Grid and Graph based Path Planning
Methods

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

Lecture 04
B4M36UIR — Artificial Intelligence in Robotics

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 1/36

Overview of the Lecture

m Part 1 — Grid and Graph based Path Planning Methods

= Grid-based Planning

= DT for Path Planning

= Graph Search Algorithms

= D* Lite

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 2/ 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Part |

Part 1 — Grid and Graph based Path
Planning Methods

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 3/36

Grid-based Planning

DT for Path Planning Graph Search Algorithms

QOutline

= Grid-based Planning

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

D* Lite

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Grid-based Planning

m A subdivision of Cgee into smaller cells

m Grow obstacles can be simplified by)
growing borders by a diameter of the
robot

m Construction of the planning graph
G = (V,E) for V as a set of cells and
E as the neighbor-relations

m 4-neighbors and 8-neighbors

| [[

m A grid map can be constructed from
the so-called occupancy grid maps

E.g., using thresholding gu%;)
A ‘ﬂ

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 5/ 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Grid-based Environment Representations

m Hiearchical planning

m Coarse resolution and re-planning on
finer resolution

m Octotree can be used for the map
representation

= In addition to squared (or rectangular)
grid a hexagonal grid can be used

m 3D grid maps — octomap

https://octomap.github.io
— Memory grows with the size of the
environment

— Due to limited resolution it may fail in
narrow passages of Cree

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 6 /36

https://octomap.github.io

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Example of Simple Grid-based Planning

Front-wave propagation using path simplication

Initial map with a robot and goal

Obstacle growing

Find a path using a navigation function

|
|
m Wave-front propagation — “flood fill”
|
|

Path simplification

m “Ray-shooting” technique combined

) ey
with . l
m Bresenham’s line algorithm
@ s

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 7/ 36

Grid-based Planning

Initial map with a robot and goal

Obstacle growing

Find a path using a navigation function

]

]

m Wave-front propagation — “flood fill” [
]

m Path simplification

m “Ray-shooting” technique combined N

m Bresenham’s line algorithm Z .

Jan Faigl, 2017

DT for Path Planning Graph Search Algorithms

Example of Simple Grid-based Planning

with

Front-wave propagation using path simplication

D* Lite

—

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

7/ 36

Grid-based Planning

Jan Faigl

DT for Path Planning Graph Search Algorithms

Example of Simple Grid-based Planning

Front-wave propagation using path simplication

Initial map with a robot and goal
Obstacle growing

Wave-front propagation — “flood fill”
Find a path using a navigation function

Path simplification 10{10/10/10
m “Ray-shooting” technique combined 1ttt ho

m Bresenham’s line algorithm

, 2017

with

D* Lite

\O| co| oo oo o0
Neo) ool BENE RN BN

11{10|9 |8
111109 |8

RN N B W —| —

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

e

SRS

7/ 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Example of Simple Grid-based Planning

Front-wave propagation using path simplication

Initial map with a robot and goal

Obstacle growing

Find a path using a navigation function 0

|
|
m Wave-front propagation — “flood fill”
|
|

Path simplification 0

m “Ray-shooting” technique combined
with
m Bresenham’s line algorithm

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 7/ 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Example of Simple Grid-based Planning

Front-wave propagation using path simplication

Initial map with a robot and goal

Obstacle growing

Find a path using a navigation function

|
|
m Wave-front propagation — “flood fill”
|
|

Path simplification

m “Ray-shooting” technique combined
with
m Bresenham’s line algorithm

a2y,

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 7/ 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Path Simplification

m The initial path is found in a grid using 4-neighbors of a cell

m The rayshoot cast a line into a grid and possible collisions of the

robot with obstacles are checked

m The "“fartherset” cells without collisions are used as “turn” points

m The final path is a sequence of straight line segments

:fc.l [T 111 [TT 1T !
| 11 11 1

[
[
N~

J |

o

RN

T
[T
[T

] []

L1 [1

Obtacle growing,

Initial and goal locations .
front-wave propagation

Ray-shooting

Simplified path

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 8/ 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Bresenham's Line Algorithm

m Filling a grid by a line with avoding using float numbers

- is gi — Y1=¥0
= A line from (xo, yo) to (x1,y1) is given by y = 2=22(x — x0) + yo
1 CoordsVector& bresenham(const Coords& pti, const 26 int twoDy = 2 * dy;
Coords& pt2, CoordsVector& line) 27 int twoDyTwoDx = twoDy - 2 * dx; //2*Dy - 2*Dx
2 { 28 int e = twoDy - dx; //2*%Dy - Dx
3 // The pt2 point is not added into line 29 int y = yo0;
4 int x0 = ptl.c; int yO = ptl.r; 30 int xDraw, yDraw;
5 int x1 = pt2.c; int y1 = pt2.r; 31 for (int x = x0; x != x1; x += xstep) {
6 Coords p; 32 if (steep) {
7 int dx = x1 - x0; 33 xDraw = y;
8 int dy = y1 - y0; 34 yDraw = x;
9 int steep = (abs(dy) >= abs(dx)); 35 } else {
10 if (steep) { 36 xDraw = x;
11 SWAP(x0, y0); 37 yDraw = y;
12 SWAP(x1, y1); 38 }
13 dx = x1 - x0; // recompute Dx, Dy 39 p.c = xDraw;
14 dy = y1 - yO; 40 p.r = yDraw;
15 3 41 line.push_back(p); // add to the line
16 int xstep = 1; 42 if (e > 0) {
17 if (dx < 0) { 43 e += twoDyTwoDx; //E += 2#Dy - 2%Dx
18 xstep = -1; 44 y =y + ystep;
19 dx = -dx; 45 } else {
20 s 46 e += twoDy; //E += 2Dy
21 int ystep = 1; a7 }
22 if (dy < 0) { 48 }
23 ystep = -1; 49 return line;
24 dy = -dy; 50 }
25 }

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 9/ 36

Grid-based Planning

DT for Path Planning Graph Search Algorithms

QOutline

= DT for Path Planning

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

D* Lite

DT for Path Planning

Distance Transform based Path Planning

m For a given goal location and grid map compute a navigational function
using frontwave algorithm, i.e., a kind of potential field

m The value of the goal cell is set to 0 and all other free cells are set to
some very high value

m For each free cell compute a number of cells to towards the goal cell

m It uses 8-neighbors and distance is the Euclidean distance of the centers of
two cells, i.e., EV=1 for orhogonal cells or EV'y/2 for diagonal cells

m The values are iteratively computed until the values are changed

m The value of the cell ¢ is computed as

8
cost(c) = ny? (cost(ci) + EVec),

where ¢; is one of the neighboring cells from 8-neighborhood of the cell ¢

m The algorithm provides a cost map of the path distance from any free cell
to the goal cell

m The path is than used following the gradient of the cell costs.

Jarvis, R. (2004): Distance Transform Based Visibility Measures for Covert Path Planning in
Known but Dynamic Environments

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 11 / 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Example — Distance Transform based Path Planning

212 2|22
111 2(1(1|1 2
101 2/10(1 2
111 2111 2
2222 2

11 11 11 1111 11 11 11 11 [12/1314 141312 12 12

10 10 10 10 10 10 10 10 1111

99999999 1010 10 11

8 8 8 8 888 8 991011

T 717 17 7|7 8 88910 11

6 66 66 6|7 8 77 89101

555 55467 6|6/ 7/8 910

44 4 5 444 56/ 7/8/ 910

433333334 543 3/3/3 33345678910

4322 2223 4 54322222 34567891

43 2/11/1/23 543 2(1/1/12 910

43210123 5 432100123 13121110410

43211123 543211 23 131211 4411 11

43 2 2(2(22 3 543222223 1312| 2/1212 12

433 33333 543333333 1313131313 13

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 12 / 36

DT for Path Planning

Distance Transform Path Planning

Algorithm 1: Distance Transform for Path Planning

for y:=0 to yMax+1 do
for x:=0 to xMax+1 do
if goal [x,y] then
‘ cell [x,y]:=0;
else
L cell [x,y]:=xMax*y Max;

repeat
for y:=2 to yMax do
for x:=2 to xMax do
if not blocked [x,y] then
L cell [x,y]:= min (cell[x-1,y]+1, cell[x-1,y-1]4++/2,cell[x,y-1]+1, cell[x+1,y-1]4++/2,cell [x,y]);

for y:=yMax-1downto 1 do
for x:=xMax-1 downto 1 do
if not blocked [x,y] then
L L cell[x,y]:=min(cell[x+1,y]+1,cell[x+1,y+1]+v/2,cell[x,y+1]+1,cell[x-1,y+1]4+v/2,cell[x,y]);

until no change;

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Distance Transform based Path Planning — Impl. 1/2

1 Grid& DT::compute(Grid& grid) const { 32 for (int r = H - 2; r >= 0; r--) {

2 static const double DIAGONAL = sqrt(2); 33 for (int ¢ =W - 2; ¢ > 0; c--) {

3 static const double ORTOGONAL = 1; 34 if (map[r][c] != FREESPACE) {

4 35 continue;

5 const int H = map.H; 36 } //obstacle detected

6 const int W = map.W; 37 double t[4];

7 assert(grid.H == H and grid.W == W, "size"); 38 t[1] = grid[r + 1][c] + ORTOGONAL;
8 bool anyChange = true; 39 t[0] = grid[r + 11[c + 1] + DIAGONAL;
9 int counter = 0; 40 t[3] = grid[r][c + 1] + ORTOGONAL;
10 while (anyChange) { 41 t[2] = grid[r + 1]1[c - 1] + DIAGONAL;
11 anyChange = false; 42 double pom = grid[r][c];

12 for (int r = 1; r < H - 1; r++) { 43 bool s = false;

13 for (int ¢ = 1; ¢ < W - 1; c++) { 44 for (int i = 0; i < 4; i++) {

14 if (map[r][c] != FREESPACE) { 45 if (pom > t[i]) {

15 continue; 46 pom = t[il;

16 } //obstacle detected 47 s = true;

17 double t[4]; 48 3

18 t[0] = grid[r - 1]1[c - 1] + DIAGONAL;49 b

19 t[1] = grid[r - 11[c] + ORTOGONAL; 50 if (s) {

20 t[2] = grid[r - 1][c + 1] + DIAGONAL;51 anyChange = true;

21 t[3] = grid[r][c - 1] + ORTOGONAL; 52 grid[r] [c] = pom;

22 double pom = grid[r][cl; 53 ¥

23 for (int i = 0; i < 4; i++) { 54 }

24 if (pom > t[i]) { 55 }

25 pom = t[il; 56 counter++;

26 anyChange = true; 57 } //end while any change

27 ¥ 58 return grid;

28 } 59

29 if (anyChange) {

30 grid[r][c] = pom;

31 }

32 ¥

3

3 s
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 14 / 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Distance Transform based Path Planning — Impl. 2/2

m The path is retrived by following the minimal value towards the
goal, min8Point ()

1 Coords& min8Point(const Grid& grid, Coords& p) { 25 CoordsVector& DT::findPath(const Coords& start,
2 double min = std::numeric_limits<double>::max(); const Coords& goal, CoordsVector& path) {
3 const int H = grid.H; 26 static const double DIAGONAL = sqrt(2);
4 const int W = grid.W; 27 static const double ORTOGONAL = 1;
5 Coords t; 28
6 29 const int H = map.H;
7 for (int r = p.r - 1; r <= p.r + 1; r++) { 30 const int W = map.W;
8 if (r < 0 or r >= H) { continue; } 31 Grid grid(H, W, H*W); // H*W max grid value
9 for (int ¢ = p.c - 1; ¢ <= p.c + 1; c++) { 32 grid[goal.r][goal.c] = 0;
10 if (¢ < 0 or ¢ >= W) { continue; } 33 compute (grid) ;
11 if (min > grid(r](c]) { 34 path.clear();
12 min = grid(r]l[cl; 35
13 t.r =r; t.c = c; 36 if (grid[start.r][start.c] >= H*W) {
14 b 37 WARN("Path has not been found");
15 ¥ 38 } else {
16 } 39 Coords pt = start;
17 p=t; 40 while (pt.r != goal.r or pt.c != goal.c) {
18 return p; 41 path.push_back(pt);
19 1} 42 min8Point (grid, pt);
43 }
44 path.push_back(goal) ;
45
46 return path;

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 15 / 36

DT for Path Planning

DT Example
NI >
':‘.0.'0 { ':'.0.'0 <
Ve, ,/ ol N
- V5% - Va5t
"" ".‘
o ¥ g'wn o ® g'w
‘a_ P
/ 2
)a \/J
=10cm, L =272 m 0=30cm, L=428m

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 16 / 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

QOutline

= Graph Search Algorithms

E%T ;/gtj

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 17 / 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite
oo) 0
Dijkstra’'s Algorithm

m The grid can be considered as a graph and the path can be found
using graph search algorithms

m Dijsktra’s algorithm determines paths as iterative update of the
cost of the shortest path to the particular nodes
Edsger W. Dijkstra, 1956

m Let start with the initial cell (node)
with the cost set to 0 and update
all successors

m Select the node
B with a path from the initial node
B and has a lower cost

m Repeat until there is a reachable
node
B l.e., a node with a path from the initial node
B has a cost and parent (green nodes).

The cost of nodes can only decrease (edge cost is only positive). Therefore,
for a node with the currently lowest cost, there cannot be a shorter path from
the initial node.

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 18 / 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite
oo) 0
Dijkstra’'s Algorithm

m The grid can be considered as a graph and the path can be found
using graph search algorithms

m Dijsktra’s algorithm determines paths as iterative update of the
cost of the shortest path to the particular nodes
Edsger W. Dijkstra, 1956

B Let start with the initial cell (node)
with the cost set to 0 and update
all successors

m Select the node
B with a path from the initial node
B and has a lower cost

m Repeat until there is a reachable
node
B l.e., a node with a path from the initial node
B has a cost and parent (green nodes).

The cost of nodes can only decrease (edge cost is only positive). Therefore,
for a node with the currently lowest cost, there cannot be a shorter path from
the initial node.

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 18 / 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite
oo) 0
Dijkstra’'s Algorithm

m The grid can be considered as a graph and the path can be found
using graph search algorithms

m Dijsktra’s algorithm determines paths as iterative update of the
cost of the shortest path to the particular nodes
Edsger W. Dijkstra, 1956

m Let start with the initial cell (node)
with the cost set to 0 and update
all successors

m Select the node
B with a path from the initial node
B and has a lower cost

m Repeat until there is a reachable
node
B l.e., a node with a path from the initial node
B has a cost and parent (green nodes).

The cost of nodes can only decrease (edge cost is only positive). Therefore,
for a node with the currently lowest cost, there cannot be a shorter path from
the initial node.

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 18 / 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite
oo) 0
Dijkstra’'s Algorithm

m The grid can be considered as a graph and the path can be found
using graph search algorithms

m Dijsktra’s algorithm determines paths as iterative update of the
cost of the shortest path to the particular nodes
Edsger W. Dijkstra, 1956

m Let start with the initial cell (node)
with the cost set to 0 and update
all successors

m Select the node
B with a path from the initial node
B and has a lower cost

B Repeat until there is a reachable
node
B l.e., a node with a path from the initial node
B has a cost and parent (green nodes).

The cost of nodes can only decrease (edge cost is only positive). Therefore,
for a node with the currently lowest cost, there cannot be a shorter path from
the initial node.

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 18 / 36

Graph Search Algorithms

Example (cont.)

1: After the expansion, the shortest path to the node 2 is over the node 3

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 19 / 36

Graph Search Algorithms

Example (cont.)

2: There is not shorter path to the node 2 over the node 1

1:4+5=9>38!

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 19 / 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Example (cont.)

3: After the expansion, there is a new path to the node 5

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 19 / 36

Graph Search Algorithms

Example (cont.)

4: The path does not improve for further expansions

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 19 / 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Dijkstra’'s Algorithm — Impl.

1 dij->nodes[dij->start_node].cost = 0; // init

2 void *pq = pq_alloc(dij->num_nodes); // set priority queue

3 int cur_label;

4 pqg_push(pq, dij->start_node, 0);

5 while (!pg_is_empty(pq) && pg_pop(pq, &cur_label)) {

6 node_t *cur = &(dij->nodes[cur_label]); // remember the current node
7 for (int i = 0; i < cur->edge_count; ++i) { // all edges of cur

8 edge_t *edge = &(dij->graph->edges[cur->edge_start + i]);

9 node_t *to = &(dij->nodes[edge->tol);

10 const int cost = cur->cost + edge->cost;

11 if (to->cost == -1) { // node to has not been visited

12 to->cost = cost;

13 to->parent = cur_label;

14 pq_push(pq, edge->to, cost); // put node to the queue

15 } else if (cost < to->cost) { // node already in the queue

16 to->cost = cost; // test if the cost can be reduced

17 to->parent = cur_label; // update the parent node

18 pa_update(pq, edge->to, cost); // update the priority queue
19

20 } // loop for all edges of the cur node

21 } // priority queue empty
22 pq_free(pq); // release memory

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 20 / 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

A* Algorithm

m A* uses a user-defined h-values (heuristic) to focus the search
Peter Hart, Nils Nilsson, and Bertram Raphael, 1968

m Prefer expansion of the node n with the lowest value
f(n) = g(n) + h(n),

where g(n) is the cost (path length) from start to n and h(n) is
the estimated cost from n to the goal

m h-values approximate the goal distance from particular nodes
m Admissiblity condition — heuristic always underestimate the
remaining cost to reach the goal,

m Let h*(n) be the true cost of the optimal path from n to the goal
m Then h(n) is admissible if for all n: h(n) < h*(n)
m E.g., Euclidean distance is admissible
m A straight line will always be the shortest path
m Dijkstra’s algorithm — h(n) =0

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning

21 /36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

A* Implementation Notes

m The most costly operations of A* are

m Insert and lookup an element in the closed list
m Insert element and get minimal element (according to f() value)

from the open list

m The closed list can be efficiently implemented as a hash set

m The open list is usually implemented as a priority queue, e.g.,

m Fibonacii heap, binomial hepa, k-level bucket
m binary heap is usually sufficient (O(logn))

m Forward A*

1.
2.

=W

Jan Faigl, 2017

Create a search tree and initiate it with the start location

Select a generated but not yet expanded state s with the smallest
f-value, f(s) = g(s) + h(s)

Stop if s is the goal

Expand the state s

Goto Step 2

B4M36UIR — Lecture 04: Grid and Graph based Path Planning 22 /36

Graph Search Algorithms

Dijsktra’s vs A* vs Jump Point Search (JPS)

IDijKetra’'s Algorith Mg]

https://wuw.youtube.com/watch?v=R0G4UdO81LY

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 23 / 36

https://www.youtube.com/watch?v=ROG4Ud08lLY

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Jump Point Search Algorithm for Grid-based Path Planning

m Jump Point Search (JPS) algorithm is based on a macro operator that
identifies and selectively expands only certain nodes (jump points)

Harabor, D. and Grastien, A. (2011): Online Graph Pruning for Pathfinding on Grid Maps. AAAI.

m Natural neighbors after neighbor | * | 2 | @ e e] s
prunning with forced neighbors | «4ex | s a x| s [adex |
because of obstacle S P R R I

m Intermediate nodes on a path

. . . |
connecting two jump points are t Zm
never expanded o :

o)

m No preprocessing and no memory overheads while it speeds up A*
https://harablog.wordpress.com/2011/09/07/jump-point-search/

m JPS+ — optimized preprocessed version of JPS with goal bounding
https://github.com/SteveRabin/JPSPlusWithGoalBounding

http://www.gdcvault.com/play/1022094/JPS-0ver-100x-Faster-than

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 24 / 36

https://harablog.wordpress.com/2011/09/07/jump-point-search/
https://github.com/SteveRabin/JPSPlusWithGoalBounding
http://www.gdcvault.com/play/1022094/JPS-Over-100x-Faster-than

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Theta* — Any-Angle Path Planning Algorithm

m Any-angle path planning algorithms simplify the path during the search

m Theta* is an extension of A* with Line0fSight ()
Nash, A., Daniel, K, Koenig, S. and Felner, A. (2007): Theta*: Any-Angle Path
Planning on Grids. AAAI.
1 2 3 4 5
A

Algorithm 2: Theta* Any-Angle Planning ;
if LineOfSight(parent(s), s’) then B (
/* Path 2 — any-angle path */

if g(parent(s))+ c(parent(s), s’) < g(s’) then

C
Sgoal

parent(s') := parent(s); »e

g(s") := g(parent(s)) + c(parent(s), s'); ---Path1 Path 2

else
/* Path 1 — A* path */
if g(s) + c(s;s’) < g(s’) then 1 2 3 4
parent(s'):=s; ’ 20
e e

_ B
g 3

m Path 2: considers path from start to parent(s) and
from parent(s) to s if s’ has line-of-sight to parent(s) .
- -~ Path 1

Path 2

http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 25/ 36

http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Theta* Any-Angle Path Planning Examples

m Example of found paths by the Theta* algorithm for the same prob-
lems as for the DT-based examples on Slide 16

Both algorithms implemented in C++

0=10cm, L =263 m 6=30cm, L=403m

The same problems for DT with path smoothing, the path lengths are
Ls—10 = 26.3 m and Ls_39 = 40.3 m, while DT seems to be faster

m Lazy Theta* — reduces the number of line-of-sight checks

Nash, A., Koenig, S. and Tovey, C. (2010): Lazy Theta*: Any-Angle Path Planning
and Path Length Analysis in 3D. AAAI.

http://aigamedev.com/open/tutorial/lazy-theta-star/

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 26 / 36

http://aigamedev.com/open/tutorial/lazy-theta-star/

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

A* Variants — Online Search

m The state space (map) may not be known exactly in advance
m Environment can dynamically change
m True travel costs are experienced during the path execution

m Repeated A* searches can be computationally demanding
m Incremental heuristic search
m Repeated planning of the path from the current state to the goal
m Planning under the free-space assumption
m Reuse information from the previous searches (closed list entries):
m Focused Dynamic A* (D*) — h« is based on traversability, used for
Mars Rover “Opportunity”
Stentz, A. (1995): The Focussed D* Algorithm for Real-Time Replanning. IJCAI.
m D* Lite — similar to D*
Koenig, S. and Likhachev, M. (2005): Fast Replanning for Navigation in Unknown Terrain. T-RO.
m Real-Time Heuristic Search
m Repeated planning with limited look-ahead — suboptimal but fast
m Learning Real-Time A* (LRTA¥*)
Korf, E. (1990): Real-time heuristic search. JAI
m Real-Time Adaptive A* (RTAA¥*)
Koenig, S. and Likhachev, M. (2006): Real-time adaptive A*. AAMAS.

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Real-Time Adaptive A* (RTAA*)

m Execute A* with limited look- while (e ¢ GOAL) do

ahead astar(lookahead);
m Learns better informed heuris- if s' = FAILURE then
tic from the experience, ini- | return FAILURE;
tially h(s), e.g., Euclidean dis- for all s € CLOSED do
tance | H(s) :==g(s') + h(s) - &(s);
m Look-ahead defines trade-off | execute(plan); // perform one step
between optimality and com- return SUCCESS;

putational cost s' is the last state expanded during the
m astar(lookahead) previous A* search

A* expansion as far as "looka-
head’ nodes and it terminates
with the state s’

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 28 / 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

QOutline

= D* Lite

ft

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 29 / 36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

D* Lite — Demo

https://www.youtube.com/watch?v=X5a149nSE9s
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 30/ 36

https://www.youtube.com/watch?v=X5a149nSE9s

Grid-based Planning

Jan Faigl,

DT for Path Planning Graph Search Algorithms

D* Lite Overview

It is similar to D*, but it is based on Lifelong Planning A*

Koenig, S. and Likhachev, M. (2002): D* Lite. AAAL.

It searches from the goal node to the start node, i.e., g-values
estimate the goal distance

Store pending nodes in a priority queue

Process nodes in order of increasing objective function value

Incrementally repair solution paths when changes occur
Maintains two estimates of costs per node
m g — the objective function value — based on what we know
m rhs — one-step lookahead of the objective function value — based
on what we know

Consistency

m Consistent — g = rhs
m Inconsistent — g # rhs

Inconsistent nodes are stored in the priority queue (open list) for

processing

2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

D* Lite

31 /36

D* Lite

D* Lite: Cost Estimates

m rhs of the node u is computed based on g of its successors in the
graph and the transition costs of the edge to those successors

rhs(u) = min (c(u,s’) + g(s))
s'€Succ(u)

m The key/priority of a node s in the open list is the minimum of
g(s) and rhs(s) plus a focusing heuristic h

[min(g(s), rhs(s)) + h(Sstart, s); min(g(s), rhs(s))]

m The first term is used as the primary key
m The second term is used for as the secondary key for tie-breaking

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 32/ 36

D* Lite

D* Lite Algorithm

m Repeat until the robot reaches the goal (or g(sstar) = oo there is no path)

U=0;
foreach s € S do rhs(s) := g(s) := o0 ;
rhs(Sgoa 1= 0;

U.Insert(sgoz, CalculateKey(sgoar));
/* end initialization */;
ComputeShortestPath();
while (Sstart 75 Sgoal) do
L Sstart = argmins’ESucc(ssta,t)(C(SSfaft7 sl) + g(sl));

Move to Sstart;
Scan the graph for changed edge costs;
if any edge cost changed perform then
foreach directed edges (u, v) with changed edge costs do
Update the edge cost c(u, v);
UpdateVertex(u);

foreach s € U do
| U.Update(s, CalculateKey(s));

ComputeShortestPath();

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 33 /36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

D* Lite Algorithm — ComputeShortestPath()

Procedure ComputeShortestPath

while U.TopKey() < CalculateKey(sstart) OR rhs(sstart) # g(Sstart) do
u := U.Pop();
if g(u) > rhs(u) then
g(u) = rhs(u);
‘ foreach s € Pred(u) do UpdateVertex(s);

else

g(u) = oo;
foreach s € Pred(u) |J{u} do UpdateVertex(s);

Procedure UpdateVertex

if uF# sgoa then rhs(u) := ming csycc(u)(c(u, ') + g(s"));
if u € U then U.Remove(u);
if g(u) # rhs(u) then U.Insert(u, CalculateKey(u));

Procedure CalculateKey
return [min(g(s), rhs(s)) + h(Sstart, s); min(g(s), rhs(s))]

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 34 /36

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

ft

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 35/ 36

Summary of the Lecture

e

SRS

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 36 / 36

	1
	Grid-based Planning
	DT for Path Planning
	Graph Search Algorithms
	D* Lite

	Summary

