# Grid and Graph based Path Planning Methods 

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

Lecture 04
B4M36UIR - Artificial Intelligence in Robotics

## Overview of the Lecture

- Part 1 - Grid and Graph based Path Planning Methods
- Grid-based Planning
- DT for Path Planning
- Graph Search Algorithms
- D* Lite


## Part I

## Part 1 - Grid and Graph based Path Planning Methods

## Grid-based Planning

- A subdivision of $\mathcal{C}_{\text {free }}$ into smaller cells
- Grow obstacles can be simplified by growing borders by a diameter of the robot
- Construction of the planning graph $G=(V, E)$ for $V$ as a set of cells and $E$ as the neighbor-relations
- 4-neighbors and 8 -neighbors

- A grid map can be constructed from the so-called occupancy grid maps

E.g., using thresholding


## Grid-based Environment Representations

■ Hiearchical planning

- Coarse resolution and re-planning on finer resolution


Holte, R. C. et al. (1996): Hierarchical A *: searching abstraction hierarchies efficiently. AAAI.

- Octree can be used for the map representation
- In addition to squared (or rectangular) grid a hexagonal grid can be used
■ 3D grid maps - octomap

https://octomap.github.io
- Memory grows with the size of the environment
- Due to limited resolution it may fail in narrow passages of $\mathcal{C}_{\text {free }}$


## Example of Simple Grid-based Planning

■ Wave-front propagation using path simplication

- Initial map with a robot and goal
- Obstacle growing

■ Wave-front propagation - "flood fill"

- Find a path using a navigation function
- Path simplification
- "Ray-shooting" technique combined with Bresenham's line algorithm
- The path is a sequence of "key" cells for avoiding obstacles



## Path Simplification

- The initial path is found in a grid using 4-neighborhood
- The rayshoot cast a line into a grid and possible collisions of the robot with obstacles are checked
■ The "farthest" cells without collisions are used as "turn" points
■ The final path is a sequence of straight line segments


Initial and goal locations


Obtacle growing, wave-front propagation


Ray-shooting


Simplified path

## Bresenham's Line Algorithm

- Filling a grid by a line with avoding float numbers
- A line from $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$ is given by $y=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\left(x-x_{0}\right)+y_{0}$

1 CoordsVector\& bresenham(const Coords\& pt1, const 26 Coords\& pt2, CoordsVector\& line) 27
2 \{
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// The pt2 point is not added into line 28 int $x 0=p t 1 . c$; int $y 0=p t 1 . r ; \quad 30$ int $x 1=p t 2 . c$; int $y 1=p t 2 . r ; 31$ Coords p; 32 int $d x=x 1-x 0 ; \quad 33$ int dy = y1 - y0; 34

```
int steep = (abs(dy) >= abs(dx));35
```

```
if (steep) {
```

    \(\operatorname{SWAP}(x 0, y 0)\); 37
    SWAP (x1, y1); 38
    \(\mathrm{dx}=\mathrm{x} 1-\mathrm{x} 0\); // recompute Dx, Dy 39
    \(\mathrm{dy}=\mathrm{y} 1-\mathrm{y} 0\); 40
    \} 41
int xstep $=1$; 42
if $(d x<0)$ \{ 43
xstep $=-1 ; \quad 44$
$d x=-d x ; \quad 45$
\}
46
int ystep $=1$; 47
if (dy < 0) \{
ystep $=-1$;
dy = -dy;
\}
int twoDy $=2 * d y$;
int twoDyTwoDx $=$ twoDy $-2 * d x ; / / 2 * D y-2 * D x$
int $e=t w o D y-d x ; ~ / / 2 * D y-D x$
int $\mathrm{y}=\mathrm{y} 0$;
int xDraw, yDraw;
for (int $\mathrm{x}=\mathrm{x} 0$; x ! $=\mathrm{x} 1$; $\mathrm{x}+=\mathrm{xstep}$ ) \{
if (steep) \{
xDraw $=\mathrm{y}$;
yDraw $=x$;
\} else \{
xDraw $=\mathrm{x}$;
yDraw $=y$;
\}
p.c = xDraw;
p.r = yDraw;
line.push_back(p); // add to the line
if (e>0) \{
e += twoDyTwoDx; //E += 2*Dy - $2 *$ Dx
$\mathrm{y}=\mathrm{y}+\mathrm{ystep} ;$
\} else \{
e += twoDy; //E += 2*Dy
\}
\}
return line;
\}

## Distance Transform based Path Planning

■ For a given goal location and grid map compute a navigational function using wave-front algorithm, i.e., a kind of potential field

- The value of the goal cell is set to 0 and all other free cells are set to some very high value
- For each free cell compute a number of cells towards the goal cell
- It uses 8-neighbors and distance is the Euclidean distance of the centers of two cells, i.e., $\mathrm{EV}=1$ for orthogonal cells or $E V=\sqrt{2}$ for diagonal cells
- The values are iteratively computed until the values are changed
- The value of the cell $c$ is computed as

$$
\operatorname{cost}(c)=\min _{i=1}^{8}\left(\operatorname{cost}\left(c_{i}\right)+E V_{c_{i}, c}\right)
$$

where $c_{i}$ is one of the neighboring cells from 8-neighborhood of the cell $c$

- The algorithm provides a cost map of the path distance from any free cell to the goal cell
- The path is then used following the gradient of the cell cost

Jarvis, R. (2004): Distance Transform Based Visibility Measures for Covert Path Planning in Known but Dynamic Environments

## Example - Distance Transform based Path Planning



| 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 12 | 13 | 14 | 14 | 13 | 12 | 12 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |  |  |  |  |  |  |  | 11 | 11 |
| 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |  |  |  |  |  | 10 | 10 | 10 | 11 |
| 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |  |  |  |  |  | 9 | 9 | 10 | 11 |
| 7 | 7 | 7 | 7 | 7 | 7 | 7 | 8 |  |  |  |  | 8 | 8 | 9 | 10 | 11 |
| 6 | 6 | 6 | 6 | 6 | 6 | 7 | 8 |  |  |  | 7 | 7 | 8 | 9 | 10 | 11 |
| 5 | 5 | 5 | 5 | 5 | 6 | 7 |  |  |  | 6 | 6 | 7 | 8 | 9 | 10 | 11 |
| 5 | 4 | 4 | 4 |  |  |  |  |  |  | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 5 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 5 | 4 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 5 | 4 | 3 | 2 | 1 | 1 | 1 | 2 | 3 |  |  |  |  |  | 9 | 10 | 11 |
| 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 |  | 13 | 12 | 11 | 10 | 10 | 10 | 11 |
| 5 | 4 | 3 | 2 | 1 | 1 | 1 | 2 | 3 |  | 13 | 12 | 11 | 11 | 11 | 11 | 11 |
| 5 | 4 | 3 | 2 | 2 | 2 | 2 | 2 | 3 |  | 13 | 12 | 12 | 12 | 12 | 12 | 12 |
| 5 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |  | 13 | 13 | 13 | 13 | 13 | 13 | 13 |

## Distance Transform Path Planning

```
Algorithm 1: Distance Transform for Path Planning
for \(y:=0\) to \(y M a x+1\) do
    for \(x:=0\) to \(x M a x+1\) do
        if goal \([x, y]\) then
                cell \([x, y]:=0\);
        else
            cell \([x, y]:=x M a x * y\) Max;
repeat
    for \(y:=2\) to \(y M a x\) do
            for \(x:=2\) to \(x\) Max do
                            if not blocked \([x, y]\) then
                        cell \([x, y]:=\min (\operatorname{cell}[x-1, y]+1\), cell \([x-1, y-1]+\sqrt{2}\), cell \([x, y-1]+1\), cell \([x+1, y-1]+\sqrt{2}\), cell \([x, y])\);
        for \(y:=y\) Max-1downto 1 do
            for \(x:=x\) Max- 1 downto 1 do
            if not blocked \([x, y]\) then
                \(\operatorname{cell}[x, y]:=\min (\operatorname{cell}[x+1, y]+1, \operatorname{cell}[x+1, y+1]+\sqrt{2}, \operatorname{cell}[x, y+1]+1, \operatorname{cell}[x-1, y+1]+\sqrt{2}, \operatorname{cell}[x, y]) ;\)
until no change;
```

```
Distance Transform based Path Planning - Impl. 1/2
1 Grid\& DT::compute(Grid\& grid) const \{
static const double DIAGONAL = sqrt(2);
                    3636
```

3 ..... 37

```static const double ORTOGONAL = 1;
```

const int $\mathrm{H}=$ map. H ; ..... 39
const int $\mathrm{W}=$ map.W; ..... 40
assert(grid.H == H and grid.W == W, "size"); ..... 41
bool anyChange = true; ..... 42
int counter = 0; ..... 43
while (anyChange) \{ ..... 44
anyChange = false; ..... 45
for (int $\mathrm{r}=1$; $\mathrm{r}<\mathrm{H}-1$; $\mathrm{r}+\mathrm{+}$ ) \{ ..... 46
for (int $c=1 ; c<W-1 ; c++$ ) \{ ..... 47
if ( $\operatorname{map}[r][c]$ ! $=$ FREESPACE) \{ ..... 48
continue; ..... 49
\} //obstacle detected ..... 50
double t[4]; ..... 51
$\mathrm{t}[0]=\operatorname{grid}[\mathrm{r}-1][\mathrm{c}-1]+$ DIAGONAL; ..... 52
$\mathrm{t}[1]=\operatorname{grid}[\mathrm{r}-1][\mathrm{c}]+$ ORTOGONAL; ..... 53
$\mathrm{t}[2]=\operatorname{grid}[\mathrm{r}-1][\mathrm{c}+1]+$ DIAGONAL; ..... 54
$\mathrm{t}[3]=\operatorname{grid}[\mathrm{r}][\mathrm{c}-1]+$ ORTOGONAL; ..... 55
56

```
        double pom = grid[r][c];
```

57

```
        for (int i = 0; i < 4; i++) {
```

if (pom > t[i]) \{ ..... 58
pom $=t[i]$; ..... 59
anyChange = true;

```
            }
        }
        if (anyChange) {
```

            grid[r] [c] = pom;
        \}
    \}
    
## Distance Transform based Path Planning - Impl. 2/2

- The path is retrived by following the minimal value towards the goal using min8Point()

```
Coords& min8Point(const Grid& grid, Coords& p) 22
{
    double min = std::numeric_limits<double>::max();23
    const int H = grid.H; 24
    const int W = grid.W; 25
    Coords t; 26
    for (int r = pr - 1; r <= pr + 1; r++) {
        if (r < O or r >= H) { continue; } 29
        for (int c = p.c - 1; c <= p.c + 1; c++) { 30
            if (c < O or c >= W) { continue; } 31
            if (min > grid[r][c]) { 32
                    min = grid[r][c]; 33
                    t.r = r; t.c = c; 34
            } 35
        } 36
    } 37
    p = t; 38
    return p; 39
}
CoordsVector& DT::findPath(const Coords& start,
        const Coords& goal, CoordsVector& path)
{
    static const double DIAGONAL = sqrt(2);
    static const double ORTOGONAL = 1;
    const int H = map.H;
    const int W = map.W;
    Grid grid(H, W, H*W); // H*W max grid value
    grid[goal.r][goal.c] = 0;
    compute(grid);
    if (grid[start.r][start.c] >= H*W) {
        WARN("Path has not been found");
    } else {
        Coords pt = start;
        while (pt.r != goal.r or pt.c != goal.c) {
            path.push_back(pt);
            min8Point(grid, pt);
        }
        path.push_back(goal);
    }
    return path;
}
```

DT Example


## Graph Search Algorithms

- The grid can be considered as a graph and the path can be found using graph search algorithms
- The search algorithms working on a graph are of general use, e.g.
- Breadth-first search (BSD)
- Depth first search (DFS)
- Dijsktra's algorithm,
- A* algorithm and its variants

■ There can be grid based speedups techniques, e.g.,

- Jump Search Algorithm (JPS) and JPS+
- There are many search algorithm for on-line search, incremental search and with any-time and real-time properties, e.g.,
- Lifelong Planning A* (LPA*)

Koenig, S., Likhachev, M. and Furcy, D. (2004): Lifelong Planning A*. AIJ.

- E-Graphs - Experience graphs

Phillips, M. et al. (2012): E-Graphs: Bootstrapping Planning with Experience Graphs. RSS.

## Examples of Graph/Grid Search Algorithms


https://www.youtube.com/watch?v=X5a149nSE9s

## Dijkstra's Algorithm

■ Dijsktra's algorithm determines paths as iterative update of the cost of the shortest path to the particular nodes

Edsger W. Dijkstra, 1956

- Let start with the initial cell (node) with the cost set to 0 and update all successors
- Select the node
- with a path from the initial node
- and has a lower cost
- Repeat until there is a reachable node
■ I.e., a node with a path from the initial node
■ has a cost and parent (green nodes).


The cost of nodes can only decrease (edge cost is positive). Therefore, for a node with the currently lowest cost, there cannot be a shorter path from the initial node.

## Example (cont.)



1: After the expansion, the shortest path to the node 2 is over the node 3


3: After the expansion, there is a new path to the B4M36UIR - Lecture 04: Grid and Grap expansignsath Planning

4: The path does not improve for further

## Dijkstra's Algorithm - Impl.

```
dij->nodes[dij->start_node].cost = 0; // init
void *pq = pq_alloc(dij->num_nodes); // set priority queue
int cur_label;
pq_push(pq, dij->start_node, 0);
while ( !pq_is_empty(pq) && pq_pop(pq, &cur_label)) {
    node_t *cur = &(dij->nodes[cur_label]); // remember the current node
    for (int i = 0; i < cur->edge_count; ++i) { // all edges of cur
        edge_t *edge = &(dij->graph->edges[cur->edge_start + i]);
        node_t *to = &(dij->nodes[edge->to]);
        const int cost = cur->cost + edge->cost;
        if (to->cost == -1) { // node to has not been visited
        to->cost = cost;
        to->parent = cur_label;
        pq_push(pq, edge->to, cost); // put node to the queue
        } else if (cost < to->cost) { // node already in the queue
            to->cost = cost; // test if the cost can be reduced
            to->parent = cur_label; // update the parent node
            pq_update(pq, edge->to, cost); // update the priority queue
        }
    } // loop for all edges of the cur node
} // priority queue empty
pq_free(pq); // release memory
```


## A* Algorithm

- A* uses a user-defined $h$-values (heuristic) to focus the search Peter Hart, Nils Nilsson, and Bertram Raphael, 1968
- Prefer expansion of the node $n$ with the lowest value

$$
f(n)=g(n)+h(n),
$$

where $g(n)$ is the cost (path length) from the start to $n$ and $h(n)$ is the estimated cost from $n$ to the goal

■ $h$-values approximate the goal distance from particular nodes

- Admissiblity condition - heuristic always underestimate the remaining cost to reach the goal
- Let $h^{*}(n)$ be the true cost of the optimal path from $n$ to the goal
- Then $h(n)$ is admissible if for all $n: h(n) \leq h^{*}(n)$
- E.g., Euclidean distance is admissible
- A straight line will always be the shortest path
- Dijkstra's algorithm - $h(n)=0$


## A* Implementation Notes

- The most costly operations of A* are
- Insert and lookup an element in the closed list
- Insert element and get minimal element (according to $f()$ value) from the open list

■ The closed list can be efficiently implemented as a hash set
■ The open list is usually implemented as a priority queue, e.g.,
■ Fibonacii heap, binomial heap, $k$-level bucket

- binary heap is usually sufficient ( $O(\operatorname{logn})$ )

■ Forward A*

1. Create a search tree and initiate it with the start location
2. Select generated but not yet expanded state $s$ with the smallest $f$-value, $f(s)=g(s)+h(s)$
3. Stop if $s$ is the goal
4. Expand the state $s$
5. Goto Step 2

Similar to Dijsktra's algorithm but it used $f(s)$ with heuristic $h(s)$ instead of pure $g(s)$

Dijsktra's vs A* vs Jump Point Search (JPS)

https://www.youtube.com/watch?v=R0G4Ud081LY

## Jump Point Search Algorithm for Grid-based Path Planning

- Jump Point Search (JPS) algorithm is based on a macro operator that identifies and selectively expands only certain nodes (jump points)

Harabor, D. and Grastien, A. (2011): Online Graph Pruning for Pathfinding on Grid Maps. AAAI.

- Natural neighbors after neighbor prunning with forced neighbors because of obstacle

- Intermediate nodes on a path connecting two jump points are never expanded


■ No preprocessing and no memory overheads while it speeds up A* https://harablog.wordpress.com/2011/09/07/jump-point-search/

■ JPS+ - optimized preprocessed version of JPS with goal bounding
https://github.com/SteveRabin/JPSPlusWithGoalBounding http://www.gdcvault.com/play/1022094/JPS-Over-100x-Faster-than

## Theta* - Any-Angle Path Planning Algorithm

- Any-angle path planning algorithms simplify the path during the search

■ Theta* is an extension of A* with LineOfSight ()
Nash, A., Daniel, K, Koenig, S. and Felner, A. (2007): Theta*: Any-Angle Path Planning on Grids. AAAI.

Algorithm 2: Theta* Any-Angle Planning
if LineOfSight(parent(s), s') then
/* Path 2 - any-angle path */
if $g($ parent $(s))+c\left(\right.$ parent $\left.(s), s^{\prime}\right)<g\left(s^{\prime}\right)$ then parent(s') := parent(s);
$\mathrm{g}\left(\mathrm{s}^{\prime}\right):=\mathrm{g}($ parent $(\mathrm{s}))+\mathrm{c}\left(\right.$ parent $\left.(\mathrm{s}), \mathrm{s}^{\prime}\right)$;
else
/* Path 1 - A* path */
if $g(s)+c\left(s, s^{\prime}\right)<g\left(s^{\prime}\right)$ then
parent( $\left.s^{\prime}\right):=s$;
$\mathrm{g}\left(\mathrm{s}^{\prime}\right):=\mathrm{g}(\mathrm{s})+\mathrm{c}\left(\mathrm{s}, \mathrm{s}^{\prime}\right) ;$

- Path 2: considers path from start to parent(s) and from parent(s) to $s$ ' if $s$ ' has line-of-sight to parent(s)

-     -         - Path 1 —— Path 2

-     -         - Path 1


## Theta* Any-Angle Path Planning Examples

■ Example of found paths by the Theta* algorithm for the same problems as for the DT-based examples on Slide 16

$\delta=30 \mathrm{~cm}, L=40.3 \mathrm{~m}$
The same path planning problems solved by DT (without path smoothing) have $L_{\delta=10}=27.2 \mathrm{~m}$ and $L_{\delta=30}=42.8 \mathrm{~m}$, while DT seems to be faster

■ Lazy Theta* - reduces the number of line-of-sight checks
Nash, A., Koenig, S. and Tovey, C. (2010): Lazy Theta*: Any-Angle Path Planning and Path Length Analysis in 3D. AAAI.

```
http://aigamedev.com/open/tutorial/lazy-theta-star/
```


## A* Variants - Online Search

■ The state space (map) may not be known exactly in advance

- Environment can dynamically change
- True travel costs are experienced during the path execution

■ Repeated A* searches can be computationally demanding
■ Incremental heuristic search

- Repeated planning of the path from the current state to the goal
- Planning under the free-space assumption
- Reuse information from the previous searches (closed list entries):

■ Focused Dynamic $A^{*}\left(D^{*}\right)-h^{*}$ is based on traversability, it has been used, e.g., for the Mars rover "Opportunity"

Stentz, A. (1995): The Focussed D* Algorithm for Real-Time Replanning. IJCAI.
■ D* Lite - similar to D*
Koenig, S. and Likhachev, M. (2005): Fast Replanning for Navigation in Unknown Terrain. T-RO.
■ Real-Time Heuristic Search
■ Repeated planning with limited look-ahead - suboptimal but fast

- Learning Real-Time A* (LRTA*)

Korf, E. (1990): Real-time heuristic search. JAI

- Real-Time Adaptive A* (RTAA*)

Koenig, S. and Likhachev, M. (2006): Real-time adaptive A*. AAMAS.

## Real-Time Adaptive A* (RTAA*)

- Execute A* with limited lookahead

■ Learns better informed heuristic from the experience, initially $h(s)$, e.g., Euclidean distance
■ Look-ahead defines trade-off between optimality and computational cost

■ astar(lookahead)
A* expansion as far as "lookahead" nodes and it terminates with the state $s^{\prime}$
while ( $s_{\text {curr }} \notin G O A L$ ) do astar(lookahead);
if $s^{\prime}=$ FAILURE then L return FAILURE; for all $s \in C L O S E D$ do L $\mathrm{H}(\mathrm{s}):=\mathrm{g}\left(\mathrm{s}^{\prime}\right)+\mathrm{h}\left(\mathrm{s}^{\prime}\right)-\mathrm{g}(\mathrm{s})$; execute(plan); // perform one step return SUCCESS;
$\mathrm{s}^{\prime}$ is the last state expanded during the previous $A^{*}$ search

D* Lite - Demo

https://www. youtube.com/watch?v=X5a149nSE9s

## D* Lite Overview

■ It is similar to $\mathrm{D}^{*}$, but it is based on Lifelong Planning $\mathrm{A}^{*}$

Koenig, S. and Likhachev, M. (2002): D* Lite. AAAI.

■ It searches from the goal node to the start node, i.e., $g$-values estimate the goal distance

- Store pending nodes in a priority queue
- Process nodes in order of increasing objective function value

■ Incrementally repair solution paths when changes occur

- Maintains two estimates of costs per node

■ $g$ - the objective function value - based on what we know
■ rhs - one-step lookahead of the objective function value - based on what we know
■ Consistency

- Consistent $-g=r h s$

■ Inconsistent - $g \neq r h s$

- Inconsistent nodes are stored in the priority queue (open list) for processing


## D* Lite: Cost Estimates

- rhs of the node $u$ is computed based on $g$ of its successors in the graph and the transition costs of the edge to those successors

$$
r h s(u)=\min _{s^{\prime} \in \operatorname{Succ}(u)}\left(g\left(s^{\prime}\right)+c\left(u, s^{\prime}\right)\right)
$$

- The key/priority of a node $s$ in the open list is the minimum of $g(s)$ and rhs(s) plus a focusing heuristic $h$

$$
\left[\min (g(s), r h s(s))+h\left(s_{s t a r t}, s\right) ; \min (g(s), r h s(s))\right]
$$

- The first term is used as the primary key
- The second term is used as the secondary key for tie-breaking


## D* Lite Algorithm

- Main - repeat until the robot reaches the goal (or $g\left(s_{s t a r t}\right)=\infty$ there is no path $)$

```
Initialize();
ComputeShortestPath();
while (sstart }\not=\mp@subsup{s}{\mathrm{ goal }}{}\mathrm{ ) do
    sstart }=\mp@subsup{\operatorname{argmin}}{\mp@subsup{s}{}{\prime}\in\operatorname{Succ}(\mp@subsup{s}{\mathrm{ start }}{}}{}(c(\mp@subsup{s}{\mathrm{ start }}{},\mp@subsup{s}{}{\prime})+g(\mp@subsup{s}{}{\prime}))
```

Move to $s_{\text {start }}$;
Scan the graph for changed edge costs;
if any edge cost changed perform then
foreach directed edges ( $u, v$ ) with changed edge costs do
Update the edge cost $c(u, v)$;
UpdateVertex(u);
foreach $s \in U$ do
L U.Update(s, CalculateKey(s));
ComputeShortestPath();
Procedure Initialize
$\mathrm{U}=0$;
foreach $s \in S$ do
rhs $(s):=g(s):=\infty ;$
$\operatorname{rhs}\left(s_{\text {goal }}\right):=0$;
U.Insert( $s_{\text {goal }}$, CalculateKey $\left(s_{\text {goal }}\right)$ );

## D* Lite Algorithm - ComputeShortestPath()

## Procedure ComputeShortestPath

while U.TopKey ()$<$ CalculateKey $\left(s_{\text {start }}\right)$ OR rhs $\left(s_{\text {start }}\right) \neq g\left(s_{\text {start }}\right)$ do
u := U.Pop();
if $g(u)>\operatorname{rhs}(u)$ then
$g(u):=r h s(u)$;
foreach $s \in \operatorname{Pred}(u)$ do UpdateVertex(s);
else
$g(u):=\infty ;$
foreach $s \in \operatorname{Pred}(u) \bigcup\{u\}$ do UpdateVertex(s);

## Procedure UpdateVertex

if $u \neq s_{\text {goal }}$ then $r h s(u):=\min _{s^{\prime} \in \operatorname{Succ}(u)}\left(c\left(u, s^{\prime}\right)+g\left(s^{\prime}\right)\right)$;
if $u \in U$ then U.Remove $(u)$;
if $g(u) \neq r h s(u)$ then U.Insert( $u$, CalculateKey $(u)$ );
Procedure CalculateKey
return $\left[\min (g(s), r h s(s))+h\left(s_{s t a r t}, s\right) ; \min (g(s), r h s(s))\right]$

## Summary of the Lecture

