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Overview of the Lecture

m Part 1 — Grid and Graph based Path Planning Methods

= Grid-based Planning

= DT for Path Planning

= Graph Search Algorithms
= D* Lite

= Path Planning based on Reaction-Diffusion Process  Curiosity
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Part |

Part 1 — Grid and Graph based Path
Planning Methods
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Grid-based Planning

m A subdivision of Cgee into smaller cells

m Grow obstacles can be simplified by
growing borders by a diameter of the
robot

m Construction of the planning graph
G = (V,E) for V as a set of cells and
E as the neighbor-relations

m 4-neighbors and 8-neighbors

| [ 4
\ | \

m A grid map can be constructed from
the so-called occupancy grid maps

E.g., using thresholding
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Grid-based Environment Representations

m Hiearchical planning

m Coarse resolution and re-planning on

finer resolution
Holte, R. C. et al. (1996): Hierarchical A *: searching abstraction hierarchies efficiently. AAAI.
m Octree can be used for the map

representation

= In addition to squared (or rectangular)
grid a hexagonal grid can be used

m 3D grid maps — octomap

https://octomap.github.io
— Memory grows with the size of the
environment

— Due to limited resolution it may fail in
narrow passages of Cree
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Example of Simple Grid-based Planning

m Wave-front propagation using path simplication

Initial map with a robot and goal

Obstacle growing

Find a path using a navigation function
Path simplification

]
]
m Wave-front propagation — “flood fill”
]
]

m “Ray-shooting” technique combined
with Bresenham’s line algorithm

d=)
m The path is a sequence of “key” cells . | q
for avoiding obstacles
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Example — Wave-Front Propagation (Flood Fill

222|122
111 2111 2
101 2(1]0/1 2
111 20111 2
2(2/2(2 2
1111 111111 11 [11 11 1112 1314 1413|1212 12
10 10 10 10 10 [10 10 10 1M1
9999 9/999 1010 10 11
88 3 88888 991011
T 7717|7778 8|8 910 11
6 66 666 7 8 77 89101
555 55467 6/6/7(8 910
44 4 5 444 567 8 910
433333334 5 433/33/33345 67891
432222234 54322222 34567891
43 2/11/1/23 54321112 910
43210123 5 432100123 13121110410
43211123 5 43211 23 13121114111 1
43222223 54320222 23 131242121212
433 33333 543333333 131313131313

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 8 /92



Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Path Simplification

m The initial path is found in a grid using 4-neighborhood

m The rayshoot cast a line into a grid and possible collisions of the
robot with obstacles are checked

m The “farthest” cells without collisions are used as “turn” points

m The final path is a sequence of straight line segments
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Obtacle growing,
wave-front propagation

Initial and goal locations Ray-shooting Simplified path
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Grid-based Planning DT for Path Planning

Bresenham's Line Algorithm

Graph Search Algorithms D* Lite RD-based Planning

m Filling a grid by a line with avoding float numbers

m A line from (xo, yo) to (x1,y1) is given by y =

B2 (x — x0) + yo

1 CoordsVector& bresenham(const Coords& pti, const 26 int twoDy = 2 * dy;
Coords& pt2, CoordsVector& line) 27 int twoDyTwoDx = twoDy - 2 * dx; //2*Dy - 2*Dx
2 { 28 int e = twoDy - dx; //2*%Dy - Dx
3 // The pt2 point is not added into line 29 int y = yo0;
4 int x0 = ptl.c; int yO = ptl.r; 30 int xDraw, yDraw;
5 int x1 = pt2.c; int y1 = pt2.r; 31 for (int x = x0; x != x1; x += xstep) {
6 Coords p; 32 if (steep) {
7 int dx = x1 - x0; 33 xDraw = y;
8 int dy = y1 - y0; 34 yDraw = x;
9 int steep = (abs(dy) >= abs(dx)); 35 } else {
10 if (steep) { 36 xDraw = x;
11 SWAP(x0, yO0); 37 yDraw = y;
12 SWAP(x1, y1); 38 }
13 dx = x1 - x0; // recompute Dx, Dy 39 p.c = xDraw;
14 dy = y1 - yO; 40 p.r = yDraw;
15 ¥ 41 line.push_back(p); // add to the line
16 int xstep = 1; 42 if (e > 0) {
17 if (dx < 0) { 43 e += twoDyTwoDx; //E += 2#Dy - 2%Dx
18 xstep = -1; 44 y =y + ystep;
19 dx = -dx; 45 } else {
20 s 46 e += twoDy; //E += 2Dy
21 int ystep = 1; a7 }
22 if (dy < 0) { 48 }
23 ystep = -1; 49 return line;
24 dy = -dy; 50
25 }
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Distance Transform based Path Planning

m For a given goal location and grid map compute a navigational function
using wave-front algorithm, i.e., a kind of potential field

m The value of the goal cell is set to 0 and all other free cells are set to
some very high value

m For each free cell compute a number of cells towards the goal cell

m It uses 8-neighbors and distance is the Euclidean distance of the centers of
two cells, i.e., EV=1 for orthogonal cells or EV = /2 for diagonal cells

m The values are iteratively computed until the values are changing

m The value of the cell ¢ is computed as

8
cost(c) = ny{\ (cost(ci) + EVec),

where ¢; is one of the neighboring cells from 8-neighborhood of the cell ¢

m The algorithm provides a cost map of the path distance from any free cell
to the goal cell

m The path is then used following the gradient of the cell cost

Jarvis, R. (2004): Distance Transform Based Visibility Measures for Covert Path Planning in
Known but Dynamic Environments
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DT for Path Planning

Distance Transform Path Planning

Algorithm 1: Distance Transform for Path Planning

for y := 0 to yMax do
for x := 0 to xMax do
if goal [x,y] then
| cell [xy] :=0;
else
L cell [x,y] := xMax * yMax; //initialization, e.g., pragmatic of the use longest distance as oo ;

repeat
for y := 1 to (yMax - 1) do
for x := 1 to (xMax - 1) do
if not blocked [x,y] then
L | cell [xy] := cost(x, y);

for y := (yMax-1) downto 1 do
for x := (xMax-1) downto 1 do
if not blocked [x,y] then
| cellixy] := cost(x, y);

until no change;
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Grid-based Planning DT for Path Planning Graph Search Algorithms

D* Lite RD-based Planning

Distance Transform based Path Planning — Impl. 1/2

1 Grid& DT::compute(Grid& grid) const

2 {

3 static const double DIAGONAL = sqrt(2);

4 static const double ORTOGONAL = 1;

5 const int H = map.H;

6 const int W = map.W;

7 assert(grid.H == H and grid.W == W, "size");
8 bool anyChange = true;

9 int counter = 0;

10 while (anyChange) {

11 anyChange = false;

12 for (int r = 1; r < H - 1; ++r) {

13 for (int ¢ = 1; ¢ < W - 1; ++c) {
14 if (maplr]l[c] != FREESPACE) {

15 continue;

16 } //obstacle detected

17 double t[4];

18 t[0] = grid[r - 1]1[c - 1] + DIAGONAL;
19 t[1] = grid[r - 11[c] + ORTOGONAL;
20 t[2] = grid[r - 1][c + 1] + DIAGONAL;
21 t[3] = gridlrllc - 1] + ORTOGONAL;
22 double pom = grid[r][c];

23 for (int i = 0; i < 4; i++) {

24 if (pom > t[i]) {

25 pom = t[i];

26 anyChange = true;

27 }

28 }

29 if (anyChange) {

30 grid[r][c] = pom;

31 }

32 }

3

35
36
37
38
39
40
a1
42
43
a4
45
46
a7
a8
a9
50
51
52
53
54
55
56
57
58
59
60
61
62

for (int r = H - 2; ¢ > 0; --r) {
for (int ¢ =W - 2; ¢ > 0; --c) {

if (map[r]l[c] !'= FREESPACE) {
continue;
} //obstacle detected
double t[4];
t[1] = grid[r + 11[c] + ORTOGONAL;
t[0] = grid[r + 1][c + 1] + DIAGONAL;
t[3] = grid[rl[c + 1] + ORTOGONAL;
t[2] = grid[r + 11[c - 1] + DIAGONAL;
double pom = grid[r]([c];
bool s = false;
for (int i = 0; i < 4; i++) {
if (pom > t[i]) {
pom = t[il;
s = true;

}
}
if (s) {
anyChange = true;
grid[r] [c] = pom;
}

counter++;
} //end while any change
return grid;

A boundary is assumed around the rectangular map

3 }
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Distance Transform based Path Planning — Impl. 2/2

m The path is retrived by following the minimal value towards the
goal using min8Point ()

1 Coords& min8Point(const Grid& grid, Coords& p) 22 CoordsVector& DT::findPath(const Coords& start,
2 { const Coords& goal, CoordsVector& path)
3 double min = std::numeric_limits<double>::max(); 23 {
4 const int H = grid.H; 24 static const double DIAGONAL = sqrt(2);
5 const int W = grid.W; 25 static const double ORTOGONAL = 1;
6 Coords t; 26 const int H = map.H;
7 27 const int W = map.W;
8 for (int r = p.r - 1; ¥ <= p.r + 1; r++) { 28 Grid grid(H, W, H*W); // H*W max grid value
9 if (r < 0 or r >= H) { continue; } 29 grid[goal.r] [goal.c] = 0;
10 for (int ¢ = p.c - 1; ¢ <= p.c + 1; c++) { 30 compute (grid) ;
11 if (¢ < 0 or ¢ >= W) { continue; } 31
12 if (min > grid[r][c]) { 32 if (grid[start.r][start.c] >= H+W) {
13 min = grid[r][cl; 33 WARN("Path has not been found");
14 t.r =r; t.c = c; 34 } else {
15 ¥ 35 Coords pt = start;
16 } 36 while (pt.r != goal.r or pt.c != goal.c) {
17 } 37 path.push_back(pt) ;
18 p=t; 38 min8Point (grid, pt);
19 return p; 39 }
20 } 40 path.push_back(goal) ;
41 }
42 return path;
43 }
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DT Example

DT for Path Planning

@, (‘
N AN
o Pool
" o ® g'w

=10cm, L =272 m
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Graph Search Algorithms

m The grid can be considered as a graph and the path can be found
using graph search algorithms

m The search algorithms working on a graph are of general use, e.g.

m Breadth-first search (BSD)
m Depth first search (DFS)
m Dijsktra’s algorithm,
m A* algorithm and its variants
m There can be grid based speedups techniques, e.g.,
m Jump Search Algorithm (JPS) and JPS+
m There are many search algorithm for on-line search, incremental
search and with any-time and real-time properties, e.g.,
m Lifelong Planning A* (LPA*)
Koenig, S., Likhachev, M. and Furcy, D. (2004): Lifelong Planning A*. AlJ.
m E-Graphs — Experience graphs

Phillips, M. et al. (2012): E-Graphs: Bootstrapping Planning with Experience Graphs. RSS.
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Examples of Graph/Grid Search Algorithms

A* (general)

https://www.youtube.com/watch?v=U2XNjCoKZjM.mp4
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Dijkstra’s Algorithm

m Dijsktra’s algorithm determines paths as iterative update of the
cost of the shortest path to the particular nodes

Jan Faigl, 2017

Edsger W. Dijkstra, 1956

Let start with the initial cell (node)
with the cost set to 0 and update
all successors

Select the node

B with a path from the initial node
B and has a lower cost

Repeat until there is a reachable
node

B l.e., a node with a path from the initial node
B has a cost and parent (green nodes).

The cost of nodes can only decrease (edge cost is positive). Therefore, for a
node with the currently lowest cost, there cannot be a shorter path from the
initial node.
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Example (cont.)

1:445-9>8

1: After the expansion, the shortest path to the 2: There is not shorter path to the node 2 over the
node 2 is over the node 3 node 1

3: After the expansion, there is a new path to the 4: The path does not improve for further
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Graph Search Algorithms

Dijkstra’'s Algorithm
Algorithm 2: Dijkstra's algorithm
Initialize(Sstart); /* g(s) := 00; g(Sstart) := 0 */
PQ-pUSh(Sstartv g(sstart));
while (not PQ.empty?) do
s := PQ.pop();
foreach s’ € Succ(s) do
if s’in PQ then
if g(s’) > g(s) + cost(s,s’) then
L g(s") := g(s) + cost(s, s');
PQ.update(s’, g(s));
Ise if s' ¢ CLOSED then
g(s') := g(s) + cost(s, s');
PQ.push(s’, g(s));

| CLOSED := CLOSED {s}:

(0]
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Dijkstra’'s Algorithm — Impl.

1 dij->nodes[dij->start_node].cost = 0; // init

2 void *pq = pq_alloc(dij->num_nodes); // set priority queue

3 int cur_label;

4 pqg_push(pq, dij->start_node, 0);

5 while ( !pg_is_empty(pq) && pg_pop(pq, &cur_label)) {

6 node_t *cur = &(dij->nodes[cur_label]); // remember the current node
7 for (int i = 0; i < cur->edge_count; ++i) { // all edges of cur

8 edge_t *edge = &(dij->graph->edges[cur->edge_start + i]);

9 node_t *to = &(dij->nodes[edge->tol);

10 const int cost = cur->cost + edge->cost;

11 if (to->cost == -1) { // node to has not been visited

12 to->cost = cost;

13 to->parent = cur_label;

14 pq_push(pq, edge->to, cost); // put node to the queue

15 } else if (cost < to->cost) { // node already in the queue

16 to->cost = cost; // test if the cost can be reduced

17 to->parent = cur_label; // update the parent node

18 pa_update(pq, edge->to, cost); // update the priority queue
19

20 } // loop for all edges of the cur node

21 } // priority queue empty
22 pq_free(pq); // release memory
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A* Algorithm

m A* uses a user-defined h-values (heuristic) to focus the search
Peter Hart, Nils Nilsson, and Bertram Raphael, 1968

m Prefer expansion of the node n with the lowest value
f(n) = g(n) + h(n),

where g(n) is the cost (path length) from the start to n and h(n)
is the estimated cost from n to the goal

m h-values approximate the goal distance from particular nodes

m Admissiblity condition — heuristic always underestimate the
remaining cost to reach the goal

m Let h*(n) be the true cost of the optimal path from n to the goal
m Then h(n) is admissible if for all n: h(n) < h*(n)
m E.g., Euclidean distance is admissible

m A straight line will always be the shortest path
m Dijkstra’s algorithm — h(n) =0
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A* Implementation Notes

m The most costly operations of A* are
m Insert and lookup an element in the closed list

m Insert element and get minimal element (according to f() value)
from the open list

m The closed list can be efficiently implemented as a hash set

m The open list is usually implemented as a priority queue, e.g.,

m Fibonacii heap, binomial heap, k-level bucket
m binary heap is usually sufficient (O(logn))

m Forward A*

1. Create a search tree and initiate it with the start location

2. Select generated but not yet expanded state s with the smallest
f-value, f(s) = g(s) + h(s)

3. Stop if s is the goal

Expand the state s

5. Goto Step 2

>

Similar to Dijsktra’s algorithm but it used f(s) with heuristic h(s) instead of pure g(s)
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Graph Search Algorithms

Dijsktra’s vs A* vs Jump Point Search (JPS)

IDijKetra’'s Algorith Mg ]

https://wuw.youtube.com/watch?v=R0G4UdO81LY
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Jump Point Search Algorithm for Grid-based Path Planning

m Jump Point Search (JPS) algorithm is based on a macro operator that
identifies and selectively expands only certain nodes (jump points)

Harabor, D. and Grastien, A. (2011): Online Graph Pruning for Pathfinding on Grid Maps. AAAI.

m Natural neighbors after neighbor | * | 2 | = (N
prunning with forced neighbors adex | s s |e s
because of obstacle

m Intermediate nodes on a path | } L] sl
connecting two jump points are never . '

expanded \ “ 4:' |
m No preprocessing and no memory overheads while it speeds up A*
https://harablog.wordpress.com/2011/09/07/jump-point-search/

m JPS+ — optimized preprocessed version of JPS with goal bounding
https://github.com/SteveRabin/JPSPlusWithGoalBounding
http://www.gdcvault.com/play/1022094/JPS-0ver-100x-Faster-than
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Theta* — Any-Angle Path Planning Algorithm

m Any-angle path planning algorithms simplify the path during the search
m Theta* is an extension of A* with Line0fSight ()

Nash, A., Daniel, K, Koenig, S. and Felner, A. (2007): Theta*: Any-Angle Path
Planning on Grids. AAAI.

1 2 3 4 5
A .
Algorithm 3: Theta* Any-Angle Planning R
if LineOfSight(parent(s), s’) then B ‘,
/* Path 2 — any-angle path */
if g(parent(s))+ c(parent(s), s’) < g(s’) then
parent(s') := parent(s); e g
g(s") := g(parent(s)) + c(parent(s), s'); ---Path1 Path 2
else
/* Path 1 — A* path */
if g(s) + c(s,;s’) < g(s’) then 1 2 3 4 5
parent(s'):=s; A ’ 20
&(5) = 8(6) + cls);
B 7 g
m Path 2: considers path from start to parent(s) and
from parent(s) to s if s’ has line-of-sight to parent(s) .
- -- Path 1 Path 2

http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
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Theta* Any-Angle Path Planning Examples

m Example of found paths by the Theta* algorithm for the same prob-
lems as for the DT-based examples on Slide 16

Both algorithms implemented in C++

6=10cm, L =263 m 6=30cm, L=403m

The same path planning problems solved by DT (without path smooth-
ing) have Ls—10 = 27.2 m and Ls_30 = 42.8 m, while DT seems to
be significantly faster

m Lazy Theta* — reduces the number of line-of-sight checks

Nash, A., Koenig, S. and Tovey, C. (2010): Lazy Theta*: Any-Angle Path Planning
and Path Length Analysis in 3D. AAAL.

http://aigamedev.com/open/tutorial/lazy-theta-star/
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A* Variants — Online Search

m The state space (map) may not be known exactly in advance
m Environment can dynamically change
m True travel costs are experienced during the path execution

m Repeated A* searches can be computationally demanding
m Incremental heuristic search
m Repeated planning of the path from the current state to the goal
m Planning under the free-space assumption
m Reuse information from the previous searches (closed list entries):
m Focused Dynamic A* (D*) — h* is based on traversability, it has

been used, e.g., for the Mars rover “Opportunity”
Stentz, A. (1995): The Focussed D* Algorithm for Real-Time Replanning. IJCAL.

m D* Lite — similar to D*
Koenig, S. and Likhachev, M. (2005): Fast Replanning for Navigation in Unknown Terrain. T-RO.

m Real-Time Heuristic Search
m Repeated planning with limited look-ahead — suboptimal but fast
® Learning Real-Time A* (LRTA¥)

Korf, E. (1990): Real-time heuristic search. JAI

m Real-Time Adaptive A* (RTAA¥)
Koenig, S. and Likhachev, M. (2006): Real-time adaptive A*. AAMAS.
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Real-Time Adaptive A* (RTAA*)

m Execute A* with limited look- while (e ¢ GOAL) do

ahead astar(lookahead);
m Learns better informed heuris- if s' = FAILURE then
tic from the experience, ini- | return FAILURE;
tially h(s), e.g., Euclidean dis- for all s € CLOSED do
tance | H(s) :==g(s') + h(s) - &(s);
m Look-ahead defines trade-off | execute(plan); // perform one step
between optimality and com-  return SUCCESS;

putational cost s' is the last state expanded during the
m astar(lookahead) previous A* search

A* expansion as far as "looka-
head’ nodes and it terminates
with the state s’
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D* Lite — Demo

https://www.youtube.com/watch?v=X5a149nSE9s
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D*

Jan Faigl

Lite Overview

It is similar to D*, but it is based on Lifelong Planning A*

Koenig, S. and Likhachev, M. (2002): D* Lite. AAAL.

It searches from the goal node to the start node, i.e., g-values
estimate the goal distance
Store pending nodes in a priority queue
Process nodes in order of increasing objective function value
Incrementally repair solution paths when changes occur
Maintains two estimates of costs per node

m g — the objective function value — based on what we know

m rhs — one-step lookahead of the objective function value — based

on what we know

Consistency

m Consistent — g = rhs

m Inconsistent — g # rhs
Inconsistent nodes are stored in the priority queue (open list) for
processing

, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning
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D* Lite: Cost Estimates

m rhs of the node u is computed based on g of its successors in the
graph and the transition costs of the edge to those successors

rhs(u) =  min )(g(s’) + ¢(u,s"))

s’eSucc(u

m The key/priority of a node s on the open list is the minimum of
g(s) and rhs(s) plus a focusing heuristic h

[min(g(s), rhs(s)) + h(Sstart, s); min(g(s), rhs(s))]

m The first term is used as the primary key
m The second term is used as the secondary key for tie-breaking
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite Algorithm

m Main — repeat until the robot reaches the goal (or g(ssart) = oo there is no path)

Initialize();
ComputeShortestPath();
while (Sstart # Sgoar) do
Sstart = argmins’GSucc(ssta,f)(C(Sstart7 5’) + g(sl));
Move to Sstart;
Scan the graph for changed edge costs;
if any edge cost changed perform then
foreach directed edges (u, v) with changed edge costs do
Update the edge cost c(u, v);
L UpdateVertex(u);

foreach s € U do
L U.Update(s, CalculateKey(s));

ComputeShortestPath();

Procedure Initialize
Uu=0;
foreach s € S do
| rhs(s) = g(s) = oo
rhs(Sgoar) := 0;
U.Insert(sgoar, CalculateKey(sgoa/));
Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 36 / 92



Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite Algorithm — ComputeShortestPath()

Procedure ComputeShortestPath

while U.TopKey() < CalculateKey(sstart) OR rhs(sstart) # &(Sstart) do
u := U.Pop();
if g(u) > rhs(u) then
g(u) = rhs(u);
foreach s € Pred(u) do UpdateVertex(s);
else

g(u) := oo;
foreach s € Pred(u) | J{u} do UpdateVertex(s);

Procedure UpdateVertex

if U # sgo0 then rhs(u) := ming ¢ syce(u)(c(u,s') + &(s));
if u € U then U.Remove(u);
if g(u) # rhs(u) then U.Insert(u, CalculateKey(u));

Procedure CalculateKey
return [min(g(s), rhs(s)) + h(Sstart, s); min(g(s), rhs(s))]
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D* Lite
D* Lite — Demo
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https://github.com/mdeyo/d-star-1lite
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example

3,0 31 32 33 34 Legend

(Free node | (OBSEGIAGEEN]
On open lit

m A grid map of the envi-
ronment (what is actu-
ally known)

2,0 1 2 3 4 gtart

>0

1,0 1 2 3 4 m 8-connected graph su-
perimposed on the grid
(bidirectional)

m Focusing heuristic is not
00 goalfo1 2 3 4 used (h = 0)

m Transition costs

B Free space — Free space: 1.0 and 1.4 (for diagonal edge)
B From/to obstacle: oo
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (1)

3,0 3,1 3,2 3,3 3,4

g: 0o g: 0o g: oo g: 0o g: 0o

rhs: co rhs: co rhs: co rhs: co rhs: co

2,0 2,1 2,2 2,3 24 start

g: 0o g: 0o g: 0o g: 0o g: 0o

rhs: co rhs: co rhs: co rhs: co rhs: oo.?,
[AY

1,0 1,1 1,2 1,3 1,4

g: 0o g: 0o g: 00

rhs: co rhs: co rhs: co

0,0 goal 01 0,2 03 0,4

g: 0o g: 00 g: 0o g: 0o

rhs: 0 rhs: co rhs: co rhs: co

Legend

(Free node | (OBSEGIGREN]
On open lt

Initialization
m Set rhs = 0 for the goal

m Set rhs = g = oo for all other
nodes
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (2)

3,0 3,1 3,2 3,3 3,4

g: 0o g: 0o g: oo g: 0o g: 0o

rhs: co rhs: co rhs: co rhs: co rhs: co

2,0 2,1 2,2 2,3 24 start

g: 0o g: 0o g: 0o g: 0o g: 0o

rhs: co rhs: co rhs: co rhs: co rhs: oo.?,
[AY

1,0 1,1 1,2 1,3 1,4

g: 0o g: 0o g: 00

rhs: co rhs: co rhs: co

0,0 goal 01 0,2 03 0,4

g: 0o g: 00 g: 0o g: 0o

rhs: 0 rhs: co rhs: co rhs: co

Legend

(Free node | (OBSEGIGREN]
On open lt

Initialization
m Put the goal to the open list

It is inconsistent
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Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (3)

3,0 3,1 3,2 3,3 3,4

g: 0o g: 0o g: oo g: 0o g: 0o

rhs: co rhs: co rhs: co rhs: co rhs: co

2,0 2,1 2,2 2,3 24 start

g: 0o g: 0o g: 0o g: 0o g: 0o

rhs: co rhs: co rhs: co rhs: co rhs: oo.?,
[AY

1,0 1,1 1,2 1,3 1,4

g: 0o g: 0o g: 00

rhs: co rhs: co rhs: co

00 gpal |01 0,2 03 0,4

g0 g: 0o g: 0o g: 0o

rhs: 0 rhs: co rhs: co rhs: co

Jan Faigl, 2017

Graph Search Algorithms D* Lite RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (goal)

m It is over-consistent (g >
rhs), therefore set g = rhs
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D* Lite — Example Planning (4)

3,0 3,1 3,2 3.3 3.4

g: 0o g: 0o g: oo g: 0o g: 0o

rhs: co rhs: co rhs: co rhs: co rhs: co

2,0 21 2,2 23 24 start

g: 0o g: oo g: oo g: 0o g: oo

rhs: co rhs: co rhs: co rhs: co rhs: oo,?,
N

1,0 1,1 1,2 1,3 1,4

g: 0o g: 0o g: 0o g: 0o g: 00

rhs: 1 rhs: o rhs: co rhs: co rhs: oo

I

0,0 toa| 0,1 0,2 0,3 0,4

g0 g: 0o g: 0o g: 0o g: 00

rhs: O rhs: 1 rhs: oo rhs: oo rhs: oo

D* Lite

Legend
\ Free node HObstacIe node ]

On open lt

ComputeShortestPath

m Expand popped node
(UpdateVertex() on all its
predecessors)

m This computes the rhs values
for the predecessors

m Nodes that become inconsis-
tent are added to the open list

Small black arrows denote the node used for computing the rhs value, i.e., using the respec-

tive transition cost

m The rhs value of (1,1) is co because the transition to obstacle has cost co
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Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (5)

3,0 3,1 3,2 3,3 3,4

g 0o g 0o g 0o g: 00 g: 00
rhs: oo rhs: oo rhs: co rhs: oo rhs: oo
2,0 2,1 2,2 2.3 2.4 start
g: 0o g: 0o g: 0o g: 0o g: 0o
rhs: co rhs: co rhs: oo rhs: co rhs: oo.?,
1,0 1,1 1,2 1,3 1,4 =
g1 g: oo g: 00
rhs: 1 - - rhs: co rhs: co
0,0 kl oal |01 0,2 03 0,4

g0 g o0 g: 00 g: 0o
rhs: O i rhs: 1 - rhs: oo rhs: co

Jan Faigl, 2017

Graph Search Algorithms D* Lite RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (1,0)

m It is over-consistent (g > rhs)
set g = rhs
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D* Lite

D* Lite — Example Planning (6)

3,0 31 32 33 34 Legend
g: 0o g: 0o g: 0o g: 00 g: 0o \Free node HObstade node ]
rhs: co rhs: oo rhs: co rhs: oo rhs: oo On open list
2,0 2,1 2,2 2,3 2,4 start
s s e P s ComputeShortestPath
rhs: 2 rhs: 2.4 ||| rhs: co rhs: co rhs: oo,?, ® Expand the popped node
T i X (UpdateVertex() on all pre-
Lo | A1 1,2 1,3 1,4 decessors in the graph)
g1 g: 0o g: 0o g: 0o g: 00 = Compute rhs values of the
rhs: 1 i 69 e 69 rhs: oo s o= predecessors accordingly
T m Put them to the open list if
MLaI 0.1 0.2 03 0,4 they become inconsistent
g0 g: 0o g: 0o g: 0o g: 00
rhs: 0 rhs: 1 rhs: co rhs: co rhs: co

m The rhs value of (0,0), (1,1) does not change

m They do not become inconsistent and thus they are not put on the open list

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 45 / 92



Grid-based Planning DT for Path Planning

D* Lite — Example Planning (7)

3,0 3,1 3,2 3,3 3,4

g 0o g 0o g 0o g: 00 g: 00

rhs: oo rhs: oo rhs: co rhs: oo rhs: oo

2,0 2,1 2,2 2,3 24 start

g: 0o g 0o g: 0o g: 0o g: 0o

rhs: 2 rhs: 2.4 ||| rhs: co rhs: co rhs: oo.?,
I / N

10 | 1,1 1,2 1,3 1,4

g1 g 0o g: 0o

rhs: 1 - - rhs: co rhs: co

0,0 kl oal |01 0,2 03 0,4

g0 gl g: oo g: 0o

rhs: 0 li rhs: 1 - rhs: oo rhs: oo

Jan Faigl, 2017

Graph Search Algorithms D* Lite RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (0,1)

m It is over-consistent (g > rhs)
and thus set g = rhs

m Expand the popped element,
e.g., call UpdateVertex()
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Grid-based Planning DT for Path Planning

D* Lite — Example Planning (8)

3,0 3,1 3,2 3,3 3,4

g 0o g 0o g 0o g: 00 g: 00
rhs: oo rhs: oo rhs: co rhs: oo rhs: oo
2,0 2,1 2,2 2,3 24 start
g 2 g: 0o g: oo g: oo g: 0o
rhs: 2 rhs: 2.4 ||| rhs: co rhs: co rhs: 009,
1,0 i '{,1 1,2 1,3 1.4 =
g1l g: 0o g: 00
rhs: 1 - - rhs: oo rhs: co
0,0 kl oal |01 0,2 0,3 0,4

g0 g1 g: oo g: 0o
rhs: 0 li rhs: 1 - rhs: oo rhs: oo

Jan Faigl, 2017

Graph Search Algorithms D* Lite RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (2,0)

m It is over-consistent (g > rhs)
and thus set g = rhs
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Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (9)

3,0 3,1 3,2 3,3 3,4

g: o0 g o0 g 0o g: 0o g: 00
rhs: 3 rhs: 3.4 ||| rhs: co rhs: oo rhs: oo
2,0 l 'g,l 2,2 2,3 2,4 start
g 2 g: 0o g: oo g: oo g: 0o
rhs: 2 rhs: 2.4 ||| rhs: co rhs: co rhs: 009,
1,0 i '{,1 1,2 1,3 1.4 =
g1l g: 0o g: 00
rhs: 1 - - rhs: oo rhs: oo
0,0 kl oal |01 0,2 0,3 0,4

g0 g1 g: oo g: 0o
rhs: 0 li rhs: 1 - rhs: co rhs: co

Jan Faigl, 2017

Graph Search Algorithms D* Lite RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Expand the popped element
and put the predecessors that
become inconsistent onto the
open list
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Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (10)

3,0 3,1 3,2 3,3 3,4

g: o0 g o0 g 0o g: 00 g: 00
rhs: 3 rhs: 3.4 ||| rhs: co rhs: oo rhs: oo
2,0 l 'g,l 2,2 2,3 2,4 start
g2 g: 2.4 g: oo g: oo g: oo
rhs: 2 rhs: 2.4 ||| rhs: co rhs: co rhs: oo,?,
1,0 i '{,1 1,2 1,3 1,4 =
g1l g: oo g: 00
rhs: 1 - - rhs: oo rhs: co
0,0 kl oal |01 0,2 0,3 0,4

g0 g1 g: oo g: 0o
rhs: 0 li rhs: 1 - rhs: co rhs: co

Jan Faigl, 2017

Graph Search Algorithms D* Lite RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (2,1)

m It is over-consistent (g > rhs)
and thus set g = rhs
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Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (11)

3,0 3,1 3,2 3,3 3,4
g: 0o g: 0o g: 00 g: 0o g: 00
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo rhs: oo

I 7 7
2,0 J, 2,1 2,2 23 24 start
g2 g: 2.4 g: 00 g: 00 g: oo
rhs: 2 rhs: 2.4 i rhs: 3.4 ||| rhs: oo rhs: oo,?,
1,0 i '{,1 1,2 1,3 1,4 =
g1l g: 0o g: 00
rhs: 1 - - rhs: oo rhs: oo
0,0 kl oal |01 0,2 0,3 0,4
g0 g1 g: oo g: 0o
rhs: 0 i rhs: 1 - rhs: co rhs: co

Jan Faigl, 2017

Graph Search Algorithms D* Lite RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Expand the popped element
and put the predecessors that
become inconsistent onto the
open list
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D* Lite — Example Planning (12)

D* Lite

30 31 32 33 34 Legend
g 3 g: 0o g: 0o g: 00 g: 0o \Free node HObstacIe node ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo rhs: co On open list
2,0 21 22 2,3 2,4 start
2 o 24 P P s ComputeShortestPath
) ] £l ) ) . .0 m Pop the minimum element
rhs.l2 /rhs. 24 L S U8 €9 S Oo‘,l\’ from the open list (3,0)
o] A1 1.2 13 14 m It is over-consistent (g > rhs)
g1 g: 00 g: 00 g: 00 g: oo and thus set g = rhs
rhs: 1 rhs: co rhs: co rhs: oo rhs: oo m Expand the popped element
T and put the predecessors that
MLaI 01 |02 03 0.4 become inconsistent onto the
g0 J g1 g © g g: open list
rhs: O rhs: 1 rhs: oo rhs: oo rhs: oo m In this cases, none of the pre-
decessors become inconsistent
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D* Lite — Example Planning (13)

D* Lite

30 31 32 33 34 Legend
g3 g 3.4 g: 0o g: 00 g: 00 \Free node HObstacIe node ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 0o ||| rhs: oo On open list
T 7 7
20 | lZ’2,1 l/’2,2 2,3 2,4 start
2 o 24 P P s ComputeShortestPath
) ] £l ) ) . .0 m Pop the minimum element
rhs.l2 /rhs. 24 L S U8 €9 S Oo‘,l\’ from the open list (3,0)
o] A1 1.2 13 14 m It is over-consistent (g > rhs)
g1 g g: o0 g o© g: 00 and thus set g = rhs
rhs: 1 rhs: co rhs: co rhs: oo rhs: oo m Expand the popped element
T and put the predecessors that
MLaI 01 |02 03 0.4 become inconsistent onto the
g0 J g1 g © g g: open list
rhs: O rhs: 1 rhs: oo rhs: oo rhs: oo m In this cases, none of the pre-
decessors become inconsistent
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Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (14)

3,0 3,1 3,2 3,3 3,4
g3 g: 3.4 g: oo g oo g: 00
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo rhs: oo

T V4 /
2,0 J, 2,1 2,2 23 24 start
g2 g 2.4 g: 3.4 g: oo g: 0o
rhs: 2 rhs: 2.4 l rhs: 3.4 ||| rhs: co rhs: 009
1,0 i '{,1 1,2 1,3 1,4 =
g1l g: 0o g: 00
rhs: 1 - - rhs: oo rhs: oo
0,0 kl oal |01 0,2 0,3 0,4
g0 g1 g: oo g: 0o
rhs: 0 i rhs: 1 - rhs: co rhs: co

Jan Faigl, 2017

Graph Search Algorithms D* Lite RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (2,2)

m It is over-consistent (g > rhs)
and thus set g = rhs
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Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (15)

3,0 3,1 3,2 3,3 3,4
g3 g: 3.4 g: oo g: oo g: 0o
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: co

T V4 / /
2,0 J, 2,1 2,2 2,3 24 start
g2 g 2.4 g: 3.4 g: oo g: 0o
rhs: 2 rhs: 2.4 l rhs: 3.4 i rhs: 4.4 ||| rhs: 009
1,0 i '{,1 1,2 ‘%3 1,4 =
g1l g: 0o g: 00
rhs: 1 - - rhs: 4.8 ||| rhs: co
0,0 kl oal |01 0,2 0,3 0,4
g0 g1 g: oo g: 0o
rhs: 0 i rhs: 1 - rhs: co rhs: co

Jan Faigl, 2017

Graph Search Algorithms D* Lite RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Expand the popped element
and put the predecessors that
become inconsistent onto the
open list, i.e., (3,2), (3,3),
(2.3)
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D* Lite — Example Planning (16)

D* Lite

30 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g: oo g: 0o \Free node HObstacIe node ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: co On open list
T 7 7 7
20 | 21 VEE NES 24 start
2 o 24 o34 P s ComputeShortestPath
£l t1 P th ini | t
rhs: 2 ths: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: c0@) . froﬁ] the m'r?llrin:r& ;)emen
; b K| X 0 e open list (3,
o] A1 1.2 N3 14 m It is over-consistent (g > rhs)
g1 g g: o0 g: o g: 00 and thus set g = rhs
rhs: 1 rhs: co rhs: co rhs: 4.8 rhs: oo m Expand the popped element
T and put the predecessors that
MLaI 01 |02 03 0.4 become inconsistent onto the
g0 g1 g © g g: open list
rhs: O rhs: 1 rhs: oo rhs: oo rhs: oo m In this cases, none of the pre-
decessors become inconsistent
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Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (17)

3,0 3,1 3,2 3,3 3,4
g3 g: 3.4 g: 3.8 g: 00 g: oo
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: co

T V4 7 /
2,0 J, 2,1 2,2 2,3 24 start
g2 g 2.4 g: 3.4 g 4.4 g: 0o
rhs: 2 rhs: 2.4 l rhs: 3.4 i rhs: 4.4 ||| rhs: 009
1,0 i '{,1 1,2 ‘%3 1,4 =
g1l g: 0o g: 00
rhs: 1 - - rhs: 4.8 ||| rhs: co
0,0 kl oal |01 0,2 0,3 0,4
g0 g1 g: oo g: 0o
rhs: 0 li rhs: 1 - rhs: oo rhs: oo

Jan Faigl, 2017

Graph Search Algorithms D* Lite RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (2,3)

m It is over-consistent (g > rhs)
and thus set g = rhs
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D* Lite

D* Lite — Example Planning (18)

3,0 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g: oo g: 0o \Free node HObstacIe node ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list

l L7 L7 ,/ ,/
2,0 21 /22 23 /24 start
o2 o 24 o34 o 4a s ComputeShortestPath

¥ ¥ 1] E d th d el t

rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5. " xgan he Poppe eemﬁn

; L . . 4‘% and put the predecessors that
1,0 | (’1,1 1,2 \Q3 \{4 become inconsistent onto the

open list, ie., (3,4), (2,4),
(1,4)

m The start node is on the open

e —
0,0 toa| 0,1 0,2 0,3 0,4 list

g0 g1 g: g: o0 g: oo m However, the search does not
finish at this stage

g1 g: 0o g: 0o g: 0o g: 00
rhs: 1 rhs: o rhs: co rhs: 4.8 ||| rhs: 5.8

rhs: 0 rhs: 1 rhs: oo rhs: co rhs: co

m There are still inconsistent
nodes (on the open list) with
a lower value of rhs
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D* Lite — Example Planning (19)

D* Lite

30 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g: 4.8 g: 00 \Free node HObstacIe node ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
.i, 7 7 7 L7
2,0 21 22 123 /24 start
2 o 24 o34 o 4a s ComputeShortestPath
£l tl fl P th ini | t
rhs: 2 rhs: 2.4 rhs: 3.4 rhs: 4.4 ||| rhs: 5. " fop the mlnllr.n:r& 2e)emen
; b x| K\ﬁ rom the open list (3,
0] A1t 12 N3 N4 m It is over-consistent (g > rhs)
g1 g g: o0 g: o g: 00 and thus set g = rhs
rhs: 1 rhs: co rhs: co rhs: 4.8 rhs: 5.8 = Expand the popped element
T and put the predecessors that
MLaI 01 |02 03 0.4 become inconsistent onto the
g0 J g1 g © g g: open list
rhs: O rhs: 1 rhs: oo rhs: oo rhs: oo m In this cases, none of the pre-
decessors become inconsistent
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Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (20)

3,0 3,1 3,2 33 3,4
g3 g: 3.4 g: 3.8 g 4.8 g: 00
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
I '/ '/ '/ '/
20 | 2,1 2,2 2,3 24 gstart
g2 g: 2.4 g: 3.4 g 4.4 g: 0o
s va €
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5.19
I /7 JAY
10 | 1,1 1,2 N3 N4
g1l g 4.8 g: 0o
rhs: 1 rhs: 4.8 ||| rhs: 5.8
|
0,0 koal 0,1 0,2 0,3 0,4
g0 g1 g: 0o g: 00
¢
rhs: 0 rhs: 1 rhs: oo rhs: oo

Jan Faigl, 2017

Graph Search Algorithms D* Lite RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (1,3)

m It is over-consistent (g > rhs)
and thus set g = rhs
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (21)

3,0 31 32 33 34 Legend

rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
V4 7 V4 /

2,0 i I/'2,1 1’2,2 1’2,3 l/'2,4 start

o2 o 24 o34 o 4a s ComputeShortestPath
%] 5] %] E d th d el t
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5-‘9 " xgan he poppec € em:n
; - < - h ¢ and put the predecessors that
1,0 J, I/'1,1 1,2 \{,3 ‘%4 become inconsistent onto the

e 1 g 4.8 g 00 open list, i.e., (0,3) and (0,4)
rhs: 1 rhs: 4.8 ||| rhs: 5.8

0,0 kl oal |01 0,2 0,3 T \Q“

g0 g1 g: 0o g: 0o
¢
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 60 / 92



D* Lite — Example Planning (22)

3,0 3,1 3,2 3,3 3,4
g3 g: 3.4 g: 3.8 g: 4.8 g: ©
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8

T Z Z Z 7
20 | 21 VEE 23 /24 start
g2 g 2.4 g: 3.4 g 4.4 g: 5.4

4 ¢| |l

rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5.19

I V4 K ) IAY
1,0 | (’1,1 1,2 \g,3 \%,4
g1 g: 0o g: 00 g: 4.8 g: o0
rhs: 1 rhs: oo rhs: co rhs: 4.8 rhs: 5.8
B— — —, S, 4
0,0 toa| 0,1 0,2 0,3 | \Q“
g: 0 g: 1 g: 0o g: 0o g: oo

&

rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2

D* Lite

Legend
\ Free node HObstacIe node ]

On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (2,4)

m It is over-consistent (g > rhs)
and thus set g = rhs

m Expand the popped element
and put the predecessors that
become inconsistent (none in
this case) onto the open list

m The start node becomes consistent and the top key on the open list is not less than the
key of the start node

m An optimal path is found and the loop of the ComputeShortestPath is breaked

Jan Faigl, 2017
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (23)

3,0 31 32 33 34 Legend

rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
/

I y4 y4 y4
20 | (2,1 (2,2 (2,3 (24 start
g2 g 2.4 g: 3.4 g 4. g: 5.4 m Follow the gradient of g val-
N 1 N fi the start node
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: £4 ||| rhs: 5.49 ues trom
1 7 [AY
10 | 1,1 1,2 N3 ‘%4
g1 g: 4.8 g: 0
rhs: 1 rhs: 4.8 ||| rhs: 5.8

K,

0,0 kl oal |01 0,2 0,3 T \Q“

g0 g1 g: 0o g: 0o
¢
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (24)

3,0 31 32 33 34 Legend

rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
/

I y4 y4 y4
20 | 2,1 2,2 72,3 /24 start
g2 g: 24 g: 3. g: 4. g: 54 m Follow the gradient of g val-
Ny o P
rhs: 2 rhs: 2.4 ||| rhs: 3.4 rhs: 5.4 ues from the start node
I y4
10 | 1,1 1,2 N3 ‘%4
g1l g: 4.8 g: 0o
rhs: 1 rhs: 4.8 ||| rhs: 5.8

0,0 kl oal |01 0,2 0,3 T \Q“

g0 g1 g: 0o g: 0o
¢
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2
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Grid-based Planning DT for Path Planning

D* Lite — Example Planning (25)

Graph Search Algorithms D* Lite RD-based Planning

3,0 31 32 33 34 Legend
g3 |[e34 |[e38 |[s48 |[[& || [Freenode |[Obstaclenode]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list

T V4 7 V4 /
20 | 2,1 2,2 72,3 /24 start
g2 g: 2.4 g: 4. g:5.4 m A new obstacle is detected

\ o P .

vhs: 2 vhs: 2.4 rhs: 5.4 during the movement from

T 7 N 4 (2,3) to (2,2)
10 11 2 N3 N = Replanning is needed!
g1l g: 4.8 g: 0
rhs: 1 rhs: 4.8 ||| rhs: 5.8

| A K
0,0 koal 0,1 0,2 0,3 | \Q“
g0 g1 g: 0o g: 0o

"
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2
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Grid-based Planning DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (25 update)

30 31 32 33 34 Legend
rhs: 3 rhs:%\.{ rhs:[3.8 ||| rhé: 4.8 ||| rhs: 5.8 On open list
T V4 7 /
20 | (2,1 2 (24 start
g2 g 2.4 g: 5.4 m All  directed edges with
P
rhs: 2 rhs: 2.4 rhs: 5.4 changed edge, we need to call
T 7 the UpdateVertex ()
Lo v 2 N = All edges into and out of (2,2)
g1 3 c9 have to be considered
rhs: 1 rhs: 5.8
|
0,0 koal 01 0,2 N4
g0 g1 g: o0
¢
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2
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Grid-based Planning DT for Path Planning

Graph Search Algorithms

D* Lite RD-based Planning

D* Lite — Example Planning (26 update 1/2)

3,0 3,1 3,2 3,3 3,4
g3 g: 3.4 g: 3.8 g: 4.8 g: o0
rhs: 3 rhs:%\.{ rhs:|3.8 r}7r£4.8 rhs: 5.8

T 7 7 7 /

20 | A21 /22 /23 /24 start
g2 g 2.4 g: g 4.4 g: 5.4
rhs: 2 rhs: 2.4 ||| r rhs: 4. rhs: 5.4

I y4 K

10 | 11 1,2 N3 ‘%4
g1l g:4.8 g: 00
rhs: 1 rhs: 4.8 ||| rhs: 5.8

| A K

0,0 koal 0,1 0,2 0,3 | \Q“

g0 g1 g: 0o g: 0o
"
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

Jan Faigl, 2017

Legend

(Free node | (OBSEGIGREN]
On open lt

Update Vertex

Outgoing edges from (2,2)
Call UpdateVertex() on (2,2)
The transition costs are now
oo because of obstacle
Therefore the rhs = oo
and (2,2) becomes inconsis-

tent and it is put on the open
list
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (26 update 2/2)

3,0 3,1 3,2 3,3 3,4
g3 g: 3.4 g: 3.8 g: 4.8 g: o0
rhs: 3 rhs:\j\.Q rhs:|3.8 %4.8 rhs: 5.8

T 7 7 7 /

20 | A21 22 /23 /24 start
g2 g 2.4 g: g 4.4 g: 5.4
rhs: 2 rhs: 2.4 ||| rhs: rhs: 4. rhs: 5.4

I y4 K

10 | 11 1,2 N3 ‘%4
g1l g:4.8 g: 00
rhs: 1 rhs: 4.8 ||| rhs: 5.8

| A K

0,0 koal 0,1 0,2 0,3 | \Q“

g0 g1 g: 0o g: 0o
"
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

Legend

(Free node | (OBSEGIGREN]
On open lt

Update Vertex

m Incomming edges to (2,2)

m Call UpdateVertex() on the
neighbors (2,2)

m The transition cost is co, and
therefore, the rhs value previ-
ously computed using (2,2) is
changed
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D* Lite — Example Planning (27)

3,0 3,1 3,2 3.3 3.4

g3 g: 3.4 g: 3.8 g: 4.8 g: ©

rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhé: 4.8 ||| rhs: 5.8
T 7 7 7

2,0 1, lZ’2,1 lZ’z,z 2,3 lZ’2,4 start

12 124 3. 4.4 :5.4

g g g j/ g )

rhs: 2 rhs: 2.4 ||| rhs: co rhs: 4.& rhs: 5.4
T 7 .4 —

1,0 | (’1,1 1,2 \g,3 \%,4

g1 g: 0o g: 00 g: 4.8 g: o0

rhs: 1 rhs: oo rhs: co rhs: 4.8 rhs: 5.8

—— — ~—

0,0 toa| 0,1 0,2 0,3 | \Q“

g: 0 g: 1 g: 0o g: 0o g: oo

rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2

D* Lite

Legend
\ Free node HObstacIe node ]

On open lt

Update Vertex

m The neighbor of (2,2) is (3,3)

m The minimum possible rhs
value of (3,3) is 4.8 but it is
based on the g value of (3,2)
and not (2,2), which is the de-
tected obstacle

m The node (3,3) is still consis-
tent and thus it is not put on
the open list
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D* Lite — Example Planning (28)

D* Lite

3,0 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g 4.8 g: 00 \Free node HObstacIe node ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
l // V- N Y-
2.0 21 22 N3 |24 start
g2 g 2.4 g: 3.4 g 4.4 g: 5.4 Update Vertex
S M 2 is al ighb f
rhs: 2 rhs: 2.4 ||| rhs: co rhs: 5.% rhs: 5.4 = (23) is also a neighbor o
I L7 K < — (2.2)
Lo | A1 12 N3 N4 m The minimum possible rhs
g1 g: 00 g: oo g 4.8 g: oo value of (2,3) is 5.2 because of
rhs: 1 rhs: oo rhs: oo rhs: 4.8 ||| rhs: 5.8 (2,2) is obstacle (using (3,2)
S Bhil| (R with 3.8 + 1.4)
N
0.0 :koal 0.1 0.2 0.3 I R4 m The rhs value of (2,3) is dif-
g0 I3 1 g: oo g: o0 g: o0 ferent than g thus (2,3) is put
rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2 on the open list
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D* Lite — Example Planning (29)

rhs: 2 rhs: 2.4

3,0 3,1 3,2 3,3 3,4
g3 g: 3.4 g: 3.8 g: 4.8 g: ©
&
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
T 7 y A— d —
20 21 22 R3S 24 start
g2 g 2.4 g: 3.4 g 4.4 g: 5.4
€]

rhs:%a\ rhs: 5. rhs: 5.4
S § = 27

7
1,0 | (’1,1

g0 g1
€
rhs: 0 rhs: 1

1,2 1,3 \g,4
g1 g: 0o g: 00 g:4.8 g: o0
rhs: 1 rhs: oo rhs: co rhs: 5.4 ||| rhs: 5.8
B E— — ~— 4 R
0,0 toa| 0,1 0,2 0,3 | \Q“

g: 0o g: 0o g: 0o

rhs: co rhs: 5.8 rhs: 6.2

Jan Faigl, 2017

D* Lite

Legend
\ Free node HObstacIe node ]

On open lt

Update Vertex

m Another neighbor of (2,2) is
(1.3)

m The minimum possible rhs
value of (1,3) is 5.4 computed
based on g of (2,3) with 4.4
+1=54

m The rhs value is always com-
puted using the g values of its
successors
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D* Lite

D* Lite — Example Planning (29 update)

3,0 31 32 33 34 Legend
g3 g: 3.4 g: 3.8 g 4.8 g: 00 \Free node HObstacIe node ]
&

rhs: 3 rhs: 3.4 ||| rhs:|3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
i y s —. 4 —4

T
20 | A21 /22 N3 A24 start
g2 g 2.4 gn3l4 g 4.4 g: 5.4 Update Vertex
1] N f the oth ighbor of
rhs: 2 rhs: 2.4 ||| rhs:|co rhs: 5. rhs: 5.4 " 20;e of the other neighbor o
- - = =7 (2,2) end up being inconsis-
1,0 | (’1,1 1,2 1,3 | \g,4 tent
g1 g g: OF g 4.8 g: 00 m We go back to «calling

rhs: 1 rhs: co rhs: co rhs: 5.4 ||| rhs: 5.8 Com.puteShorte_stPath() .
— until an optimal path is

— — — S—_
0,0 toa| 01 0,2 03 I \Q4 determined
g: 0 g: 1 g 0 g. 00 g:. 00

rhs: 0 rhs: 1 rhs: co rhs: 5.8 rhs: 6.2

m The node corresponding to the robot's current position is inconsistent and its key is
greater than the minimum key on the open list

m Thus, the optimal path is not found yet
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D* Lite — Example Planning (30)

rhs: co rhs: 5.%
7 S

3,0 3,1 3,2 3,3 3,4
g3 g: 3.4 g: 3.8 g: 4.8 g: ©
&
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
T Z —4
20} 2t g2 R3S 24 start
g2 g 2.4 g: 00 g 4.4 g: 5.4
€]
rhs: 2 rhs: 2.4 rhs: 5.4

7
1,0 | (’1,1

1,2 1,3 | \g,4
g1 g: 0o g: 00 g: 4.8 g: o0
rhs: 1 rhs: co rhs: co rhs: 5.4 ||| rhs: 5.8
e — L= =2
0,0 toa| 0,1 0,2 0,3 | \Q“
g0 g1 g: oo g: 0o g: 0o

2

rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2

D* Lite

Legend
\ Free node HObstacIe node ]

On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (2,2), which
is obstacle

m It is under-consistent (g <
rhs), therefore set g = oo

m Expand the popped element
and put the predecessors that
become inconsistent (none in
this case) onto the open list

m Because (2,2) was under-consistent (when popped), UpdateVertex () has to be called on it

m However, it has no effect as its rhs value is up to date and consistent

Jan Faigl, 2017
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Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite

D* Lite — Example Planning (31)

3,0

3,1 3,2 33 3,4
g3 g: 3.4 g: 3.8 g 4.8 g: 0o
"
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
T 7 7 /
2,0 J, 2,1 2,2 \%3 ‘/'2,4 start
g2 g 2.4 g: oo g 5.4
N
rhs: 2 rhs: 2.4 rhs: 5-@ rhs: 5.4
T 7 T K
10 | 1,1 1,2 13 | ‘%4
g1l g 4.8 g: oo
rhs: 1 rhs: 5.4 ||| rhs: 5.8
| A K
0,0 koal 0,1 0,2 0,3 | \Q“
g0 g1 g: 0o g: 0o
"
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (2,3)

m It is under-consistent (g <
rhs), therefore set g = oo
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Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (32)

3,0 3,1 3,2 33 3,4
g3 g: 3.4 g: 3.8 g 4.8 g: 00
&
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
I y4 y4 K K
2,0 J, I/'2,1 1’2,2 \%3 ‘\%4 start
g2 g 2.4 g: 0o g 5.4
rhs: 2 rhs: 2.4 rhs: 5-@ rhs: 6.2
I /7 AMD. |
10 | 11 1,2 1,3 14
g1l g 4.8 g: 00
¢
rhs: 1 rhs: 6.8 ||| rhs: 5.8
| A K
0,0 koal 0,1 0,2 0,3 | \Q“
g0 g1 g: 0o g: 0o
¢
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

Jan Faigl, 2017

Graph Search Algorithms D* Lite RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Expand the popped element
and update the predecessors

m (2,4) becomes inconsistent

m (1,3) gets updated and still in-
consistent

m The rhs value (1,4) does not
changed, but it is now com-

puted from the g value of
(13)
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Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (33)

3,0 3,1 3,2 33 3,4
g3 g: 3.4 g: 3.8 g: 4.8 g: o0
&
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
I y4 y4
2,0 J, 2,1 2,2 \%3 ‘\%4 start
g2 g 2.4 g: 0o g 5.4
rhs: 2 rhs: 2.4 rhs: 5-2 rhs: 6.2
I /7 [AY
10 | 1,1 1,2 1,3 14
g1l g 4.8 g: 0o
¢
rhs: 1 rhs: 5.4 ||| rhs: 5.8
| A K
0,0 koal 0,1 0,2 0,3 | \Q“
g0 g1 g: 0o g: 0o
¢
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

Graph Search Algorithms D* Lite RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Because (2,3) was under-
consistent (when popped),
call UpdateVertex() on it is
needed

m As it is still inconsistent it is
put back onto the open list
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Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (34)

Graph Search Algorithms D* Lite

3,0

3,1 3,2 33 3,4
g3 g: 3.4 g: 3.8 g: 4.8 g: o0
"
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
I y4 y4
2,0 J, 2,1 2,2 \%3 ‘\%4 start
g2 g 2.4 g: 0o g 5.4
rhs: 2 rhs: 2.4 rhs: 5-2 rhs: 6.2
I /7 [AY
10 | 1,1 1,2 1,3 /'1,4
g1 g: oo g: 0o
n
rhs: 1 rhs: 6.8 ||| rhs: 5.8
T A K
0,0 koal 0,1 0,2 0,3 | \Q“
g0 g1 g: 0o g: 0o
"
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (1,3)

m It is under-consistent (g <
rhs), therefore set g = oo
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Grid-based Planning

DT for Path Planning

Graph Search Algorithms D* Lite

D* Lite — Example Planning (35)

3,0 3,1 3,2 3,3 3,4
g3 g: 3.4 g: 3.8 g 4.8 g: 0o
rhs: 3 rhs: 3.4 ||| rhs: 3.8 i rhs: 4.8 ||| rhs: 5.8
2,0 i 'g,l 'g,z \%3 ‘\%4 start
g2 g 2.4 g: 0o g 5.4
rhs: 2 rhs: 2.4 - rhs: 5.@ rhs: 6.2
I y4 [AY A~
10 | 1,1 1,2 1,3 /'1,4 |
g1 g: oo g: 0o
rhs: 1 - - rhs: 6.8 ||| rhs: 6.4
0,0 kl oal |01 0,2 0,3 0,4
g0 g1 g: oo g: 0o
rhs: 0 li rhs: 1 - rhs: co rhs: co
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B4M36UIR — Lecture 04: Grid and Graph based Path Planning

RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Expand the popped element
and update the predecessors

m (1,4) gets updated and still in-
consistent

= (0,3) and (0,4) get updated
and now consistent (both g
and rhs are o)
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Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (36)

Graph Search Algorithms D* Lite

3,0 3,1 3,2 3,3 3,4
g3 g: 3.4 g: 3.8 g 4.8 g: 0o
rhs: 3 rhs: 3.4 ||| rhs: 3.8 i rhs: 4.8 ||| rhs: 5.8
2,0 i 'g,l 'g,z \%3 ‘\%4 start
g2 g 2.4 g: 0o g 5.4
rhs: 2 rhs: 2.4 - rhs: 5.@ rhs: 6.2
I y4 [AY A~
10 | 1,1 1,2 1,3 /'1,4 |
g1 g: oo g: 0o
rhs: 1 - - rhs: 6.8 ||| rhs: 6.4
0,0 kl oal |01 0,2 0,3 0,4
g0 g1 g: oo g: 0o
rhs: 0 li rhs: 1 - rhs: co rhs: co

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Because (1,3) was under-
consistent (when popped),
call UpdateVertex() on it is
needed

m As it is still inconsistent it is
put back onto the open list
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Grid-based Planning

DT for Path Planning

Graph Search Algorithms

D* Lite — Example Planning (37)

3,0 3,1 3,2 3,3 3,4

g3 g: 3.4 g: 3.8 g 4.8 g: 0o

rhs: 3 rhs: 3.4 ||| rhs: 3.8 i rhs: 4.8 ||| rhs: 5.8
2,0 i 'g,l 'g,z 3 N4 start
g2 g 2.4 g: 5.2 g: 5.4
rhs: 2 rhs: 2.4 - rhs: 5.4 rhs: 6.2

T 7 N 7S

10 | 1,1 1,2 1,3 /'1,4 |
g1 g: oo g: 0o
rhs: 1 - - rhs: 6.8 ||| rhs: 6.4
0,0 kl oal |01 0,2 0,3 0,4

g0 g1 g: oo g: 0o
rhs: 0 li rhs: 1 - rhs: oo rhs: oo

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

D* Lite RD-based Planning

Legend
[Free node | [Obstacle node

On open lt

ComputeShortestPath

m Pop the minimum element
from the open list (2,3)

m It is over-consistent (g >
rhs), therefore set g = rhs
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Grid-based Planning

DT for Path Planning

D* Lite — Example Planning (38)

3,0

3,1 3,2 33 3,4
g3 g: 3.4 g: 3.8 g 4.8 g: 00
"
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
I y4 y4 K K
20 | A21 /22 3 N4 start
g2 g 2.4 g: 5.2 g: 5.4
rhs: 2 rhs: 2.4 rhs: 5.@ rhs: 6.2
| /7 A [AY A~
10 | 11 1,2 1,3 | 1,4 |
g1 g: oo g: 0o
rhs: 1 rhs: 6.2 ||| rhs: 6.4
|
0,0 koal 01 0,2 03 0,4
g0 g1 g: 0o g: 00
rhs: 0 rhs: 1 rhs: oo rhs: oo

Jan Faigl, 2017

Graph Search Algorithms D* Lite RD-based Planning

Legend

(Free node | (OBSEGIGREN]
On open lt

ComputeShortestPath

m Expand the popped element
and update the predecessors

m (1,3) gets updated and still in-
consistent

= The node (2,3) corresponding
to the robot's position is con-
sistent

m Besides, top of the key on the
open list is not less than the
key of (2,3)

m The optimal path has been
found and we can break out
of the loop
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D* Lite — Example Planning (39)

30 31 32 33 34 Legend

rhs: 3 rhs: 3.4 rhs: 4.8 ||| rhs: 5.8

I y4
2,0 J, 2,1 \%,4 start
g 2 g: 2 g: 5.4 m Follow the gradient of g val-
s 5 rhs: 6.2 ues from the robot’s current
X position (node)
1,3 | 1,4 |
g: 0o g: 0o

rhs: 6.2 ||| rhs: 6.4

o In NN
N M) )

0,3 0,4
g: 0o g: 0o
¢
rhs: 0 rhs: 1 rhs: co rhs: co
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D* Lite — Comments

m D* Lite works with real valued costs, not only with binary costs
(free/obstacle)

m The search can be focused with an admissible heuristic that would
be added to the g and rhs values

m The final version of D* Lite includes further optimization (not

shown in the example)
m Updating the rhs value without considering all successors every
time
m Re-focusing the serarch as the robot moves without reordering the
entire open list
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Reaction-Diffusion Processes Background

m Reaction-Diffusion (RD) models — dynamical systems capable to
reproduce the autowaves

m Autowaves - a class of nonlinear waves that propagate through an
active media

At the expense of the energy stored in the medium, e.g., grass combustion.

m RD model describes spatio-temporal evolution of two state
variables u = u(X, t) and v = v(X, t) in space X and time ¢t
u = f(u,v)+D,Au
v = g(u,v)+DAv”’

where A is the Laplacian.

This RD-based path planning is informative, just for curiosity
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Reaction-Diffusion Background

m FitzHugh-Nagumo (FHN) model
FitzHugh R, Biophysical Journal (1961)
u = 5(u—u3—v+¢)+DuAu
v = (u—av+p)+D,Au '
where a, B3, €, and ¢ are parameters of the model.
m Dynamics of RD system is determined by the associated nullcline
configurations for t=0 and v=0 in the absence of diffusion, i.e.,
a(u—u3—v+¢) = 0,
(u—av+p) = 0,

which have associated geometrical shapes
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Nullcline Configurations and Steady States

05 i . i
m Nullclines intersections represent
y m Stable States (SSs)
o0 m Unstable States
o m Bistable regime
e The system (concentration levels of (u, v) for
15 -10 -05 00 05 1.0 15 each gl’id cell) tends to be in SSs.

u

m We can modulate relative stability of both SS
“preference” of SST over SS—

m System moves from SS™ to SST,

if a small perturbation is introduced.

m The SSs are separated by a mobile frontier A

a kind of traveling frontwave (autowaves)
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RD-based Path Planning — Computational Model

m Finite difference method on a Cartesian grid with Dirichlet boundary
conditions (FTCS) discretization — grid based computation — grid map

m External forcing — introducing additional information
i.e., constraining concentration levels to some specific values

m Two-phase evolution of the underlying RD model
1. Propagation phase

m Freespace is set to SS™ and the start location SS™
m Parallel propagation of the frontwave with non-
annihilation property
Vazquez-Otero and Mufiuzuri, CNNA (2010)
m Terminate when the frontwave reaches the goal

2. Contraction phase

m Different nullclines configuration

m Start and goal positions are forced towards SS*

m 5SS~ shrinks until only the path linking the forced
points remains
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Example of Found Paths

700 x 700 700 x 700 1200 x 1200

m The path clearance maybe adjusted by the wavelength and size of
the computational grid.
Control of the path distance from the obstacles (path safety)
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Comparison with Standard Approaches

Distance Transform Voronoi Diagram Reaction-Diffusion

4 ¢ /
/
/
/ /
2 P

% - .

Jarvis R Beeson P, Jong N, Kuipers B Otero A, Faigl J, Mufiuzuri A
Advanced Mobile Robots (1994) ICRA (2005) IROS (2012)

m RD-based approach provides competitive paths regarding path
length and clearance, while they seem to be smooth
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Robustness to Noisy Data

Vazquez-Otero, A., Faigl, J., Duro, N. and Dormido, R. (2014): Reaction-Diffusion based Computational
Model for Autonomous Mobile Robot Exploration of Unknown Environments. International Journal of
Unconventional Computing (1JUC).
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Summary of the Lecture
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Topics Discussed

m Front-Wave propagation and path simplification

m Distance Transform based planning

m Graph based planning methods: Dijsktra’s, A*, JPS, Theta*
m D* Lite

m

Reaction-Diffusion based planning (informative)

Next: Randomized Sampling-based Motion Planning Methods
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