Grid and Graph based Path Planning Methods

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering Czech Technical University in Prague

Lecture 04
B4M36UIR - Artificial Intelligence in Robotics

Overview of the Lecture

- Part 1 - Grid and Graph based Path Planning Methods
- Grid-based Planning
- DT for Path Planning
- Graph Search Algorithms
- D* Lite
- Path Planning based on Reaction-Diffusion Process

Curiosity

Part I

Part 1 - Grid and Graph based Path Planning Methods

Outline

- Grid-based Planning

■

- Graph Search Algorithms
-

 * Lite

- Path Planning based on Reaction-Diffusion Process

Grid-based Planning

- A subdivision of $\mathcal{C}_{\text {free }}$ into smaller cells
- Grow obstacles can be simplified by growing borders by a diameter of the robot
- Construction of the planning graph $G=(V, E)$ for V as a set of cells and
 E as the neighbor-relations
- 4-neighbors and 8 -neighbors

- A grid map can be constructed from the so-called occupancy grid maps
E.g., using thresholding

Grid-based Environment Representations

■ Hiearchical planning

- Coarse resolution and re-planning on finer resolution

Holte, R. C. et al. (1996): Hierarchical A *: searching abstraction hierarchies efficiently. AAAI.

- Octree can be used for the map representation
- In addition to squared (or rectangular) grid a hexagonal grid can be used
■ 3D grid maps - octomap

https://octomap.github.io
- Memory grows with the size of the environment
- Due to limited resolution it may fail in narrow passages of $\mathcal{C}_{\text {free }}$

Example of Simple Grid-based Planning

■ Wave-front propagation using path simplication

- Initial map with a robot and goal
- Obstacle growing

■ Wave-front propagation - "flood fill"

- Find a path using a navigation function
- Path simplification

■ "Ray-shooting" technique combined with Bresenham's line algorithm

- The path is a sequence of "key" cells for avoiding obstacles

Example of Simple Grid-based Planning

■ Wave-front propagation using path simplication

- Initial map with a robot and goal
- Obstacle growing

■ Wave-front propagation - "flood fill"

- Find a path using a navigation function
- Path simplification

■ "Ray-shooting" technique combined with Bresenham's line algorithm

- The path is a sequence of "key" cells for avoiding obstacles

Example of Simple Grid-based Planning

■ Wave-front propagation using path simplication

- Initial map with a robot and goal
- Obstacle growing

■ Wave-front propagation - "flood fill"

- Find a path using a navigation function
- Path simplification

■ "Ray-shooting" technique combined with Bresenham's line algorithm

- The path is a sequence of "key" cells for avoiding obstacles

8	7	6	5	4	3	2	1	0
8	7	6	5	4	3	2	1	1
8	7						2	2
8	8						3	3
9	9						4	4
10	10	10	10				5	5
11	11	11	10				6	6
	12	11	10	9	8	7	7	7
		11	10	9	8	8	8	8

Example of Simple Grid-based Planning

■ Wave-front propagation using path simplication

- Initial map with a robot and goal
- Obstacle growing

■ Wave-front propagation - "flood fill"

- Find a path using a navigation function
- Path simplification

■ "Ray-shooting" technique combined with Bresenham's line algorithm

- The path is a sequence of "key" cells for avoiding obstacles

Example of Simple Grid-based Planning

■ Wave-front propagation using path simplication

- Initial map with a robot and goal
- Obstacle growing

■ Wave-front propagation - "flood fill"

- Find a path using a navigation function
- Path simplification

■ "Ray-shooting" technique combined with Bresenham's line algorithm

- The path is a sequence of "key" cells for avoiding obstacles

Example - Wave-Front Propagation (Flood Fill)

	2		2	2	2	2							
	2		1	1	1	2							
	2		1	0	1	2							
	2		1	1	1	2							
	2		2	2	2	2							

	4	4	4													
	4	3	3	3	3	3	3	3	4							
	4	3	2	2	2	2	2	3	4							
4	3	2	1	1	1	2	3									
	4	3	2	1	0	1	2	3								
4	3	2	1	1	1	2	3									
4	3	2	2	2	2	2	3									
4	3	3	3	3	3	3	3									

11	11	11	11	11	11	11	11	11	12	13	14	14	13	12	12	12
10	10	10	10	10	10	10	10								11	11
9	9	9	9	9	9	9	9						10	10	10	11
8	8	8	8	8	8	8	8						9	9	10	11
7	7	7	7	7	7	7	8					8	8	9	10	11
6	6	6	6	6	6	7	8				7	7	8	9	10	11
5	5	5	5	5	6	7				6	6	7	8	9	10	11
5	4	4	4							5	6	7	8	9	10	11
5	4	3	3	3	3	3	3	3	4	5	6	7	8	9	10	11
5	4	3	2	2	2	2	2	3	4	5	6	7	8	9	10	11
5	4	3	2	1	1	1	2	3						9	10	11
5	4	3	2	1	0	1	2	3		13	12	11	10	10	10	11
5	4	3	2	1	1	1	2	3		13	12	11	11	11	11	11
5	4	3	2	2	2	2	2	3		13	12	12	12	12	12	12
5	4	3	3	3	3	3	3	3		13	13	13	13	13	13	13

Path Simplification

- The initial path is found in a grid using 4-neighborhood
- The rayshoot cast a line into a grid and possible collisions of the robot with obstacles are checked

■ The "farthest" cells without collisions are used as "turn" points

- The final path is a sequence of straight line segments

Initial and goal locations

Obtacle growing, wave-front propagation

Ray-shooting

Simplified path

Bresenham's Line Algorithm

- Filling a grid by a line with avoding float numbers
- A line from $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$ is given by $y=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\left(x-x_{0}\right)+y_{0}$

1 CoordsVector\& bresenham(const Coords\& pt1, const 26

Coords\& pt2, CoordsVector\& line) 27
\{
$\begin{array}{ll}\text { // The pt2 point is not added into line } & 29 \\ \text { int } x 0=p t 1 . c ; ~ i n t ~ y 0 ~=~ p t 1 . r ; ~ & 30\end{array}$ int $\mathrm{x} 1=\mathrm{pt2} \cdot \mathrm{c}$; int $\mathrm{y} 1=\mathrm{pt2} \cdot \mathrm{r} ; \quad 31$ Coords p; 32 int $d x=x 1-x 0 ; \quad 33$ int dy = y1 - y0; 34 int steep $=($ abs $(\mathrm{dy})>=$ abs $(\mathrm{dx}))$; 35 if (steep) \{ 36

```
            SWAP(x0, y0);37
```

```
    SWAP(x1, y1);
                            38
```

 \(\mathrm{dx}=\mathrm{x} 1-\mathrm{x} 0\); // recompute Dx, Dy 39
 \(\mathrm{dy}=\mathrm{y} 1-\mathrm{y} 0\); 40
 \}
int xstep $=1$; 42
if $(d x<0)$ \{ 43
xstep $=-1$; 44
$d x=-d x ; \quad 45$
\}
46
int ystep $=1$; 47
if ($\mathrm{dy}<0$) \{
ystep $=-1$;
$d y=-d y ;$

24 257
int twoDy $=2$ * dy;
int twoDyTwoDx $=$ twoDy $-2 * d x ; / / 2 * D y-2 * D x$
int $\mathrm{e}=\mathrm{twoDy}-\mathrm{dx} ; / / 2 * \mathrm{Dy}-\mathrm{Dx}$
int $y=y 0$;
int xDraw, yDraw;
for (int $\mathrm{x}=\mathrm{x} 0$; x ! $=\mathrm{x} 1$; $\mathrm{x}+=\mathrm{xstep}$) \{
if (steep) \{
xDraw $=\mathrm{y}$;
yDraw $=x$;
\} else \{
xDraw $=x$;
yDraw $=y$;
\}
p.c = xDraw;
p.r = yDraw;
line.push_back(p); // add to the line
if (e > 0) \{
e += twoDyTwoDx; //E += 2*Dy $-2 *$ Dx
$\mathrm{y}=\mathrm{y}+\mathrm{ystep}$;
\} else \{
e += twoDy; //E += 2*Dy
\}
\}
return line;
\}

Outline

- Grid-based Planning

- DT for Path Planning
- Graph Search Algorithms
- D* Lite
- Path Planning based on Reaction-Diffusion Process

Distance Transform based Path Planning

■ For a given goal location and grid map compute a navigational function using wave-front algorithm, i.e., a kind of potential field

- The value of the goal cell is set to 0 and all other free cells are set to some very high value
- For each free cell compute a number of cells towards the goal cell
- It uses 8 -neighbors and distance is the Euclidean distance of the centers of two cells, i.e., $\mathrm{EV}=1$ for orthogonal cells or $E V=\sqrt{2}$ for diagonal cells
- The values are iteratively computed until the values are changing
- The value of the cell c is computed as

$$
\operatorname{cost}(c)=\min _{i=1}^{8}\left(\operatorname{cost}\left(c_{i}\right)+E V_{c_{i}, c}\right),
$$

where c_{i} is one of the neighboring cells from 8-neighborhood of the cell c

- The algorithm provides a cost map of the path distance from any free cell to the goal cell
- The path is then used following the gradient of the cell cost Jarvis, R. (2004): Distance Transform Based Visibility Measures for Covert Path Planning in Known but Dynamic Environments

Distance Transform Path Planning

```
Algorithm 1: Distance Transform for Path Planning
for \(y:=0\) to \(y\) Max do
    for \(x:=0\) to \(x M a x\) do
        if goal \([x, y]\) then
            cell \([\mathrm{x}, \mathrm{y}]:=0\);
        else
```



```
repeat
    for \(y:=1\) to \((y\) Max -1\()\) do
        for \(x:=1\) to \((x \operatorname{Max}-1)\) do
    if not blocked \([x, y]\) then
                cell \([x, y]:=\operatorname{cost}(x, y)\);
    for \(y:=(y M a x-1)\) downto 1 do
        for \(x:=(x\) Max-1) downto 1 do
            if not blocked \([x, y]\) then
            \(\llcorner\operatorname{cell}[\mathrm{x}, \mathrm{y}]:=\operatorname{cost}(\mathrm{x}, \mathrm{y})\);
until no change;
```

```
    Distance Transform based Path Planning - Impl. 1/2
Grid& DT::compute(Grid& grid) const
35
{
36
    static const double DIAGONAL = sqrt(2); 37
    static const double ORTOGONAL = 1; }3
    const int H = map.H;
    const int W = map.W; 40
    39
    assert(grid.H == H and grid.W == W, "size"); 41
    bool anyChange = true; 42
    int counter = 0; 43
    while (anyChange) { 44
        anyChange = false; 45
        for (int r = 1; r < H - 1; ++r) { 46
            for (int c = 1; c < W - 1; ++c) { 47
            if (map[r][c] != FREESPACE) { 48
                    continue; 49
            } //obstacle detected 50
            double t[4]; 51
            t[0] = grid[r - 1][c - 1] + DIAGONAL; 52
            t[1] = grid[r - 1][c] + ORTOGONAL; 53
            t[2] = grid[r - 1][c + 1] + DIAGONAL; 54
            t[3] = grid[r][c - 1] + ORTOGONAL; 55
            double pom = grid[r][c]; 56
            for (int i = 0; i < 4; i++) { 57
                    if (pom > t[i]) { 58
                    pom = t[i]; 59
                    anyChange = true; 60
            } 61
        }
            for (int c = W - 2; c > 0; --c) {
        if (map[r][c] != FREESPACE) {
            continue;
        } //obstacle detected
        double t[4];
        t[1] = grid[r + 1][c] + ORTOGONAL;
        t[0] = grid[r + 1][c + 1] + DIAGONAL;
        t[3] = grid[r][c + 1] + ORTOGONAL;
        t[2] = grid[r + 1][c - 1] + DIAGONAL;
        double pom = grid[r][c];
        bool s = false;
        for (int i = 0; i < 4; i++) {
            if (pom > t[i]) {
                pom = t[i];
                s = true;
            }
        }
        if (s) {
            anyChange = true;
            grid[r][c] = pom;
            }
        }
        }
        counter++;
    } //end while any change
    return grid;
}
```

for (int $r=H-2 ; r>0 ;-r$) \{

A boundary is assumed around the rectangular map
if (anyChange) \{
$\operatorname{grid}[r][\mathrm{c}]=\mathrm{pom}$;
\}
\}

,

Distance Transform based Path Planning - Impl. 2/2

- The path is retrived by following the minimal value towards the goal using min8Point()

```
Coords& min8Point(const Grid& grid, Coords& p) 22
{
    double min = std::numeric_limits<double>::max();23
    const int H = grid.H; 24
    const int W = grid.W; 25
    Coords t; 26
    for (int r = p.r - 1; r <= p.r + 1; r++) {
        if (r < O or r >= H) { continue; } 29
        for (int c = p.c - 1; c <= p.c + 1; c++) { 30
            if (c < O or c >= W) { continue; } 31
            if (min > grid[r][c]) { 32
                    min = grid[r][c]; 33
                    t.r = r; t.c = c; }3
            } 35
        } 36
    } 37
    p = t; 38
    return p; }3
}
CoordsVector& DT::findPath(const Coords& start,
        const Coords& goal, CoordsVector& path)
{
    static const double DIAGONAL = sqrt(2);
    static const double ORTOGONAL = 1;
    const int H = map.H;
    const int W = map.W;
    Grid grid(H, W, H*W); // H*W max grid value
    grid[goal.r][goal.c] = 0;
    compute(grid);
    if (grid[start.r][start.c] >= H*W) {
        WARN("Path has not been found");
    } else {
        Coords pt = start;
        while (pt.r != goal.r or pt.c != goal.c) {
            path.push_back(pt);
            min8Point(grid, pt);
        }
        path.push_back(goal);
    }
    return path;
}
```


DT Example

$\delta=10 \mathrm{~cm}, L=27.2 \mathrm{~m}$

Outline

- Grid-based Planning

-

- Graph Search Algorithms
\square D Lite - Path Planning based on Reaction-Diffusion Process

Graph Search Algorithms

- The grid can be considered as a graph and the path can be found using graph search algorithms
- The search algorithms working on a graph are of general use, e.g.
- Breadth-first search (BSD)
- Depth first search (DFS)
- Dijsktra's algorithm,
- A* algorithm and its variants

■ There can be grid based speedups techniques, e.g.,

- Jump Search Algorithm (JPS) and JPS+
- There are many search algorithm for on-line search, incremental search and with any-time and real-time properties, e.g.,
- Lifelong Planning A* (LPA*)

Koenig, S., Likhachev, M. and Furcy, D. (2004): Lifelong Planning A*. AIJ.

- E-Graphs - Experience graphs

Phillips, M. et al. (2012): E-Graphs: Bootstrapping Planning with Experience Graphs. RSS.

Examples of Graph/Grid Search Algorithms

https://www.youtube.com/watch?v=U2XNjCoKZjM.mp4

Dijkstra's Algorithm

■ Dijsktra's algorithm determines paths as iterative update of the cost of the shortest path to the particular nodes

Edsger W. Dijkstra, 1956

- Let start with the initial cell (node) with the cost set to 0 and update all successors
- Select the node
- with a path from the initial node
- and has a lower cost
- Repeat until there is a reachable node
■ I.e., a node with a path from the initial node
■ has a cost and parent (green nodes).

The cost of nodes can only decrease (edge cost is positive). Therefore, for a node with the currently lowest cost, there cannot be a shorter path from the initial node.

Dijkstra's Algorithm

■ Dijsktra's algorithm determines paths as iterative update of the cost of the shortest path to the particular nodes

Edsger W. Dijkstra, 1956

- Let start with the initial cell (node) with the cost set to 0 and update all successors
- Select the node
- with a path from the initial node
- and has a lower cost
- Repeat until there is a reachable node
■ I.e., a node with a path from the initial node
■ has a cost and parent (green nodes).

The cost of nodes can only decrease (edge cost is positive). Therefore, for a node with the currently lowest cost, there cannot be a shorter path from the initial node.

Dijkstra's Algorithm

■ Dijsktra's algorithm determines paths as iterative update of the cost of the shortest path to the particular nodes

Edsger W. Dijkstra, 1956

- Let start with the initial cell (node) with the cost set to 0 and update all successors
- Select the node
- with a path from the initial node
- and has a lower cost
- Repeat until there is a reachable node
■ I.e., a node with a path from the initial node
■ has a cost and parent (green nodes).

The cost of nodes can only decrease (edge cost is positive). Therefore, for a node with the currently lowest cost, there cannot be a shorter path from the initial node.

Dijkstra's Algorithm

■ Dijsktra's algorithm determines paths as iterative update of the cost of the shortest path to the particular nodes

Edsger W. Dijkstra, 1956

- Let start with the initial cell (node) with the cost set to 0 and update all successors
- Select the node
- with a path from the initial node
- and has a lower cost
- Repeat until there is a reachable node
■ I.e., a node with a path from the initial node
- has a cost and parent (green nodes).

The cost of nodes can only decrease (edge cost is positive). Therefore, for a node with the currently lowest cost, there cannot be a shorter path from the initial node.

Example (cont.)

1: After the expansion, the shortest path to the node 2 is over the node 3

Example (cont.)

2: There is not shorter path to the node 2 over the node 1

Example (cont.)

3: After the expansion, there is a new path to the node 5

Example (cont.)

4: The path does not improve for further expansions

Dijkstra's Algorithm

Algorithm 2: Dijkstra's algorithm

```
\(\overline{\text { Initialize }\left(s_{\text {start }}\right) ; \quad / * g(s):=\infty ; g\left(s_{\text {start }}\right):=0 * /}\)
PQ.push \(\left(s_{\text {start }}, g\left(s_{\text {start }}\right)\right)\);
while (not PQ.empty?) do
        \(s:=P Q \cdot \operatorname{pop}()\);
        foreach \(s^{\prime} \in \operatorname{Succ}(s)\) do
            if \(s^{\prime}\) in \(P Q\) then
                if \(g\left(s^{\prime}\right)>g(s)+\operatorname{cost}\left(s, s^{\prime}\right)\) then
                \(g\left(s^{\prime}\right):=g(s)+\operatorname{cost}\left(s, s^{\prime}\right) ;\)
                PQ.update( \(\left.s^{\prime}, g\left(s^{\prime}\right)\right)\);
            else if \(s^{\prime} \notin C L O S E D\) then
                \(g\left(s^{\prime}\right):=g(s)+\operatorname{cost}\left(s, s^{\prime}\right) ;\)
                PQ.push( \(\left.s^{\prime}, g\left(s^{\prime}\right)\right)\);
    CLOSED := CLOSED \(\bigcup\{s\} ;\)
```


Dijkstra's Algorithm - Impl.

```
dij->nodes[dij->start_node].cost = 0; // init
void *pq = pq_alloc(dij->num_nodes); // set priority queue
int cur_label;
pq_push(pq, dij->start_node, 0);
while ( !pq_is_empty(pq) && pq_pop(pq, &cur_label)) {
    node_t *cur = &(dij->nodes[cur_label]); // remember the current node
    for (int i = 0; i < cur->edge_count; ++i) { // all edges of cur
        edge_t *edge = &(dij->graph->edges[cur->edge_start + i]);
        node_t *to = &(dij->nodes[edge->to]);
        const int cost = cur->cost + edge->cost;
        if (to->cost == -1) { // node to has not been visited
            to->cost = cost;
            to->parent = cur_label;
            pq_push(pq, edge->to, cost); // put node to the queue
        } else if (cost < to->cost) { // node already in the queue
            to->cost = cost; // test if the cost can be reduced
            to->parent = cur_label; // update the parent node
            pq_update(pq, edge->to, cost); // update the priority queue
        }
    } // loop for all edges of the cur node
} // priority queue empty
pq_free(pq); // release memory
```


A* Algorithm

- A* uses a user-defined h-values (heuristic) to focus the search Peter Hart, Nils Nilsson, and Bertram Raphael, 1968
- Prefer expansion of the node n with the lowest value

$$
f(n)=g(n)+h(n),
$$

where $g(n)$ is the cost (path length) from the start to n and $h(n)$ is the estimated cost from n to the goal

■ h-values approximate the goal distance from particular nodes

- Admissiblity condition - heuristic always underestimate the remaining cost to reach the goal
- Let $h^{*}(n)$ be the true cost of the optimal path from n to the goal
- Then $h(n)$ is admissible if for all $n: h(n) \leq h^{*}(n)$
- E.g., Euclidean distance is admissible
- A straight line will always be the shortest path

■ Dijkstra's algorithm - $h(n)=0$

A* Implementation Notes

- The most costly operations of A* are
- Insert and lookup an element in the closed list
- Insert element and get minimal element (according to $f()$ value) from the open list
■ The closed list can be efficiently implemented as a hash set
■ The open list is usually implemented as a priority queue, e.g.,
- Fibonacii heap, binomial heap, k-level bucket
- binary heap is usually sufficient ($O(\operatorname{logn})$)
- Forward A*

1. Create a search tree and initiate it with the start location
2. Select generated but not yet expanded state s with the smallest f-value, $f(s)=g(s)+h(s)$
3. Stop if s is the goal
4. Expand the state s
5. Goto Step 2

Similar to Dijsktra's algorithm but it used $f(s)$ with heuristic $h(s)$ instead of pure $g(s)$

Dijsktra's vs A* vs Jump Point Search (JPS)

https://www. youtube.com/watch?v=R0G4Ud081LY

Jump Point Search Algorithm for Grid-based Path Planning

- Jump Point Search (JPS) algorithm is based on a macro operator that identifies and selectively expands only certain nodes (jump points)

Harabor, D. and Grastien, A. (2011): Online Graph Pruning for Pathfinding on Grid Maps. AAAI.

- Natural neighbors after neighbor prunning with forced neighbors because of obstacle
- Intermediate nodes on a path connecting two jump points are never expanded

■ No preprocessing and no memory overheads while it speeds up A* https://harablog.wordpress.com/2011/09/07/jump-point-search/

■ JPS+ - optimized preprocessed version of JPS with goal bounding
https://github.com/SteveRabin/JPSPlusWithGoalBounding http://www.gdcvault.com/play/1022094/JPS-Over-100x-Faster-than

Theta* - Any-Angle Path Planning Algorithm

■ Any-angle path planning algorithms simplify the path during the search
■ Theta* is an extension of A* with LineOfSight ()
Nash, A., Daniel, K, Koenig, S. and Felner, A. (2007): Theta*: Any-Angle Path Planning on Grids. AAAI.

```
Algorithm 3: Theta* Any-Angle Planning
if LineOfSight(parent(s), s') then
    /* Path 2 - any-angle path */
    if \(g(\) parent \((s))+c\left(\right.\) parent \(\left.(s), s^{\prime}\right)<g\left(s^{\prime}\right)\) then
        parent(s') := parent(s);
        \(\mathrm{g}\left(\mathrm{s}^{\prime}\right):=\mathrm{g}(\) parent \((\mathrm{s}))+\mathrm{c}\left(\right.\) parent \(\left.(\mathrm{s}), \mathrm{s}^{\prime}\right)\);
```

else
/* Path 1 - A* path */

- Path 2: considers path from start to parent(s) and from parent(s) to s' if s' has line-of-sight to parent(s)

-- - Path 1 - Path 2
else

$$
\begin{aligned}
& \text { if } g(s)+c\left(s, s^{\prime}\right)<g\left(s^{\prime}\right) \text { then } \\
& \text { parent }\left(s^{\prime}\right):=s ; \\
& g\left(s^{\prime}\right):=g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
$$

--- Path 1

Theta* Any-Angle Path Planning Examples

■ Example of found paths by the Theta* algorithm for the same problems as for the DT-based examples on Slide 16

Both algorithms implemented in $C++$

$\delta=30 \mathrm{~cm}, L=40.3 \mathrm{~m}$

The same path planning problems solved by DT (without path smoothing) have $L_{\delta=10}=27.2 \mathrm{~m}$ and $L_{\delta=30}=42.8 \mathrm{~m}$, while DT seems to be significantly faster

■ Lazy Theta* - reduces the number of line-of-sight checks
Nash, A., Koenig, S. and Tovey, C. (2010): Lazy Theta*: Any-Angle Path Planning and Path Length Analysis in 3D. AAAI.

A* Variants - Online Search

■ The state space (map) may not be known exactly in advance

- Environment can dynamically change
- True travel costs are experienced during the path execution

■ Repeated A* searches can be computationally demanding
■ Incremental heuristic search

- Repeated planning of the path from the current state to the goal
- Planning under the free-space assumption
- Reuse information from the previous searches (closed list entries):

■ Focused Dynamic $A^{*}\left(D^{*}\right)-h^{*}$ is based on traversability, it has been used, e.g., for the Mars rover "Opportunity"

Stentz, A. (1995): The Focussed D* Algorithm for Real-Time Replanning. IJCAI.
■ D* Lite - similar to D*
Koenig, S. and Likhachev, M. (2005): Fast Replanning for Navigation in Unknown Terrain. T-RO.
■ Real-Time Heuristic Search
■ Repeated planning with limited look-ahead - suboptimal but fast

- Learning Real-Time A* (LRTA*)

Korf, E. (1990): Real-time heuristic search. JAI

- Real-Time Adaptive A* (RTAA*)

Koenig, S. and Likhachev, M. (2006): Real-time adaptive A*. AAMAS.

Real-Time Adaptive A* (RTAA*)

- Execute A* with limited lookahead
- Learns better informed heuristic from the experience, initially $h(s)$, e.g., Euclidean distance
■ Look-ahead defines trade-off between optimality and computational cost

■ astar(lookahead)
A* expansion as far as "lookahead" nodes and it terminates with the state s^{\prime}
while ($s_{\text {curr }} \notin G O A L$) do astar(lookahead);
if $s^{\prime}=$ FAILURE then L return FAILURE; for all $s \in C L O S E D$ do $\mathrm{H}(\mathrm{s}):=\mathrm{g}\left(\mathrm{s}^{\prime}\right)+\mathrm{h}\left(\mathrm{s}^{\prime}\right)-\mathrm{g}(\mathrm{s}) ;$ execute(plan); // perform one step return SUCCESS;
s^{\prime} is the last state expanded during the previous A^{*} search

Outline

- Grid-based Planning

- DT for Path Planning
- Graph Search Algorithms
- D* Lite
- Path Planning based on Reaction-Diffusion Process

D* Lite - Demo

https://www. youtube.com/watch?v=X5a149nSE9s

D* Lite Overview

■ It is similar to D^{*}, but it is based on Lifelong Planning A^{*}
Koenig, S. and Likhachev, M. (2002): D* Lite. AAAI.
■ It searches from the goal node to the start node, i.e., g-values estimate the goal distance

- Store pending nodes in a priority queue
- Process nodes in order of increasing objective function value

■ Incrementally repair solution paths when changes occur

- Maintains two estimates of costs per node
- g - the objective function value - based on what we know
- rhs - one-step lookahead of the objective function value - based on what we know
- Consistency
- Consistent $-g=r h s$
- Inconsistent - $g \neq r h s$

■ Inconsistent nodes are stored in the priority queue (open list) for processing

D* Lite: Cost Estimates

- rhs of the node u is computed based on g of its successors in the graph and the transition costs of the edge to those successors

$$
r h s(u)=\min _{s^{\prime} \in \operatorname{Succ}(u)}\left(g\left(s^{\prime}\right)+c\left(u, s^{\prime}\right)\right)
$$

- The key/priority of a node s on the open list is the minimum of $g(s)$ and $r h s(s)$ plus a focusing heuristic h

$$
\left[\min (g(s), r h s(s))+h\left(s_{s t a r t}, s\right) ; \min (g(s), r h s(s))\right]
$$

- The first term is used as the primary key
- The second term is used as the secondary key for tie-breaking

D* Lite Algorithm

■ Main - repeat until the robot reaches the goal (or $g\left(s_{s t a r t}\right)=\infty$ there is no path $)$
Initialize();

ComputeShortestPath();
while ($s_{\text {start }} \neq s_{\text {goal }}$) do
$s_{s t a r t}=\operatorname{argmin}_{s^{\prime} \in \operatorname{Succ}\left(s_{\text {start }}\right)}\left(c\left(s_{\text {start }}, s^{\prime}\right)+g\left(s^{\prime}\right)\right)$;
Move to $s_{\text {start }}$;
Scan the graph for changed edge costs;
if any edge cost changed perform then
foreach directed edges (u, v) with changed edge costs do
Update the edge cost $c(u, v)$;
UpdateVertex (u);
foreach $s \in U$ do
L U.Update(s, CalculateKey(s));
ComputeShortestPath();

Procedure Initialize

$\mathrm{U}=0$;
foreach $s \in S$ do
$r h s(s):=g(s):=\infty ;$
$r h s\left(s_{\text {goal }}\right):=0$;
U.Insert($s_{\text {goal }}$, CalculateKey $\left.\left(s_{\text {goal }}\right)\right)$;

D* Lite Algorithm - ComputeShortestPath()

Procedure ComputeShortestPath

while U.TopKey () < CalculateKey $\left(s_{\text {start }}\right)$ OR rhs $\left(s_{\text {start }}\right) \neq g\left(s_{\text {start }}\right)$ do

```
u := U.Pop();
```

if $g(u)>\operatorname{rhs}(u)$ then
$g(u):=r h s(u)$;
foreach $s \in \operatorname{Pred}(u)$ do UpdateVertex(s);
else
$g(u):=\infty$;
foreach $s \in \operatorname{Pred}(u) \bigcup\{u\}$ do UpdateVertex(s);

Procedure UpdateVertex

if $u \neq s_{\text {goal }}$ then $r h s(u):=\min _{s^{\prime} \in \operatorname{Succ}(u)}\left(c\left(u, s^{\prime}\right)+g\left(s^{\prime}\right)\right)$;
if $u \in U$ then U.Remove (u);
if $g(u) \neq \operatorname{rhs}(u)$ then U.Insert(u, CalculateKey (u));
Procedure CalculateKey
return $\left[\min (g(s), r h s(s))+h\left(s_{s t a r t}, s\right) ; \min (g(s), r h s(s))\right]$

D* Lite - Demo

https://github.com/mdeyo/d-star-lite

D* Lite - Comments

■ D* Lite works with real valued costs, not only with binary costs (free/obstacle)

- The search can be focused with an admissible heuristic that would be added to the g and rhs values
- The final version of D^{*} Lite includes further optimization (not shown in the example)
- Updating the rhs value without considering all successors every time
- Re-focusing the serarch as the robot moves without reordering the entire open list

Outline

- Grid-based Planning

- DT for Path Planning
- Graph Search Algorithms
- D* Lite
- Path Planning based on Reaction-Diffusion Process

Reaction-Diffusion Processes Background

■ Reaction-Diffusion (RD) models - dynamical systems capable to reproduce the autowaves

- Autowaves - a class of nonlinear waves that propagate through an active media

At the expense of the energy stored in the medium, e.g., grass combustion.
■ RD model describes spatio-temporal evolution of two state variables $u=u(\vec{x}, t)$ and $v=v(\vec{x}, t)$ in space \vec{x} and time t

$$
\begin{aligned}
\dot{u} & =f(u, v)+D_{u} \Delta u \\
\dot{v} & =g(u, v)+D_{v} \Delta v,
\end{aligned}
$$

where \triangle is the Laplacian.

This RD-based path planning is informative, just for curiosity

Reaction-Diffusion Background

- FitzHugh-Nagumo (FHN) model

FitzHugh R, Biophysical Journal (1961)

$$
\begin{gathered}
\dot{u}= \\
\dot{v}=\left(u-u^{3}-v+\phi\right)+D_{u} \triangle u \\
\quad \text { where } \alpha, \beta, \epsilon, \text { and } \phi \text { are parameters of the model. }
\end{gathered}
$$

■ Dynamics of RD system is determined by the associated nullcline configurations for $\dot{u}=0$ and $\dot{v}=0$ in the absence of diffusion, i.e.,

$$
\begin{aligned}
\varepsilon\left(u-u^{3}-v+\phi\right) & =0 \\
(u-\alpha v+\beta) & =0
\end{aligned}
$$

which have associated geometrical shapes

Nullcline Configurations and Steady States

■ Nullclines intersections represent

- Stable States (SSs)
- Unstable States
- Bistable regime

The system (concentration levels of (u, v) for each grid cell) tends to be in SSs.

- We can modulate relative stability of both SS
"preference" of SS+ over SS"

■ System moves from SS^{-}to SS^{+},
if a small perturbation is introduced.
■ The SSs are separated by a mobile frontier a kind of traveling frontwave (autowaves)

RD-based Path Planning - Computational Model

- Finite difference method on a Cartesian grid with Dirichlet boundary conditions (FTCS) discretization \rightarrow grid based computation \rightarrow grid map
- External forcing - introducing additional information i.e., constraining concentration levels to some specific values
- Two-phase evolution of the underlying RD model 1. Propagation phase
- Freespace is set to ${S S^{-}}^{-}$and the start location $S S^{+}$
- Parallel propagation of the frontwave with nonannihilation property

Vázquez-Otero and Muñuzuri, CNNA (2010)

- Terminate when the frontwave reaches the goal

2. Contraction phase

- Different nullclines configuration
- Start and goal positions are forced towards SS $^{+}$
- $S S^{-}$shrinks until only the path linking the forced points remains

Example of Found Paths

- The path clearance maybe adjusted by the wavelength and size of the computational grid.

Control of the path distance from the obstacles (path safety)

Comparison with Standard Approaches

- RD-based approach provides competitive paths regarding path length and clearance, while they seem to be smooth

Robustness to Noisy Data

Vázquez-Otero, A., Faigl, J., Duro, N. and Dormido, R. (2014): Reaction-Diffusion based Computational Model for Autonomous Mobile Robot Exploration of Unknown Environments. International Journal of Unconventional Computing (IJUC).

Summary of the Lecture

Topics Discussed

- Front-Wave propagation and path simplification
- Distance Transform based planning

■ Graph based planning methods: Dijsktra's, A*, JPS, Theta*
■ D* Lite

- Reaction-Diffusion based planning (informative)

Topics Discussed

- Front-Wave propagation and path simplification
- Distance Transform based planning

■ Graph based planning methods: Dijsktra's, A*, JPS, Theta*
■ D* Lite

- Reaction-Diffusion based planning (informative)

■ Next: Randomized Sampling-based Motion Planning Methods

