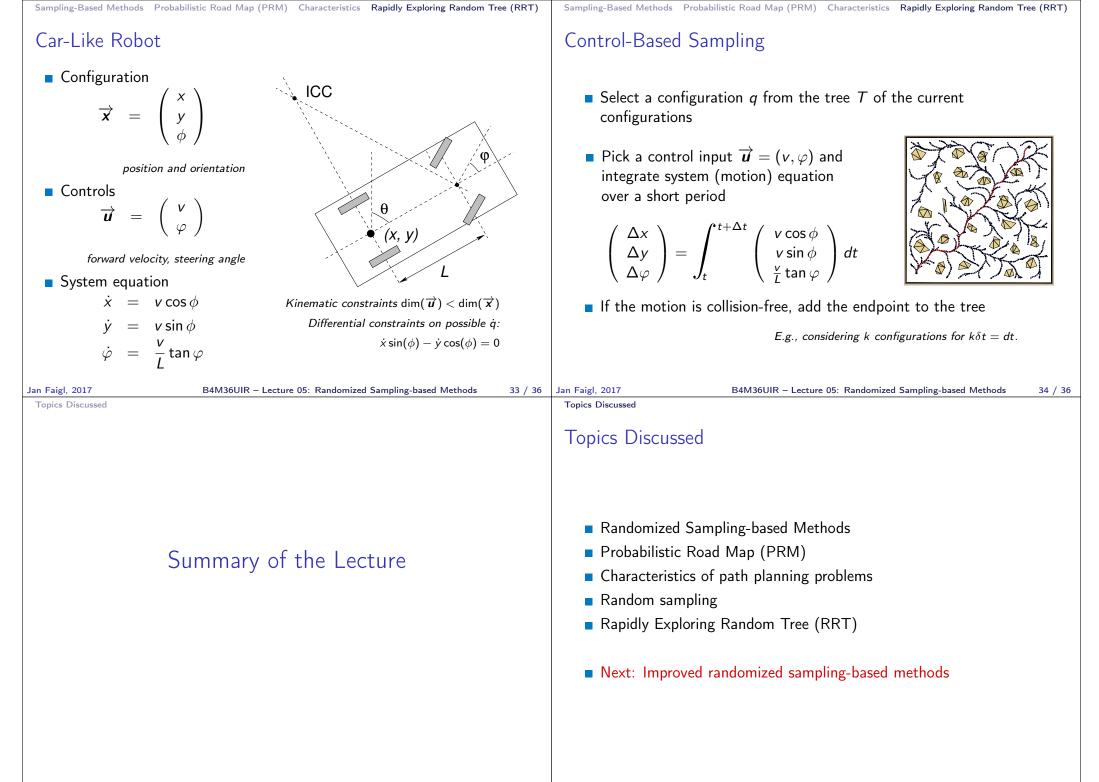

4. Extend q_{near} towards q_{new}


Extend the tree by a small step, but often a direct control $u \in \mathcal{U}$ that will move robot the position closest to q_{new} is selected (applied for δt).


5. Go to Step 2, until the tree is within a sufficient distance from the goal configuration


Or terminates after dedicated running time.


RRT Construction



Jan Faigl, 2017

Jan Faigl, 2017

B4M36UIR - Lecture 05: Randomized Sampling-based Methods 36 / 36