Grid and Graph based Path Planning
Methods

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

Lecture 04
B4M36UIR — Artificial Intelligence in Robotics

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 1/092

Overview of the Lecture

m Part 1 — Grid and Graph based Path Planning Methods

= Grid-based Planning

= DT for Path Planning

= Graph Search Algorithms
= D* Lite

= Path Planning based on Reaction-Diffusion Process Curiosity

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Part |

Part 1 — Grid and Graph based Path
Planning Methods

\
ny/? i
£

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 3/92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

QOutline

= Grid-based Planning

ft

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 4 /92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Grid-based Planning

m A subdivision of Cgee into smaller cells

m Grow obstacles can be simplified by)
growing borders by a diameter of the
robot

m Construction of the planning graph
G = (V,E) for V as a set of cells and
E as the neighbor-relations

m 4-neighbors and 8-neighbors

| [[

m A grid map can be constructed from
the so-called occupancy grid maps

E.g., using thresholding gu%;)
A ‘ﬂ

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 5/ 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Grid-based Environment Representations

m Hiearchical planning

m Coarse resolution and re-planning on
finer resolution

Holte, R. C. et al. (1996): Hierarchical A *: searching abstraction hierarchies efficiently. AAAI.

m Octree can be used for the map

representation

= In addition to squared (or rectangular)
grid a hexagonal grid can be used

m 3D grid maps — octomap

https://octomap.github.io
— Memory grows with the size of the
environment

— Due to limited resolution it may fail in
narrow passages of Cree

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 6 /92

https://octomap.github.io

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Example of Simple Grid-based Planning

m Wave-front propagation using path simplication

Initial map with a robot and goal

Obstacle growing

Find a path using a navigation function
Path simplification

]
]
m Wave-front propagation — “flood fill”
]
]

m “Ray-shooting” technique combined
with Bresenham’s line algorithm

d=)
m The path is a sequence of “key” cells . |
for avoiding obstacles

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 7/ 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Example of Simple Grid-based Planning

m Wave-front propagation using path simplication

Initial map with a robot and goal

Obstacle growing

Find a path using a navigation function (
Path simplification

]
]
m Wave-front propagation — “flood fill” =
]
]

m “Ray-shooting” technique combined
with Bresenham’s line algorithm =
m The path is a sequence of "key” cells .)
for avoiding obstacles

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 7/ 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Example of Simple Grid-based Planning

m Wave-front propagation using path simplication

m Initial map with a robot and goal 81716151413 1
m Obstacle growing 81716|5|413 1
m Wave-front propagation — “flood fill” 817 2
m Find a path using a navigation function 818 3
C e 919 4
m Path simplification

m “Ray-shooting” technique combined 101101010 >
with Bresenham’s line algorithm HILTT]10 6
m The path is a sequence of "key” cells 11110}9 |8 7
for avoiding obstacles 11{10/9 |8 8

@D

RS

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 7/ 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Example of Simple Grid-based Planning

m Wave-front propagation using path simplication

Initial map with a robot and goal

Obstacle growing 6 /

Find a path using a navigation function
Path simplification

]
]
m Wave-front propagation — “flood fill”
]
]

m “Ray-shooting” technique combined
with Bresenham’s line algorithm

m The path is a sequence of "key” cells
for avoiding obstacles

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 7/ 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Example of Simple Grid-based Planning

m Wave-front propagation using path simplication

Initial map with a robot and goal

Obstacle growing

Find a path using a navigation function
Path simplification

]
]
m Wave-front propagation — “flood fill”
]
]

m “Ray-shooting” technique combined
with Bresenham’s line algorithm

m The path is a sequence of "key” cells
for avoiding obstacles

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 7/ 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Example — Wave-Front Propagation (Flood Fill)

222|122
111 2111 2
101 2(1]0/1 2
111 20111 2
2(2/2(2 2
1111 111111 11 [11 11 1112 1314 1413|1212 12
10 10 10 10 10 [10 10 10 1M1
9999 9/999 1010 10 11
88 3 88888 991011
T 7717|7778 8|8 910 11
6 66 666 7 8 77 89101
555 55467 6/6/7(8 910
44 4 5 444 567 8 910
433333334 5 433/33/33345 67891
432222234 54322222 34567891
43 2/11/1/23 54321112 910
43210123 5 432100123 13121110410
43211123 5 43211 23 13121114111 1
43222223 54320222 23 131242121212
433 33333 543333333 131313131313

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 8 /92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Path Simplification

m The initial path is found in a grid using 4-neighborhood

m The rayshoot cast a line into a grid and possible collisions of the
robot with obstacles are checked

m The “farthest” cells without collisions are used as “turn” points

m The final path is a sequence of straight line segments
= T T m I
| . T B SEEEEE
- | = hE
\
1 |

L1 [1 [

Obtacle growing,
B

wave-front propagation
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 9 /92

RN

NN

T
[T

Initial and goal locations Ray-shooting Simplified path

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Bresenham's Line Algorithm

m Filling a grid by a line with avoding float numbers

Yi—Yo

= A line from (xo, yo) to (x1,y1) is given by y = 2222 (x — x0) + yo

1 CoordsVector& bresenham(const Coords& pti, const 26 int twoDy = 2 * dy;
Coords& pt2, CoordsVector& line) 27 int twoDyTwoDx = twoDy - 2 * dx; //2*Dy - 2*Dx
2 { 28 int e = twoDy - dx; //2*%Dy - Dx
3 // The pt2 point is not added into line 29 int y = yo0;
4 int x0 = ptl.c; int yO = ptl.r; 30 int xDraw, yDraw;
5 int x1 = pt2.c; int y1 = pt2.r; 31 for (int x = x0; x != x1; x += xstep) {
6 Coords p; 32 if (steep) {
7 int dx = x1 - x0; 33 xDraw = y;
8 int dy = y1 - y0; 34 yDraw = x;
9 int steep = (abs(dy) >= abs(dx)); 35 } else {
10 if (steep) { 36 xDraw = x;
11 SWAP(x0, yO0); 37 yDraw = y;
12 SWAP(x1, y1); 38 }
13 dx = x1 - x0; // recompute Dx, Dy 39 p.c = xDraw;
14 dy = y1 - yO; 40 p.r = yDraw;
15 ¥ 41 line.push_back(p); // add to the line
16 int xstep = 1; 42 if (e > 0) {
17 if (dx < 0) { 43 e += twoDyTwoDx; //E += 2#Dy - 2%Dx
18 xstep = -1; 44 y =y + ystep;
19 dx = -dx; 45 } else {
20 s 46 e += twoDy; //E += 2Dy
21 int ystep = 1; a7 }
22 if (dy < 0) { 48 }
23 ystep = -1; 49 return line;
24 dy = -dy; 50 }
25 }

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 10 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

QOutline

= DT for Path Planning

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 11 /92

DT for Path Planning

Distance Transform based Path Planning

m For a given goal location and grid map compute a navigational function
using wave-front algorithm, i.e., a kind of potential field

m The value of the goal cell is set to 0 and all other free cells are set to
some very high value

m For each free cell compute a number of cells towards the goal cell

m It uses 8-neighbors and distance is the Euclidean distance of the centers of
two cells, i.e., EV=1 for orthogonal cells or EV = /2 for diagonal cells

m The values are iteratively computed until the values are changing

m The value of the cell ¢ is computed as

8
cost(c) = ny? (cost(ci) + EVec),

where ¢; is one of the neighboring cells from 8-neighborhood of the cell ¢

m The algorithm provides a cost map of the path distance from any free cell
to the goal cell

m The path is then used following the gradient of the cell cost

Jarvis, R. (2004): Distance Transform Based Visibility Measures for Covert Path Planning in
Known but Dynamic Environments

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 12 /92

DT for Path Planning

Distance Transform Path Planning

Algorithm 1: Distance Transform for Path Planning

for y := 0 to yMax do
for x := 0 to xMax do
if goal [x,y] then
| cell [xy] :=0;
else
L cell [x,y] := xMax * yMax; //initialization, e.g., pragmatic of the use longest distance as oo ;

repeat
for y := 1 to (yMax - 1) do
for x := 1 to (xMax - 1) do
if not blocked [x,y] then
L | cell [xy] := cost(x, y);

for y := (yMax-1) downto 1 do
for x := (xMax-1) downto 1 do
if not blocked [x,y] then
| cellixy] := cost(x, y);

until no change;

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Distance Transform based Path Planning — Impl. 1/2

1 Grid& DT::compute(Grid& grid) const 35 for (int r = H - 2; r > 0; --r) {

2 { 36 for (int ¢ =W - 2; ¢ > 0; --c) {

3 static const double DIAGONAL = sqrt(2); 37 if (map[r][c] != FREESPACE) {

4 static const double ORTOGONAL = 1; 38 continue;

5 const int H = map.H; 39 } //obstacle detected

6 const int W = map.W; 40 double t[4];

7 assert(grid.H == H and grid.W == W, "size"); 41 t[1] = grid[r + 1]1[c] + ORTOGONAL;
8 bool anyChange = true; 42 t[0] = grid[r + 1]1[c + 1] + DIAGONAL;
9 int counter = 0; 43 t[3] = grid[r][c + 1] + ORTOGONAL;
10 while (anyChange) { 44 t[2] = gridlr + 1]1[c - 1] + DIAGONAL;
11 anyChange = false; 45 double pom = grid[r][c];

12 for (int r = 1; r < H - 1; ++r) { 46 bool s = false;

13 for (int ¢ = 1; ¢ < W - 1; ++c) { 47 for (int i = 0; i < 4; i++) {

14 if (maplr]l[c] != FREESPACE) { 48 if (pom > t[i]) {

15 continue; 49 pom = t[il;

16 } //obstacle detected 50 s = true;

17 double t[4]; 51 i

18 t[0] = grid[r - 11[c - 1] + DIAGONAL; 52 ¥

19 t[1] = grid[r - 1]1[c] + ORTOGONAL; 53 if (s) {

20 t[2] = grid[r - 1][c + 1] + DIAGONAL; 54 anyChange = true;

21 t[3] = grid[r][c - 1] + ORTOGONAL; 55 grid[r] [c] = pom;

22 double pom = grid[r][c]; 56 }

23 for (int i = 0; i < 4; i++) { 57 b

24 if (pom > t[il) { 58 }

25 pom = t[il; 59 counter++;

26 anyChange = true; 60 } //end while any change

27 } 61 return grid;

28 } 62 }

29 if (anyChange) {

30 grid[r] [c] = pom; A boundary is assumed around the rectangular map

31

3 }
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 14 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Distance Transform based Path Planning — Impl. 2/2

m The path is retrived by following the minimal value towards the
goal using min8Point ()

1 Coords& min8Point(const Grid& grid, Coords& p) 22 CoordsVector& DT::findPath(const Coords& start,
2 { const Coords& goal, CoordsVector& path)
3 double min = std::numeric_limits<double>::max(); 23 {
4 const int H = grid.H; 24 static const double DIAGONAL = sqrt(2);
5 const int W = grid.W; 25 static const double ORTOGONAL = 1;
6 Coords t; 26 const int H = map.H;
7 27 const int W = map.W;
8 for (int r = p.r - 1; ¥ <= p.r + 1; r++) { 28 Grid grid(H, W, H*W); // H*W max grid value
9 if (r < 0 or r >= H) { continue; } 29 grid[goal.r] [goal.c] = 0;
10 for (int ¢ = p.c - 1; ¢ <= p.c + 1; c++) { 30 compute (grid) ;
11 if (¢ < 0 or ¢ >= W) { continue; } 31
12 if (min > grid[r][c]) { 32 if (grid[start.r][start.c] >= H+W) {
13 min = grid[r][cl; 33 WARN("Path has not been found");
14 t.r =r; t.c = c; 34 } else {
15 ¥ 35 Coords pt = start;
16 } 36 while (pt.r != goal.r or pt.c != goal.c) {
17 } 37 path.push_back(pt) ;
18 p=t; 38 min8Point (grid, pt);
19 return p; 39 }
20 } 40 path.push_back(goal) ;
41 }
42 return path;
43 }

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 15 / 92

DT for Path Planning

DT Example
NI >
':‘.0.'0 { ':'.0.'0 <
Ve, ,/ ol N
- V5% - Va5t
"" ".‘
o ¥ g'wn o ® g'w
‘a_ P
/ 2
)a \/J
=10cm, L =272 m 0=30cm, L=428m

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 16 / 92

Grid-based Planning

DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

QOutline

= Graph Search Algorithms

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning 17 / 92

Graph Search Algorithms

Graph Search Algorithms

m The grid can be considered as a graph and the path can be found
using graph search algorithms
m The search algorithms working on a graph are of general use, e.g.
m Breadth-first search (BSD)
m Depth first search (DFS)
m Dijsktra’s algorithm,
m A* algorithm and its variants
m There can be grid based speedups techniques, e.g.,
m Jump Search Algorithm (JPS) and JPS+
m There are many search algorithm for on-line search, incremental

search and with any-time and real-time properties, e.g.,
m Lifelong Planning A* (LPA*)
Koenig, S., Likhachev, M. and Furcy, D. (2004): Lifelong Planning A*. AlJ.
m E-Graphs — Experience graphs

Phillips, M. et al. (2012): E-Graphs: Bootstrapping Planning with Experience Graphs. RSS.

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 18 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Examples of Graph/Grid Search Algorithms

Cyan: Partial or s

Bluc: Optimal path K endpoints

A* (general)

https://www.youtube.com/watch?v=U2XNjCoKZjM.mp4
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 19 / 92

https://www.youtube.com/watch?v=U2XNjCoKZjM.mp4

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Dijkstra’'s Algorithm

m Dijsktra’s algorithm determines paths as iterative update of the
cost of the shortest path to the particular nodes

Edsger W. Dijkstra, 1956

m Let start with the initial cell (node)
with the cost set to 0 and update
all successors

m Select the node
B with a path from the initial node
B and has a lower cost

m Repeat until there is a reachable
node
B l.e., a node with a path from the initial node
B has a cost and parent (green nodes).

The cost of nodes can only decrease (edge cost is positive). Therefore, for a
node with the currently lowest cost, there cannot be a shorter path from the
initial node.

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 20 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Dijkstra’s Algorithm

m Dijsktra’s algorithm determines paths as iterative update of the
cost of the shortest path to the particular nodes

Edsger W. Dijkstra, 1956

m Let start with the initial cell (node)
with the cost set to 0 and update
all successors

m Select the node
B with a path from the initial node
B and has a lower cost

m Repeat until there is a reachable
node
B l.e., a node with a path from the initial node
B has a cost and parent (green nodes).

The cost of nodes can only decrease (edge cost is positive). Therefore, for a
node with the currently lowest cost, there cannot be a shorter path from the
initial node.

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Dijkstra’'s Algorithm

m Dijsktra’s algorithm determines paths as iterative update of the
cost of the shortest path to the particular nodes

Edsger W. Dijkstra, 1956

m Let start with the initial cell (node)
with the cost set to 0 and update
all successors

m Select the node
B with a path from the initial node
B and has a lower cost

m Repeat until there is a reachable
node
B l.e., a node with a path from the initial node
B has a cost and parent (green nodes).

The cost of nodes can only decrease (edge cost is positive). Therefore, for a
node with the currently lowest cost, there cannot be a shorter path from the
initial node.

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 20 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Dijkstra’'s Algorithm

m Dijsktra’s algorithm determines paths as iterative update of the
cost of the shortest path to the particular nodes

Edsger W. Dijkstra, 1956

m Let start with the initial cell (node)
with the cost set to 0 and update
all successors

m Select the node
B with a path from the initial node
B and has a lower cost

B Repeat until there is a reachable
node
B l.e., a node with a path from the initial node
B has a cost and parent (green nodes).

The cost of nodes can only decrease (edge cost is positive). Therefore, for a
node with the currently lowest cost, there cannot be a shorter path from the
initial node.

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 20 / 92

Graph Search Algorithms

Example (cont.)

1: After the expansion, the shortest path to the node 2 is over the node 3

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 21 /92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Example (cont.)

2: There is not shorter path to the node 2 over the node 1

1:4+5=9>38!

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Example (cont.)

3: After the expansion, there is a new path to the node 5

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 21 /92

Graph Search Algorithms

Example (cont.)

4: The path does not improve for further expansions

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 21 /92

Graph Search Algorithms

Dijkstra’'s Algorithm
Algorithm 2: Dijkstra's algorithm
Initialize(Sstart); /* g(s) := 00; g(Sstart) := 0 */
PQ-pUSh(Sstartv g(sstart));
while (not PQ.empty?) do
s := PQ.pop();
foreach s’ € Succ(s) do
if s’in PQ then
if g(s’) > g(s) + cost(s,s’) then
L g(s") := g(s) + cost(s, s');
PQ.update(s’, g(s));
Ise if s' ¢ CLOSED then
g(s') := g(s) + cost(s, s');
PQ.push(s’, g(s));

| CLOSED := CLOSED {s}:

(0]

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 22 /92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Dijkstra’'s Algorithm — Impl.

1 dij->nodes[dij->start_node].cost = 0; // init

2 void *pq = pq_alloc(dij->num_nodes); // set priority queue

3 int cur_label;

4 pqg_push(pq, dij->start_node, 0);

5 while (!pg_is_empty(pq) && pg_pop(pq, &cur_label)) {

6 node_t *cur = &(dij->nodes[cur_label]); // remember the current node
7 for (int i = 0; i < cur->edge_count; ++i) { // all edges of cur

8 edge_t *edge = &(dij->graph->edges[cur->edge_start + i]);

9 node_t *to = &(dij->nodes[edge->tol);

10 const int cost = cur->cost + edge->cost;

11 if (to->cost == -1) { // node to has not been visited

12 to->cost = cost;

13 to->parent = cur_label;

14 pq_push(pq, edge->to, cost); // put node to the queue

15 } else if (cost < to->cost) { // node already in the queue

16 to->cost = cost; // test if the cost can be reduced

17 to->parent = cur_label; // update the parent node

18 pa_update(pq, edge->to, cost); // update the priority queue
19

20 } // loop for all edges of the cur node

21 } // priority queue empty
22 pq_free(pq); // release memory

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 23 /92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

A* Algorithm

m A* uses a user-defined h-values (heuristic) to focus the search
Peter Hart, Nils Nilsson, and Bertram Raphael, 1968

m Prefer expansion of the node n with the lowest value
f(n) = g(n) + h(n),
where g(n) is the cost (path length) from the start to n and h(n)
is the estimated cost from n to the goal
m h-values approximate the goal distance from particular nodes
m Admissiblity condition — heuristic always underestimate the
remaining cost to reach the goal

m Let h*(n) be the true cost of the optimal path from n to the goal
m Then h(n) is admissible if for all n: h(n) < h*(n)
m E.g., Euclidean distance is admissible

m A straight line will always be the shortest path

m Dijkstra’s algorithm — h(n) =0

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 24 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

A* Implementation Notes

m The most costly operations of A* are
m Insert and lookup an element in the closed list

m Insert element and get minimal element (according to f() value)
from the open list

m The closed list can be efficiently implemented as a hash set
m The open list is usually implemented as a priority queue, e.g.,

m Fibonacii heap, binomial heap, k-level bucket
m binary heap is usually sufficient (O(logn))

m Forward A*

1. Create a search tree and initiate it with the start location

2. Select generated but not yet expanded state s with the smallest
f-value, f(s) = g(s) + h(s)

3. Stop if s is the goal

Expand the state s

5. Goto Step 2

>

Similar to Dijsktra’s algorithm but it used f(s) with heuristic h(s) instead of pure g(s)

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 25 /92

Graph Search Algorithms

Dijsktra’s vs A* vs Jump Point Search (JPS)

IDijKetra’'s Algorith Mg]

https://wuw.youtube.com/watch?v=R0G4UdO81LY

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 26 / 92

https://www.youtube.com/watch?v=ROG4Ud08lLY

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Jump Point Search Algorithm for Grid-based Path Planning

m Jump Point Search (JPS) algorithm is based on a macro operator that
identifies and selectively expands only certain nodes (jump points)

Harabor, D. and Grastien, A. (2011): Online Graph Pruning for Pathfinding on Grid Maps. AAAI.

m Natural neighbors after neighbor | * | 2 | = (N
prunning with forced neighbors adex | s s |e s
because of obstacle

m Intermediate nodes on a path | L] ‘; T
connecting two jump points are never .

expanded i ’ | fi |
m No preprocessing and no memory overheads while it speeds up A*
https://harablog.wordpress.com/2011/09/07/jump-point-search/

m JPS+ — optimized preprocessed version of JPS with goal bounding

https://github.com/SteveRabin/JPSPlusWithGoalBounding

http://www.gdcvault.com/play/1022094/JPS-0ver-100x-Faster-than

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 27 /92

https://harablog.wordpress.com/2011/09/07/jump-point-search/
https://github.com/SteveRabin/JPSPlusWithGoalBounding
http://www.gdcvault.com/play/1022094/JPS-Over-100x-Faster-than

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Theta* — Any-Angle Path Planning Algorithm

m Any-angle path planning algorithms simplify the path during the search
m Theta* is an extension of A* with Line0fSight ()

Nash, A., Daniel, K, Koenig, S. and Felner, A. (2007): Theta*: Any-Angle Path
Planning on Grids. AAAI.

1 2 3 4 5
A .
Algorithm 3: Theta* Any-Angle Planning R
if LineOfSight(parent(s), s’) then B ‘,
/* Path 2 — any-angle path */
if g(parent(s))+ c(parent(s), s’) < g(s’) then
parent(s') := parent(s); e g
g(s") := g(parent(s)) + c(parent(s), s'); ---Path1 Path 2
else
/* Path 1 — A* path */
if g(s) + c(s,;s’) < g(s’) then 1 2 3 4 5
parent(s'):=s; A ’ 20
&(5) = 8(6) + cls);
B 7 8
m Path 2: considers path from start to parent(s) and
from parent(s) to s if s’ has line-of-sight to parent(s) .
- -- Path 1 Path 2

http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 28 / 92

http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Theta* Any-Angle Path Planning Examples

m Example of found paths by the Theta* algorithm for the same prob-
lems as for the DT-based examples on Slide 16

Both algorithms implemented in C++

6=10cm, L =263 m 6=30cm, L=403m

The same path planning problems solved by DT (without path smooth-
ing) have Ls—10 = 27.2 m and Ls_30 = 42.8 m, while DT seems to
be significantly faster

m Lazy Theta* — reduces the number of line-of-sight checks

Nash, A., Koenig, S. and Tovey, C. (2010): Lazy Theta*: Any-Angle Path Planning
and Path Length Analysis in 3D. AAAL.

http://aigamedev.com/open/tutorial/lazy-theta-star/
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 29 / 92

http://aigamedev.com/open/tutorial/lazy-theta-star/

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

A* Variants — Online Search

m The state space (map) may not be known exactly in advance
m Environment can dynamically change
m True travel costs are experienced during the path execution

m Repeated A* searches can be computationally demanding
m Incremental heuristic search
m Repeated planning of the path from the current state to the goal
m Planning under the free-space assumption
m Reuse information from the previous searches (closed list entries):
m Focused Dynamic A* (D*) — h* is based on traversability, it has
been used, e.g., for the Mars rover “Opportunity”
Stentz, A. (1995): The Focussed D* Algorithm for Real-Time Replanning. 1JCAL.
m D* Lite — similar to D*
Koenig, S. and Likhachev, M. (2005): Fast Replanning for Navigation in Unknown Terrain. T-RO.
m Real-Time Heuristic Search
m Repeated planning with limited look-ahead — suboptimal but fast
® Learning Real-Time A* (LRTA¥)

Korf, E. (1990): Real-time heuristic search. JAI

m Real-Time Adaptive A* (RTAA¥)
Koenig, S. and Likhachev, M. (2006): Real-time adaptive A*. AAMAS.

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Real-Time Adaptive A* (RTAA*)

m Execute A* with limited look- while (e ¢ GOAL) do

ahead astar(lookahead);
m Learns better informed heuris- if s' = FAILURE then
tic from the experience, ini- | return FAILURE;
tially h(s), e.g., Euclidean dis- for all s € CLOSED do
tance | H(s) :==g(s') + h(s) - &(s);
m Look-ahead defines trade-off | execute(plan); // perform one step
between optimality and com- return SUCCESS;

putational cost s' is the last state expanded during the
m astar(lookahead) previous A* search

A* expansion as far as "looka-
head’ nodes and it terminates
with the state s’

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 31/ 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

QOutline

= D* Lite

ft

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 32/ 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Demo

https://www.youtube.com/watch?v=X5a149nSE9s
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 33 /92

https://www.youtube.com/watch?v=X5a149nSE9s

Grid-based Planning

Jan Faigl,

D* Lite Overview

It is similar to D*, but it is based on Lifelong Planning A*

Koenig, S. and Likhachev, M. (2002): D* Lite. AAAL.

It searches from the goal node to the start node, i.e., g-values
estimate the goal distance

Store pending nodes in a priority queue

Process nodes in order of increasing objective function value

Incrementally repair solution paths when changes occur
Maintains two estimates of costs per node
m g — the objective function value — based on what we know
m rhs — one-step lookahead of the objective function value — based
on what we know

Consistency

m Consistent — g = rhs
m Inconsistent — g # rhs

Inconsistent nodes are stored in the priority queue (open list) for

processing

2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

34 /02

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite: Cost Estimates

m rhs of the node u is computed based on g of its successors in the
graph and the transition costs of the edge to those successors

rhs(u) = min (g(s') + c(u,s))
s’eSucc(u)

m The key/priority of a node s on the open list is the minimum of
g(s) and rhs(s) plus a focusing heuristic h

[min(g(s), rhs(s)) + h(Sstart, s); min(g(s), rhs(s))]

m The first term is used as the primary key
m The second term is used as the secondary key for tie-breaking

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 35 /92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite Algorithm

m Main — repeat until the robot reaches the goal (or g(ssart) = oo there is no path)

Initialize();
ComputeShortestPath();
while (Sstart # Sgoar) do
Sstart = argmins’GSucc(sstan)(C(SStarh 5’) + g(sl));
Move to Sstart;
Scan the graph for changed edge costs;
if any edge cost changed perform then
foreach directed edges (u, v) with changed edge costs do
Update the edge cost c(u, v);
L UpdateVertex(u);

foreach s € U do
L U.Update(s, CalculateKey(s));

ComputeShortestPath();

Procedure Initialize
Uu=0;
foreach s € S do
| rhs(s) = g(s) = oo
rhs(Sgoar) := 0;
U.Insert(sgoar, CalculateKey(sgoa/));
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 36 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite Algorithm — ComputeShortestPath()

Procedure ComputeShortestPath

while U.TopKey() < CalculateKey(sstart) OR rhs(sstart) # &(Sstart) do
u := U.Pop();
if g(u) > rhs(u) then
g(u) = rhs(u);
foreach s € Pred(u) do UpdateVertex(s);
else

g(u) := oo;
foreach s € Pred(u) | J{u} do UpdateVertex(s);

Procedure UpdateVertex

if U # sgo0 then rhs(u) := ming ¢ syce(u)(c(u,s') + &(s));
if u € U then U.Remove(u);
if g(u) # rhs(u) then U.Insert(u, CalculateKey(u));

Procedure CalculateKey
return [min(g(s), rhs(s)) + h(Sstart, s); min(g(s), rhs(s))]

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 37 /92

D* Lite
D* Lite — Demo

LA R d

o le s

F N (_)'II‘I
(&)

N
winjw|s

PO
—

https://github.com/mdeyo/d-star-1lite

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 38 /92

https://github.com/mdeyo/d-star-lite

Grid-based Planning

DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example

3,0

33 34 Legend

Free node _|[Obstacle node |

On open lit

2,0

3 4
ytart m A grid map of the envi-

ronment (what is actu-

ally known)

>0

1,0

3 2 m 8-connected graph su-
perimposed on the grid
(bidirectional)

m Focusing heuristic is not

0,0

§

y0a

3 4 used (h=0)

m Transition costs

B Free space — Free space: 1.0 and 1.4 (for diagonal edge)

B From/to obstacle: oo %

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning 39 /92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (1)

30 31 32 33 34 Legend
g |[e~ |[eo |[sx |[ex | [Freenode |[Obstaclenode’]
rhs: oo rhs: oo rhs: co rhs: oo rhs: oo
2,0 2,1 2,2 2,3 24 start .
s s s s s Initialization
rhs: co rhs: co rhs: oo rhs: co rhs: oo,?, = Set rhs = 0 for the goal
N m Set rhs = g = oo for all other
1,0 1,1 1,2 1,3 14 nodes
g: 0o g: 0o g: 00
rhs: oo rhs: oo rhs: oo
0,0 goal 01 0,2 03 0,4
g: o0 g oo g: 00 g: 0o
rhs: 0 rhs: oo rhs: oo rhs: oo

ft

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 40 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (2)

3,0 31 32 33 34 Legend
g |[Eo0 |[eo |[eoo |[eoo || [Freenode |[ObstaclehodeT]
rhs: co rhs: co rhs: co rhs: co rhs: co On open list
2,0 2,1 2,2 2,3 24 start itiali .
o o0 e s s o Initialization
rhs: co rhs: co rhs: co rhs: co rhs: 00, = Put the goal to th-e -open-llst
X It is inconsistent
1,0 1,1 1,2 1,3 1,4
g: 00 g: 0o g: 00
rhs: co rhs: co rhs: co
0,0 goal 01 0,2 03 0,4
g: 0o g: 00 g: 0o g: 0o
rhs: 0 rhs: co rhs: co rhs: co

ft

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 41 / 92

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (3)

3,0 3,1 3,2 3,3 3,4

g: 0o g: 0o g: oo g: 0o g: 0o

rhs: co rhs: co rhs: co rhs: co rhs: co

2,0 2,1 2,2 2,3 24 start

g: 0o g: 0o g: 0o g: 0o g: 0o

rhs: co rhs: co rhs: co rhs: co rhs: oo.?,
[AY

1,0 1,1 1,2 1,3 1,4

g: 0o g: 0o g: 00

rhs: co rhs: co rhs: co

00 gpal |01 0,2 03 0,4

g0 g: 0o g: 0o g: 0o

rhs: 0 rhs: co rhs: co rhs: co

Jan Faigl, 2017

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (goal)

m It is over-consistent (g >
rhs), therefore set g = rhs

ft

B4M36UIR — Lecture 04: Grid and Graph based Path Planning 42 / 92

D* Lite

D* Lite — Example Planning (4)

30 31 32 33 34 Legend
g: 0o g: 0o g: 0o g: 00 g: 0o \Free node H Obstacle node]
rhs: oo rhs: oo rhs: co rhs: oo rhs: oo On open list
2,0 2,1 2,2 2,3 2,4 start
; ; ; ; : ComputeShortestPath
g: 0o g: 0o g: 0o g: 0o g: 0o
rhs: co rhs: co rhs: co rhs: co rhs: oo,?, = Expand popped no.de
X (UpdateVertex() on all its
1,0 1,1 1,2 1,3 1,4 predecessors)
g o0 g g: o0 g o g: 0o m This computes the rhs values
rhs: 1 rhs: o rhs: co rhs: co rhs: oo for the predecessors
I m Nodes that become inconsis-
MO_EH 0.1 0.2 03 0.4 tent are added to the open list
g0 g: 0o g: 0o g: 0o g: 00
rhs: O rhs: 1 rhs: oo rhs: oo rhs: oo

Small black arrows denote the node used for computing the rhs value, i.e., using the respec-
tive transition cost

m The rhs value of (1,1) is co because the transition to obstacle has cost co

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 43 / 92

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (5)

3,0 3,1 3,2 3,3 3,4

g 0o g 0o g 0o g: 00 g: 00
rhs: oo rhs: oo rhs: co rhs: oo rhs: oo
2,0 2,1 2,2 2.3 2.4 start
g: 0o g: 0o g: 0o g: 0o g: 0o
rhs: co rhs: co rhs: oo rhs: co rhs: oo.?,
1,0 1,1 1,2 1,3 1,4 =
g1 g: oo g: 00
rhs: 1 - - rhs: co rhs: co
0,0 kl oal |01 0,2 03 0,4

g0 g o0 g: 00 g: 0o
rhs: O i rhs: 1 - rhs: oo rhs: co

Jan Faigl, 2017

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (1,0)

m It is over-consistent (g > rhs)
set g = rhs

ft

B4M36UIR — Lecture 04: Grid and Graph based Path Planning 44 / 92

D* Lite

D* Lite — Example Planning (6)

3,0 3,1 3,2 3,3 3,4

g: 0o g: 0o g: oo g: 0o g: 00
rhs: co rhs: co rhs: co rhs: co rhs: co
2,0 21 2,2 2,3 2,4 start
g: oo g: 0o g: oo g oo g: 0o
rhs: 2 rhs: 2.4 rhs: co rhs: co rhs: oo,?,

| ,/ N

1,0 | A11 1,2 1,3 1,4

g1l g: o0 g: o0 g: oo g: 0o
rhs: 1 rhs: o rhs: co rhs: co rhs: oo
e ——
MLE‘I 0,1 0,2 0,3 0,4

g0 g: 0o g: 0o g: 0o g: 00
rhs: 0 rhs: 1 rhs: co rhs: co rhs: co

m The rhs value of (0,0), (1,1) does not change

m They do not become inconsistent and thus they are not put on the open list

Jan Faigl, 2017

Legend
\ Free node H Obstacle node]

On open lt

ComputeShortestPath

m Expand the popped node
(UpdateVertex() on all pre-
decessors in the graph)

m Compute rhs values of the
predecessors accordingly

m Put them to the open list if
they become inconsistent

B4M36UIR — Lecture 04: Grid and Graph based Path Planning 45 / 92

D* Lite

D* Lite — Example Planning (7)

30 31 32 33 34 Legend
g: 0o g: 0o g: 0o g: 00 g: 0o \Free node HObstade node]
rhs: co rhs: co rhs: co rhs: co rhs: co On open list
2,0 2,1 2,2 2,3 2,4 start
P s e P s ComputeShortestPath
rhs: 2 rhs: 2.4 ||| rhs: co rhs: co rhs: oo,?, = Pop the mimimum element

[5 X from the open list (0,1)
o] A1 1.2 13 14 m It is over-consistent (g > rhs)
g1 g g: o0 g o© g: 00 and thus set g = rhs
rhs: 1 rhs: co rhs: co rhs: oo rhs: 0o = Expand the popped element,

T e.g., call UpdateVertex()
0,0 toa| 0,1 0,2 0,3 0,4
g0 g1 g: 0o g: 0o g: 00

€l
rhs: 0 rhs: 1 rhs: co rhs: oo rhs: oo
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 46 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (8)

3,0 31 32 33 34 Legend

g |[e~ |[eo |[sx |[ex | [Freenode |[Obstaclenode’]
rhs: co rhs: co rhs: co rhs: co rhs: co On open list

2,0 2,1 2,2 2.3 24 start

g 2 g oo Z oo P = 65 ComputeShortestPath
. Ol m Pop the minimum element
rhs.l2 /rhs. 2.4 rhs: oo rhs: oo rhs: oo,’l\, from the open list (2,0)

1,0 J, 1,1

1,2
g1l

e |

0,0 kl oal |01 0,2 03 0,4

13 14 m It is over-consistent (g > rhs)

g: 0o g: 00 and thus set g = rhs

rhs: co rhs: co

g0 g1 g: 0o g: 00

rhs: 0 rhs: 1 rhs: co rhs: co

ft

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 47 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (9)

3,0 31 32 33 34 Legend

g [EE | [(o oo | [Free noie)
rhs: 3 rhs: 3.4 rhs: co rhs: co rhs: oo On open list
| 7

2,0 (2,1 2,2 23 24 start

. 2’1’ 4 e e s s ComputeShortestPath

rhs: 2 rhs: 2.4 ||| rhs: co rhs: co rhs: oo.?, = Expand the popped element
; L X and put the predecessors that

10 | 11 1,3 1,4 become inconsistent onto the

g 00 g 0o open list
rhs: co rhs: co

1,2
g1l

e |

0,0 kl oal |01 0,2 03 0,4

g0 g1 g: 0o g: 00

rhs: 0 rhs: 1 rhs: co rhs: co

ft

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 48 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (10)

3,0 31 32 33 34 Legend

g [EE | [(o oo | [Free noie)
rhs: 3 rhs: 3.4 rhs: co rhs: co rhs: oo On open list
7

I
2,0 J, I/'2,1 2,2 23 2,4 start
g 2 o 2.4 Z oo P = 65 ComputeShortestPath

. Ol m Pop the minimum element
rhs.l2 /rhs. 24 || rhs: 00 rhs: 00 rhs: OOX from the open list (2,1)
o} A1 13 14 m It is over-consistent (g > rhs)

g: 0o g: 00 and thus set g = rhs
rhs: oo rhs: oo

1,2
g1l

e |

0,0 kl oal |01 0,2 03 0,4

g0 g1 g: 0o g: 00

rhs: 0 rhs: 1 rhs: co rhs: co

ft

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 49 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (11)

30 31 32 33 34 Legend
s Em e o (o | [Freeror I
rhs:l3 /rhs: 3.4 /rhs: 3.8 ||| rhs: oo rhs: oo On open list
20 | A21 /22 23 24 start
o2 o 24 S s o ComputeShortestPath
¢

the: 2 the: 2.4 || ths: 3.4 ||| rhs: oo rhs: 009 m Expand the popped element

; - X and put the predecessors that
10 | 11 1,2 1,3 1,4 become inconsistent onto the
e 1 g 00 g 0o open list
rhs: 1 rhs: oo rhs: oo

|
0,0 koal 01 0,2 03 0,4
g0 g1 g: 0o g: 00

¢

rhs: 0 rhs: 1 rhs: oo rhs: oo

ft

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 50 / 92

D* Lite

D* Lite — Example Planning (12)

30 31 32 33 34 Legend
g 3 g: 0o g: 0o g: 00 g: 0o \Free node HObstacIe node]
rhs: 3 rhs: 3.4 rhs: 3.8 rhs: oo rhs: co On open list
/ /
20 | lZ’2,1 l/’2,2 2,3 2,4 start
2 o 24 P P s ComputeShortestPath
)] £l)) . .0 m Pop the minimum element
rhs.l2 /rhs. 24 L S U8 €9 S Oo‘,l\’ from the open list (3,0)
o] A1 1.2 13 14 m It is over-consistent (g > rhs)
g1 g: 00 g: 00 g: 00 g: oo and thus set g = rhs
rhs: 1 rhs: co rhs: co rhs: oo rhs: oo m Expand the popped element
T and put the predecessors that
MLM 01 |02 03 0.4 become inconsistent onto the
g0 J g1 g © g g: open list
rhs: O rhs: 1 rhs: oo rhs: oo rhs: oo m In this cases, none of the pre-
decessors become inconsistent
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 51 /92

D* Lite

D* Lite — Example Planning (13)

30 31 32 33 34 Legend
g3 g 3.4 g: 0o g: 00 g: 00 \Free node H Obstacle node]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 0o ||| rhs: oo On open list
T 7 7
20 | lZ’2,1 l/’2,2 2,3 2,4 start
2 o 24 P P s ComputeShortestPath
)] £l)) . .0 m Pop the minimum element
rhs.l2 /rhs. 24 L S U8 €9 S Oo‘,l\’ from the open list (3,0)
o] A1 1.2 13 14 m It is over-consistent (g > rhs)
g1 g g: o0 g o© g: 00 and thus set g = rhs
rhs: 1 rhs: co rhs: co rhs: oo rhs: oo m Expand the popped element
T and put the predecessors that
MLM 01 |02 03 0.4 become inconsistent onto the
g0 J g1 g © g g: open list
rhs: O rhs: 1 rhs: oo rhs: oo rhs: oo m In this cases, none of the pre-
decessors become inconsistent
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 52 /92

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (14)

3,0 3,1 3,2 3,3 3,4
g3 g: 3.4 g: oo g oo g: 00
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo rhs: oo

T V4 /
20 | A21 /22 23 24 start
g2 g 2.4 g: 3.4 g: oo g: 0o
rhs: 2 rhs: 2.4 l rhs: 3.4 ||| rhs: co rhs: 009
1,0 i {'{,1 1,2 1,3 1,4 =
g1l g: 0o g: 00
rhs: 1 - - rhs: oo rhs: oo
0,0 kl oal |01 0,2 0,3 0,4
g0 g1 g: oo g: 0o
rhs: 0 i rhs: 1 - rhs: co rhs: co

Jan Faigl, 2017

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (2,2)

m It is over-consistent (g > rhs)
and thus set g = rhs

ft

B4M36UIR — Lecture 04: Grid and Graph based Path Planning 53 /92

D* Lite

D* Lite — Example Planning (15)

3,0 3,1 3,2 3.3 3.4
g3 g: 3.4 g: o0 g: oo g: 0o
rhs: 3 rhs: 3.4 rhs: 3.8 rhs: 4.8 rhs: co

| 7 / /
20 | 21 VEE NEE 24 start
g2 g 2.4 g: 3.4 g: oo g: o0
e ¢|
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: oo,?,
T 7 K 7A)

1,0 | (’1,1 1,2 \Q3 1,4
g1l g g: oo g: 0o g: 00
rhs: 1 rhs: o rhs: co rhs: 4.8 ||| rhs: co

e —

0,0 k03| 0,1 0,2 0,3 0,4
g0 g1 g: oo g oo g: 0o
rhs: 0 rhs: 1 rhs: co rhs: co rhs: co

Legend
\ Free node H Obstacle node]

On open lt

ComputeShortestPath

m Expand the popped element
and put the predecessors that
become inconsistent onto the
open list, i.e., (3,2), (3,3),
(23)

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 54 / 92

D* Lite

D* Lite — Example Planning (16)

30 31 32 33 34 Legend
g3 g 3.4 g 3.8 g: oo g: 0o \Free node H Obstacle node]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: co On open list
T 7 7 7
20 | 21 VEE NES 24 start
2 o 24 o34 P s ComputeShortestPath
£l t1 P th ini | t
rhs: 2 ths: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: c0@) . froﬁ] the m'r?llrin:r& ;)emen
; b K| X 0 e open list (3,
o] A1 1.2 N3 14 m It is over-consistent (g > rhs)
g1 g g: o0 g: o g: 00 and thus set g = rhs
rhs: 1 rhs: co rhs: co rhs: 4.8 rhs: oo m Expand the popped element
T and put the predecessors that
MLM 01 |02 03 0.4 become inconsistent onto the
g0 g1 g © g g: open list
rhs: O rhs: 1 rhs: oo rhs: oo rhs: oo m In this cases, none of the pre-
decessors become inconsistent
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 55 / 92

D* Lite

D* Lite — Example Planning (17)

3,0 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g: oo g: 0o \Free node H Obstacle node]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: co On open list
T 7 7 7
20 | 21 VEE NEE 24 start
o2 o 24 o34 o 4a s ComputeShortestPath
£ J P th ini | t
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 009 " fOP the mlnlll’.T‘I;lrE; ;)emen
; b x| X rom the open list (2,
1.0 i s 1.2 N3 14 m It is over-consistent (g > rhs)
g1 & €9 & o g: o© g o and thus set g = rhs
rhs: 1 rhs: o rhs: co rhs: 4.8 ||| rhs: co
R
0,0 k03| 0,1 0,2 0,3 0,4
g0 g1 g: 0o g: 0o g: 00
rhs: 0 rhs: 1 rhs: oo rhs: co rhs: co
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 56 / 92

D* Lite

D* Lite — Example Planning (18)

3,0 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g: oo g: 0o \Free node H Obstacle node]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list

l L7 L7 ,/ ,/
2,0 21 /22 23 /24 start
o2 o 24 o34 o 4a s ComputeShortestPath

¥ ¥ 1] E d th d el t

rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5. " xgan he Poppe eemﬁn

; L . . 4‘% and put the predecessors that
1,0 | (’1,1 1,2 \Q3 \{4 become inconsistent onto the

open list, ie., (3,4), (2,4),
(1,4)

m The start node is on the open

e —
0,0 k03| 0,1 0,2 0,3 0,4 list

g0 g1 g: g: o0 g: oo m However, the search does not
finish at this stage

g1 g: 0o g: 0o g: 0o g: 00
rhs: 1 rhs: o rhs: co rhs: 4.8 ||| rhs: 5.8

rhs: 0 rhs: 1 rhs: oo rhs: co rhs: co

m There are still inconsistent
nodes (on the open list) with
a lower value of rhs

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 57 / 92

D* Lite

D* Lite — Example Planning (19)

30 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g: 4.8 g: 0o \Free node H Obstacle node]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
.i, 7 7 7 L7
2,0 21 22 123 /24 start
2 o 24 o34 o 4a s ComputeShortestPath
£l tl fl P th ini | t
rhs: 2 rhs: 2.4 rhs: 3.4 rhs: 4.4 ||| rhs: 5. " fOP the mlnllr.n:r& 2e)emen
; b x| K\4 rom the open list (3,
0] A1t 12 N3 N4 m It is over-consistent (g > rhs)
g1 g g: o0 g: o g: 00 and thus set g = rhs
rhs: 1 rhs: co rhs: co rhs: 4.8 rhs: 5.8 = Expand the popped element
T and put the predecessors that
MLM 01 |02 03 0.4 become inconsistent onto the
g0 J g1 g © g g: open list
rhs: O rhs: 1 rhs: oo rhs: oo rhs: oo m In this cases, none of the pre-
decessors become inconsistent
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 58 / 92

D* Lite

D* Lite — Example Planning (20)

3,0 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g 4.8 g: 00 \Free node H Obstacle node]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
l Lz Lz Lz 7
2,0 21 22 /23 /24 start
o2 o 24 o34 o 4a s ComputeShortestPath
M ¥ ¥ P th ini | t
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5. " fOP the mlnllr.n:r?l 3e)emen
; b x| K\Ji{ rom the open list (1,
I £ 1,2 N3 N4 m It is over-consistent (g > rhs)
g1l g: 00 g: o0 g 4.8 g: 00 and thus set g = rhs
rhs: 1 rhs: oo rhs: co rhs: 4.8 rhs: 5.8
e — s =0 i 22
0,0 k03| 0,1 0,2 0,3 0,4
g0 g1 g: 0o g: 0o g: 00
rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 59 / 92

D* Lite

D* Lite — Example Planning (21)

3,0 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g: 4.8 g: 0o \Free node H Obstacle node]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list

l L7 Lz Lz L7
2,0 21 /22 23 /24 start
o2 o 24 o34 o 4a s ComputeShortestPath

¥ ¥ ¥ E d th d el t

rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5. " xgan he popped € em(;n

; L . . 4‘% and put the predecessors that
1,0 | (’1,1 1,2 \{,3 \{4 become inconsistent onto the

g 1 g 0o g 0o e 48 g 0o open list, i.e., (0,3) and (0,4)

rhs: 1 rhs: oo rhs: co rhs: 4.8 rhs: 5.8
e — L= =2
0,0 k03| 0,1 0,2 0,3 | \Q“
g0 g1 g: oo g oo g: 0o
rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 60 / 92

D* Lite

D* Lite — Example Planning (22)

3,0 3,1 3,2 3,3 3,4
g3 g: 3.4 g: 3.8 g: 4.8 g: ©
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8

T Z Z Z 7
20 | 21 VEE 23 /24 start
g2 g 2.4 g: 3.4 g 4.4 g: 5.4

4 ¢| |l

rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5.19

I V4 K) IAY
1,0 | (’1,1 1,2 \g,3 \%,4
g1 g: 0o g: 00 g: 4.8 g: o0
rhs: 1 rhs: oo rhs: co rhs: 4.8 rhs: 5.8
B— — —, S, 4
0,0 k03| 0,1 0,2 0,3 | \Q“
g: 0 g: 1 g: 0o g: 0o g: oo

&

rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2

Legend
\ Free node H Obstacle node]

On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (2,4)

m It is over-consistent (g > rhs)
and thus set g = rhs

m Expand the popped element
and put the predecessors that
become inconsistent (none in
this case) onto the open list

m The start node becomes consistent and the top key on the open list is not less than the
key of the start node

m An optimal path is found and the loop of the ComputeShortestPath is breaked

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning 61 / 92

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (23)

3,0 31 32 33 34 Legend
g3 |[e34 |[e38 |[e48 |[eroc || [Freenode |[Obstaclenode]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
T L7 '/ '/ '/
20 | 2,1 2,2 2,3 24 start
g2 g 2.4 g: 3.4 g 4. g: 5.4 m Follow the gradient of g val-
i N fi the start node
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 || rhs: 5.49 ues from
I y4 ZAY
1,0 J, 1,1 1,2 \{,3 \{4
g1l g: 4.8 g 0o
rhs: 1 rhs: 4.8 ||| rhs: 5.8
| A K
0,0 koal 0,1 0,2 0,3 | \Q“
g0 g1 g: 0o g: 0o
¢
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 62 / 92

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (24)

3,0 31 32 33 34 Legend
g3 |[e34 |[e38 |[s48 |[[& || [Freenode |[Obstaclenode]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list

T 7 7 7 /
20 | 2,1 2,2 72,3 /24 start
g 2 g: 2.4 g 3. g 4. g: 5.4 m Follow the gradient of g val-

o o P

rhs: 2 rhs: 2.4 ||| rhs: 3.4 rhs: 5.4 ues from the start node

I y4
1,0 J, 1,1 1,2 \{,3 \{4
g1l g: 4.8 g 0o
rhs: 1 rhs: 4.8 ||| rhs: 5.8

| A K
0,0 koal 0,1 0,2 0,3 | \Q“
g0 g1 g: 0o g: 0o

¢
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 63 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (25)

3,0 31 32 33 34 Legend

rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
7 /

20 | (2,1 (2,2 (2,3 /24 start

g2 g: 2.4 g: 4. g:5.4 m A new obstacle is detected

ths: 2 rhs: 2.4) i i rhs: 5.4 during the movement from
T 7z (2.3) to (2,2)

10 | 1,1 1,2 N3 N4

’ ' ' N N = Replanning is needed!

g 4.8 g: 00

g1l

rhs: 1 rhs: 4.8 ||| rhs: 5.8
| A

0,0 koal 0,1 0,2 0,3 | \Q“

g0 g1 g: 0o g: 0o
rhs: 0 rhs: 1

rhs: 5.8 ||| rhs: 6.2

ft

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 64 / 92

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (25 update)

30 31 32 33 34 Legend
rhs: 3 rhs:%\.{ rhs:[3.8 ||| rhé: 4.8 ||| rhs: 5.8 On open list
T V4 7 /
20 | (2,1 2 (24 start
g2 g 2.4 g: 5.4 m All directed edges with
P
rhs: 2 rhs: 2.4 rhs: 5.4 changed edge, we need to call
T ba the UpdateVertex ()
Lo v 2 N = All edges into and out of (2,2)
g1l 3 c9 have to be considered
rhs: 1 rhs: 5.8
|
0,0 koal 01 0,2 N4
g0 g1 g: o0
¢
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 65 / 92

D* Lite

D* Lite — Example Planning (26 update 1/2)

30 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g: 4.8 g: 00 \Free node HObstacIe node]
rhs: 3 rhs: 3.4 ||| rhs:|3.8 ||| rhé: 4.8 ||| rhs: 5.8 On open list
l // // // Y-
2,0 21 fe2 2,3 /24 start
g2 g 2.4 g3, g 4.4 g: 5.4 Update Vertex
: ‘ 11 tgoi dges f 2,2
rhs: 2 rhs: 2.4 ||| rhs: rhs: 4.& rhs: 5.4 = Outgoing edges from (2,2)
I L7 4 < — m Call UpdateVertex () on (2,2)
1,0 11 1,2 3 4
ol g - : bL m The transition costs are now
gl &: oo/ g * gn4.8 BHES 0o because of obstacle
rhs: 1 rhs: co rhs: oo rhs: 4.8 ||| rhs: 5.8 m Therefore the rhs =
0.0 i oal ot 02 03 I' K\Q4 and (2,2) !Jecomes inconsis-
tent and it is put on the open
g0 g1 g: 00 g: 0o g: 00 list
rhs: 0 rhs: 1 rhs: oo rhs: 5.8 ||| rhs: 6.2
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 66 / 92

D* Lite

D* Lite — Example Planning (26 update 2/2)

3,0 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g 4.8 g: 00 \Free node HObstacIe node]

rhs: 3 rhs: 3.4 ||| rhs:|3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
L2

T 7 Z »
20 | 21 4 24 start
g2 g 2.4 g: 5.4
€
rhs: 2 rhs: 2.4 rhs: 5.4

7
1,0 | (’1,1

Update Vertex
m Incomming edges to (2,2)
m Call UpdateVertex() on the

N4 neighbors (2,2)

g1 g S R m The transition cost is oo, and
rhs: 1 rhs: co rhs: 5.8 therefore, the rhs value previ-
—— — ously computed using (2,2) is
0,0 goal 01 N4 changed

g: 0) g 1 g: oo

rhs: 0 rhs: 1 rhs: co rhs: 5.8 rhs: 6.2

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 67 / 92

D* Lite

D* Lite — Example Planning (27)

30 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g: 4.8 g: 00 \Free node H Obstacle node]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhé: 4.8 ||| rhs: 5.8 On open list
l // // Y-
2,0 21 22 2,3 /24 start
g: 2 g 2.4 g: 3/ g 4.4 g: 5.4 Update Vertex
%7 M Th ighbor of (2,2) i
rhs: 2 rhs: 2.4 ||| rhs: co rhs: 4.& rhs: 5.4 " e neighbor of (2.2) is (3.3)
T L7 K o — m The minimum possible rhs
o] A1 1.2 N3 N4 value of (3,3) is 4.8 but it is
g1 g: 0o g: 00 g 4.8 g: 00 based on the g value of (3,2)
the: 1 ths: oo rhs: oo ths: 4.8 ths: 5.8 and not (2,2), which is the de-
R e 4 AE— tected obstacle
N
MLE‘I o1 0.2 03 | R4 m The node (3,3) is still consis-
g0 g1 g: o g g: o tent and thus it is not put on
rhs: 0 rhs: 1 rhs: oo rhs: 5.8 rhs: 6.2 the open list
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 68 / 92

D* Lite

D* Lite — Example Planning (28)

3,0 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g 4.8 g: 00 \Free node H Obstacle node]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
l // Y- N Y-
2.0 21 22 N3 |24 start
g: 2 g: 2.4 g: 3.4 g: 4.4 g:5.4 Update Vertex
T €l 2 is al ighb f
rhs: 2 rhs: 2.4 ||| rhs: co rhs: 5. rhs: 5.4 = (23) is also a neighbor o
T L7 K < — (2.2)
0] A1t 12 N3 N4 s The minimum possible rhs
g1 g: 00 g: oo g 4.8 g: oo value of (2,3) is 5.2 because of
rhs: 1 rhs: oo rhs: oo rhs: 4.8 ||| rhs: 5.8 (22) is obstacle (using (3,2)
) e h— with 3.8 + 1.4)
N
0.0 :koal 0.1 0.2 0.3 I R4 m The rhs value of (2,3) is dif-
g0 gl g: oo g: o0 g: o0 ferent than g thus (2,3) is put
rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2 on the open list

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 69 / 92

D* Lite

D* Lite — Example Planning (29)

3,0 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g 4.8 g: 00 \Free node H Obstacle node]
¢
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
I ya y i—d h— 4
20] 21 g2 R3S 24 start

g2 g 2.4 g: 3.4 g 4.4 g: 5.4 Update Vertex
€

£l Anoth ighb f (2,2) i

rhs: 2 rhs: 2.4 rhs:%a\ rhs: 5.% rhs: 5.4 " (1n§) er neighbor of (2.2) is
r/ % N ’

o | A11 12 1.3 N4 m The minimum possible rhs

g1 g: o0 g: oo g:4.8 g: oo value of (1,3) is 5.4 computed
the: 1 rhs: 60 ths: 00 ths: 5.4 ||| rhs: 5.8 based on g of (2,3) with 4.4
B— — — ~— . S +1=54

N
0.0 :koal 01 0.2 0.3 I 4 m The rhs value is always com-
g0 g1 g: o0 g: o0 g: o0 puted using the g values of its
rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2 successors

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 70 / 92

D* Lite

D* Lite — Example Planning (29 update)

3,0 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g 4.8 g: 00 \Free node H Obstacle node]
&

rhs: 3 rhs: 3.4 ||| rhs:|3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
i y s —. 4 —4

T
20 | A21 /22 N3 A24 start
g2 g 2.4 gn3l4 g 4.4 g: 5.4 Update Vertex
1] N f the oth ighbor of
rhs: 2 rhs: 2.4 ||| rhs:|co rhs: 5. rhs: 5.4 " 2o;e of the other neighbor o
- - = =7 (2,2) end up being inconsis-
1,0 | (’1,1 1,2 1,3 | \g,4 tent
g1 g g: OF g 4.8 g: 00 m We go back to «calling

rhs: 1 rhs: co rhs: co rhs: 5.4 ||| rhs: 5.8 Com.puteShorte_stPath() .
— until an optimal path is

— — — S—_
0,0 toa| 01 0,2 03 I \Q4 determined
g: 0 g: 1 g 0 g. 00 g:. 00

rhs: 0 rhs: 1 rhs: co rhs: 5.8 rhs: 6.2

m The node corresponding to the robot's current position is inconsistent and its key is
greater than the minimum key on the open list

m Thus, the optimal path is not found yet

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 71/ 92

D* Lite

D* Lite — Example Planning (30)

3,0 3,1 3,2 3.3 3.4
g3 g: 3.4 g: 3.8 g: 4.8 g: ©
€

rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8

T 7 — 4
20} 2t g2 R3S 24 start
g2 g 2.4 g: 00 g 4.4 g: 5.4

€

rhs: 2 rhs: 2.4 ||| rhs: oo rhs: 5.% rhs: 5.4

T 7 7 S —
1,0 | (’1,1 1.2 1,3 | \g,4
g1 g: 0o g: 00 g: 4.8 g: o0
rhs: 1 rhs: oo rhs: co rhs: 5.4 ||| rhs: 5.8
e — L= =2
0,0 k03| 0,1 0,2 0,3 | \Q“
g0 g1 g: o0 g: 0o g: oo

&

rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2

Legend
\ Free node H Obstacle node]

On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (2,2), which
is obstacle

m It is under-consistent (g <
rhs), therefore set g = oo

m Expand the popped element
and put the predecessors that
become inconsistent (none in
this case) onto the open list

m Because (2,2) was under-consistent (when popped), UpdateVertex () has to be called on it

m However, it has no effect as its rhs value is up to date and consistent

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning 72 /92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (31)

3,0 3,1 3,2 3,3 3,4

Legend
"
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
T V4 7 /

20 | A21 3 /(24 start
o2 o 24 s o 54 ComputeShortestPath
. . m Pop the minimum element
rhs.l2 /rhs. Ef rhs.q?.%\ UEE 54 from the open list (2,3)
1o] 1.1 13 | N4 m It is under-consistent (g <

g 4.8 g: 0o
rhs: 5.4 ||| rhs: 5.8

rhs), therefore set g = oo

g1l
rhs: 1

I A K,
00 goal [01 03 | N4
g 0 g1 g: 00 g: 0o

° ")
N N N
V!

rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

ft

73 / 92

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning

D* Lite

D* Lite — Example Planning (32)

3,0 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g 4.8 g: 00 \Free node H Obstacle node]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
2,0 l {’g 1 (2,2 \{3 X 4

' ' = ' R4 start
o2 o 24 A s 54 ComputeShortestPath

the: 2 the: 2.4 ||['rhst 00 rhs: 5'8 the: 6.2 n Ex([j)and the }?opped element

; L x| and update the predecessors
»

o]| 11 1.2 13 /14 m (2,4) becomes inconsistent
g1 g o0 g o g 48 |8 = (1,3) gets updated and still in-
rhs: 1 rhs: oo rhs: co rhs: 6.8 rhs: 5.8 consistent
0.0 i oal o1 02 03 I' K\Q4 m The rhs value.(l_,4) does not

0 1 ||Ees o0 o0 changed, but it is now com-
& N & & & & puted from the g value of
rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2 (1,3)

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 74 / 92

Grid-based Planning

DT for Path Planning

Graph Search Algorithms

D* Lite RD-based Planning

D* Lite — Example Planning (33)

3,0 3,1 3,2 33 3,4
g3 g: 3.4 g: 3.8 g 4.8 g: 00
"
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
I y4 y4 K K
2,0 J, I/'2,1 1’2,2 \%3 ‘\%4 start
g2 g 2.4 g: oo g 5.4
rhs: 2 rhs: 2.4 rhs: 5-2 rhs: 6.2
I /7 AMD. |
10 | 11 1,2 1,3 14
g1l g 4.8 g: oo
n
rhs: 1 rhs: 5.4 ||| rhs: 5.8
| A K
0,0 koal 0,1 0,2 0,3 | \Q“
g0 g1 g: 0o g: 0o
"
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Because (2,3) was under-
consistent (when popped),
call UpdateVertex() on it is
needed

m As it is still inconsistent it is
put back onto the open list

ft

75 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (34)

3,0 31 32 33 34 Legend
"
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
I y4 y4
2,0 J, 2,1 2,2 \%3 ‘\%4 start
g 2 g 24 - g |[es5a ComputeShortestPath
)] .) m Pop the minimum element
rhs.l2 ,rhs. el s 5'4; i 6.2 from the open list (1,3)
1o} (11 1.2 13 /14 m It is under-consistent (g <
g1 g: oo g: oo rhs), therefore set g = co
&
rhs: 1 rhs: 6.8 ||| rhs: 5.8
T A K
0,0 koal 0,1 0,2 0,3 | \Q“
g0 g1 g: 00 g: 0o
&
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

ft

76 / 92

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite

RD-based Planning

D* Lite — Example Planning (35)

3,0 3,1 3,2 33 3,4
g3 g: 3.4 g: 3.8 g: 4.8 g: o0
"
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
I y4 y4 K K
2,0 J, I/'2,1 1’2,2 \%3 ‘\%4 start
g2 g 2.4 g: 00 g 5.4
rhs: 2 rhs: 2.4 rhs: 5-2 rhs: 6.2
I y4 N A A
10 | 11 1,2 1,3 /'1,4 |
g1 g: oo g: 0o
rhs: 1 rhs: 6.8 ||| rhs: 6.4
|
0,0 koal 01 0,2 03 0,4
g0 g1 g: 0o g: 00
"
rhs: 0 rhs: 1 rhs: oo rhs: oo

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Expand the popped element
and update the predecessors

m (1,4) gets updated and still in-
consistent

= (0,3) and (0,4) get updated
and now consistent (both g
and rhs are o)

ft

77 / 92

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (36)

3,0 3,1 3,2 33 3,4
g3 g: 3.4 g: 3.8 g: 4.8 g: o0
"
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
I y4 y4 K K
2,0 J, I/'2,1 1’2,2 \%3 ‘\%4 start
g2 g 2.4 g: 00 g 5.4
rhs: 2 rhs: 2.4 rhs: 5-2 rhs: 6.2
I y4 N A A
10 | 11 1,2 1,3 /'1,4 |
g1 g: oo g: 0o
rhs: 1 rhs: 6.8 ||| rhs: 6.4
|
0,0 koal 01 0,2 03 0,4
g0 g1 g: 0o g: 00
"
rhs: 0 rhs: 1 rhs: oo rhs: oo

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Because (1,3) was under-
consistent (when popped),
call UpdateVertex() on it is
needed

m As it is still inconsistent it is
put back onto the open list

ft

78 / 92

Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite

RD-based Planning

D* Lite — Example Planning (37)

3,0 3,1 3,2 3,3 3,4
g3 g: 3.4 g: 3.8 g 4.8 g: 00
rhs: 3 rhs: 3.4 ||| rhs: 3.8 i rhs: 4.8 ||| rhs: 5.8
2,0 i 'g,l 'g,z 3 N4 start
g2 g 2.4 g: 5.2 g: 5.4
rhs: 2 rhs: 2.4 - rhs: 5.@ rhs: 6.2
T 7 N 7S
10 | 1,1 1,2 1,3 /'1,4 |
g1 g: oo g: 0o
rhs: 1 - - rhs: 6.8 ||| rhs: 6.4
0,0 kl oal |01 0,2 0,3 0,4
g0 g1 g: oo g: 0o
rhs: 0 li rhs: 1 - rhs: oo rhs: oo

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

Legend
[Free node | [Obstacle node

On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (2,3)

m It is over-consistent (g >
rhs), therefore set g = rhs

ft

79 / 92

D* Lite

D* Lite — Example Planning (38)

3,0 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g: 4.8 g: 0o \Free node H Obstacle node]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
2,0 l {’g1 72,2 \%3 \{4
: . v 2 ' 4 start
o2 o 24 prapes o 52 54 ComputeShortestPath

E d th d el t
rhs: 2 rhs: 2.4 ||| rhs: oo rhs: 5.@ rhs: 6.2 " :gan dat eﬂ;})op;:ed © emfn

; b —K - and update the predecessors

o] A1 12 1.3 I 14 I m (1,3) gets updated and still in-
g1 g: 0o g: 0o g: 0o g: 00 consistent
rhs: 1 rhs: co rhs: oo rhs: 6.2 ||| rhs: 6.4 = The node (2,3) corresponding
B— — to the robot’s position is con-
0,0 k03| 0,1 0,2 0,3 0,4 sistent
g0 | & 1 g o0 g o0 g o m Besides, top of the key on the
rhs: 0 rhs: 1 rhs: co rhs: oo rhs: oo open list is not less than the

key of (2,3)

m The optimal path has been
found and we can break out
of the loop 5

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 80 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (39)

30 31 32 33 34 Legend

rhs: 3 rhs: 3.4 rhs: 4.8 ||| rhs: 5.8

W4 start
4 g: 5.4 m Follow the gradient of g val-

ues from the robot’s current

rhs: 5 rhs: 6.2 o

X position (node)
1,3 | 1,4 |
g: 00 g: 00

rhs: 6.2 ||| rhs: 6.4

o In NN
N M))

0,3 0,4
g: 0o g: 0o
¢
rhs: 0 rhs: 1 rhs: co rhs: co

ft

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 81 /92

D* Lite

D* Lite — Comments

m D* Lite works with real valued costs, not only with binary costs
(free/obstacle)
m The search can be focused with an admissible heuristic that would
be added to the g and rhs values
m The final version of D* Lite includes further optimization (not
shown in the example)
m Updating the rhs value without considering all successors every
time
m Re-focusing the serarch as the robot moves without reordering the
entire open list

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 82 /92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

QOutline

= Path Planning based on Reaction-Diffusion Process

RD-based Planning

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 83 /92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Reaction-Diffusion Processes Background

m Reaction-Diffusion (RD) models — dynamical systems capable to
reproduce the autowaves

m Autowaves - a class of nonlinear waves that propagate through an
active media

At the expense of the energy stored in the medium, e.g., grass combustion.
m RD model describes spatio-temporal evolution of two state
variables u = u(X, t) and v = v(X, t) in space X and time ¢t
u = f(u,v)+D,Au
v = g(u,v)+D,Av’

where A is the Laplacian.

This RD-based path planning is informative, just for curiosity

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Reaction-Diffusion Background

m FitzHugh-Nagumo (FHN) model
FitzHugh R, Biophysical Journal (1961)
u = 5(u—u3—v+¢)+DuAu
v = (u—av+p)+D,Au '
where a, B3, €, and ¢ are parameters of the model.
m Dynamics of RD system is determined by the associated nullcline
configurations for t=0 and v=0 in the absence of diffusion, i.e.,
a(u—u3—v+¢) = 0,
(u—av+p) = 0,

which have associated geometrical shapes

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 85 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Nullcline Configurations and Steady States

05 i . i
m Nullclines intersections represent
y m Stable States (SSs)
o0 m Unstable States
o m Bistable regime
e The system (concentration levels of (u, v) for
15 -10 -05 00 05 1.0 15 each gl’id cell) tends to be in SSs.

u

m We can modulate relative stability of both SS
“preference” of SST over SS—

m System moves from SS™ to SST,
if a small perturbation is introduced.

m The SSs are separated by a mobile frontier A

a kind of traveling frontwave (autowaves)

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 86 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

RD-based Path Planning — Computational Model

m Finite difference method on a Cartesian grid with Dirichlet boundary
conditions (FTCS) discretization — grid based computation — grid map

m External forcing — introducing additional information
i.e., constraining concentration levels to some specific values

m Two-phase evolution of the underlying RD model
1. Propagation phase
m Freespace is set to SS™ and the start location SS™
m Parallel propagation of the frontwave with non-
annihilation property
Vazquez-Otero and Mufiuzuri, CNNA (2010)
m Terminate when the frontwave reaches the goal

2. Contraction phase
m Different nullclines configuration
m Start and goal positions are forced towards SS*
m 5SS~ shrinks until only the path linking the forced
points remains

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 87 /92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Example of Found Paths

700 x 700 700 x 700 1200 x 1200

m The path clearance maybe adjusted by the wavelength and size of
the computational grid.
Control of the path distance from the obstacles (path safety)

ft

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 88 / 92

RD-based Planning

Comparison with Standard Approaches

Distance Transform Voronoi Diagram Reaction-Diffusion

4 ¢ /
/
/
/ /
2 P

% - .

Jarvis R Beeson P, Jong N, Kuipers B Otero A, Faigl J, Mufiuzuri A
Advanced Mobile Robots (1994) ICRA (2005) IROS (2012)

m RD-based approach provides competitive paths regarding path
length and clearance, while they seem to be smooth

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 89 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Robustness to Noisy Data

Vazquez-Otero, A., Faigl, J., Duro, N. and Dormido, R. (2014): Reaction-Diffusion based Computational
Model for Autonomous Mobile Robot Exploration of Unknown Environments. International Journal of
Unconventional Computing (1JUC).

ft

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 90 / 92

Topics Discussed

Summary of the Lecture

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 91 / 92

Topics Discussed

Topics Discussed

m Front-Wave propagation and path simplification

m Distance Transform based planning

m Graph based planning methods: Dijsktra’s, A*, JPS, Theta*
m D* Lite

m

Reaction-Diffusion based planning (informative)

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 92 / 92

Topics Discussed

Topics Discussed

m Front-Wave propagation and path simplification

m Distance Transform based planning

m Graph based planning methods: Dijsktra’s, A*, JPS, Theta*
m D* Lite

m

Reaction-Diffusion based planning (informative)

Next: Randomized Sampling-based Motion Planning Methods

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 92 / 92

	1
	Grid-based Planning
	DT for Path Planning
	Graph Search Algorithms
	D* Lite
	Path Planning based on Reaction-Diffusion Process

	Summary
	Topics Discussed

