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Overview of the Lecture

m Part 1 — Grid and Graph based Path Planning Methods

= Grid-based Planning

= DT for Path Planning

= Graph Search Algorithms
= D* Lite

= Path Planning based on Reaction-Diffusion Process — Curiosity
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Grid-based Planning

Jan Faigl, 2017

DT for Path Planning Graph Search Algorithms D* Lite

Part |

Part 1 — Grid and Graph based Path
Planning Methods
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Grid-based Planning

Grid-based Planning

DT for Path Planning

D* Lite

Graph Search Algorithms

m A subdivision of Cgee into smaller cells

m Grow obstacles can be simplified by
growing borders by a diameter of the
robot

m Construction of the planning graph
G = (V,E) for V as a set of cells and
E as the neighbor-relations

m 4-neighbors and 8-neighbors

| N o on
[NV

m A grid map can be constructed from
the so-called occupancy grid maps
E.g., using thresholding
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

RD-based Planning

Grid-based Environment Representations

m Hiearchical planning

m Coarse resolution and re-planning on
finer resolution
Holte, R. C. et al. (1996): Hierarchi
m Octree can be used for the map

representation

| A *:

= In addition to squared (or rectangular)
grid a hexagonal grid can be used

m 3D grid maps — octomap

https://octomap.github.io

— Memory grows with the size of the
environment

— Due to limited resolution it may fail in
narrow passages of Cfree
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Grid-based Planning

DT for Path Planning Graph Search Algorithms D* Lite

Example of Simple Grid-based Planning

m The path is a sequence of "key” cells

Jan Faigl, 2017

Initial map with a robot and goal
Obstacle growing

Wave-front propagation — “flood fill"
Find a path using a navigation function

Path simplification
m "Ray-shooting” technique combined

Wave-front propagation using path simplication

RD-based Planning

with Bresenham’s line algorithm

for avoiding obstacles
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Example — Wave-Front Propagation (Flood Fill)
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Path Simplification

The initial path is found in a grid using 4-neighborhood

The rayshoot cast a line into a grid and possible collisions of the
robot with obstacles are checked

The “farthest” cells without collisions are used as “turn” points

The final path is a sequence of straight line segments
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Obtacle growing,

wave-front propagation

Initial and goal locations Ray-shooting Simplified path
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Grid-based Planning

DT for Path Planning Graph Search Algorithms D* Lite

Bresenham's Line Algorithm

m Filling a grid by a line with avoding float numbers

RD-based Planning

H H H % S {1}
m A line from (xo, ¥0) to (x1,y1) is given by y = = (x —x0) + ¥o
1 CoordsVectork bresenham(const Coordsk pt1, const 26 int tuoDy = 2 * dy;
Coordsk pt2, CoordsVectord line) 27 int twoDyTwoDx = twoDy - 2 * dx; //2#Dy - 2#Dx
2 { 28 int e = twoDy - dx; //2+Dy - Dx
3 // The pt2 point is not added into line 29 int y = yo;
4 int x0 = ptl.c; int yO = ptl.r; 30 int xDraw, yDraw;
5 int x1 = pt2.c; int yl1 = pt2.r; 31 for (int x = x0; x != x1; x += xstep) {
6 Coords p; 32 if (steep) {
7 int dx = x1 - x0; 33 xDraw = y;
8 int dy = y1 - yo; 34 ybraw = x;
9 int steep = (abs(dy) >= abs(dx)); 35 } else {
10 if (steep) { 36 xDraw = x;
11 SWAP(x0, y0); 37 ybraw = y;
12 SWAP(x1, y1); 38
13 dx = x1 - x0; // recompute Dx, Dy 39 p.c = xDraw;
14 dy = y1 - yoO; 40 p.r = yDraw;
15 41 line.push_back(p); // add to the line
16 int xstep = 1; 42 if (e > 0) {
17 if (ax < 0) { 43 e += twoDyTwoDx; //E += 2%Dy - 2%Dx
18 xstep = -1; 44 y =y + ystep;
19 dx = -dx; 45 } else {
20 } 46 e += twoDy; //E += 2Dy
21 int ystep = 1; 47 }
22 if (dy < 0) { 48
23 ystep = -1; 49 return line;
24 dy = -dy; 50 )
25 }

Jan Faigl, 2017
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D* Lite

D* Lite

Graph Search Algorithms

Grid-based Planning DT for Path Planning RD-based Planning

Distance Transform based Path Planning

m For a given goal location and grid map compute a navigational function

using wave-front algorithm, i.e., a kind of potential field

m The value of the goal cell is set to 0 and all other free cells are set to

some very high value
For each free cell compute a number of cells towards the goal cell
It uses 8-neighbors and distance is the Euclidean distance of the centers of
two cells, i.e., EV=1 for orthogonal cells or EV = /2 for diagonal cells
The values are iteratively computed until the values are changing
The value of the cell ¢ is computed as

8
cost(c) = mi{] (cost(ci) + EVe,.c),
i—
where ¢; is one of the neighboring cells from 8-neighborhood of the cell ¢

m The algorithm provides a cost map of the path distance from any free cell
to the goal cell

m The path is then used following the gradient of the cell cost

Jarvis, R. (2004): Distance Transform Based Visibility Measures for Covert Path Planning in
Known but Dynamic Environments
Jan Faigl, 2017
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Distance Transform Path Planning

Algorithm 1: Distance Transform for Path Planning

for y := 0 to yMax do
for x := 0 to xMax do
if goal [x,y] then
‘ cell [x,y] := 0;
else
L cell [x,y] := xMax * yMax; //initialization, e.g., pragmatic of the use longest distance as co ;

for y := 1 to (yMax - 1) do
for x ;= 1 to (xMax - 1) do
if not blocked [x,y] then
L | cell [xy] = cost(x, y);

for y := (yMax-1) downto 1 do
for x := (xMax-1) downto 1 do
if not blocked [x,y] then
| celllx,y] := cost(x, y);

until no change;

Jan Faigl, 2017
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Distance Transform based Path Planning — Impl. 1/2

1  Gridg DT::compute(Gridk grid) const 35 for (int r =H - 2; v >0; --1) {

2 1 36 for (int ¢ =W - 25 ¢ > 0; --c) {

3 static const double DIAGONAL = sqrt(2); 37 if (map[r][c] != FREESPACE) {

4 static const double ORTOGONAL = 1; 38 continue;

5 const int H = map.H; 39 } //obstacle detected

6 const int W = map.W; 40 double t[4];

7 assert(grid.H == H and grid.W == W, "size"); 41 t[1] = grid[r + 1][c] + ORTOGONAL;
8 bool anyChange = true; 42 +[0] = grid[r + 1][c + 1] + DIAGONAL;
9 int counter = 0; 43 +[3] = grid[r][c + 1] + ORTOGONAL;
10 while (anyChange) { 44 t[2] = grid[r + 1][c - 1] + DIAGONAL;
11 anyChange = false; 45 double pom = grid[r][c];

12 for (int r = 1; r < H - 1; +1) { 46 bool s = false;

13 for (int ¢ = 1; ¢ < W - 1; ++c) { 47 for (int i = 0; i < 4; i++) {

14 if (map(r](c] !'= FREESPACE) { 48 if (pom > t[i]) {

15 continue; 49 pom = t[il;

16 } //obstacle detected 50 s = true;

17 double t[4]; 51 }

18 t[0] = grid[r - 1][c - 1] + DIAGONAL; 52 }

19 (1] = grid[r - 1][c] + ORTOGONAL; 53 if () {

20 t[2] = grid[r - 1][c + 1] + DIAGONAL; 54 anyChange = true;

21 t[3] = grid[r][c - 1] + ORTOGONAL; 55 grid[r][c] = pom;

22 double pom = gridlrllcl; 56

23 for (int i = 05 i < 45 i+4) { 57 }

24 if (pom > t[il) { 58 ¥

25 pom = t[il; 59 counter++;

26 anyChange = true; 60 } //end while any change

27 ¥ 61 return grid;

28 s 62}

29 if (anyChange) {

30 grid[r][c] = pom; A boundary is assumed around the rectangular map

31 }

32 }

33 }
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Distance Transform based Path Planning — Impl. 2/2

m The path is retrived by following the minimal value towards the
goal using min8Point ()

1 Coordsk min8Point(const Gridk grid, Coords& p) 22 CoordsVectort DT::findPath(const Coordst start,
2 const Coordsk goal, CoordsVector path)
3 double min = std::numeric_limits<double>::max();23 {
4 const int H = grid.H; 24 static const double DIAGONAL = sqrt(2);
5 const int W = grid.W; 25 static const double ORTOGONAL = 1;
6 Coords t; 26 const int H = map.H;
7 27 const int W = map.W;
8 for (int r = p.r - 1; r <= p.r + 1; r++) { 28 Grid grid(H, W, H¥W); // H#W max grid value
if (r < 0 or r >= H) { continue; } 29 grid[goal.r] [goal.c] = 0;
10 for (int ¢ = p.c - 15 ¢ <= p.c + 1; c++) { 30 compute (grid) ;
11 if (c < 0 or ¢ >= W) { continue; } 31
12 if (min > grid[r][c]) { 32 if (grid[start.r][start.c] >= H*W) {
13 min = grid[r][c]; 33 WARN("Path has not been found");
14 t.r =7 t.c=c; 34 } else {
15 } 35 Coords pt = start;
16 ¥ 36 while (pt.r != goal.r or pt.c != goal.c) {
17 ¥ 37 path. push_back (pt) ;
18 p=t; 38 min8Point (grid, pt);
19 return p; 39 3
20 )} 40 path.push_back(goal) ;
41
42 return path;
43}
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D* Lite

Grid-based Planning

DT Example

DT for Path Planning Graph Search Algorithms RD-based Planning

0=10cm, L=272m 60=30cm, L=428m
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Graph Search Algorithms

The grid can be considered as a graph and the path can be found
using graph search algorithms
m The search algorithms working on a graph are of general use, e.g.
m Breadth-first search (BSD)
m Depth first search (DFS)
m Dijsktra’s algorithm,
m A* algorithm and its variants
m There can be grid based speedups techniques, e.g.,
m Jump Search Algorithm (JPS) and JPS+
m There are many search algorithm for on-line search, incremental
search and with any-time and real-time properties, e.g.,
m Lifelong Planning A* (LPA¥*)
Koenig, S., Likhachev, M. and Furcy, D. (2004): Lifelong Planning A*. AlJ.
m E-Graphs — Experience graphs

Phillips, M. et al. (2012): E-Graphs: Bootstrapping Planning with Experience Graphs. RSS.

Jan Faigl, 2017
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Examples of Graph/Grid Search Algorithms

roptimal path
‘endpolnis

A* (general)

https://www. youtube . com/watch?v=U2XNjCoKZjM. mpd

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Dijkstra’s Algorithm

m Dijsktra’s algorithm determines paths as iterative update of the
cost of the shortest path to the particular nodes
Edsger W. Dijkstra, 1956

B Let start with the initial cell (node)
with the cost set to 0 and update
all successors

B Select the node
B with a path from the initial node
®m and has a lower cost

m Repeat until there is a reachable
node
® |l.e., a node with a path from the initial node
B has a cost and parent (green nodes).

The cost of nodes can only decrease (edge cost is positive). Therefore, for a
node with the currently lowest cost, there cannot be a shorter path from the
initial node.

Grid-based Planning

DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

1: After the expansion, the shortest path to the
node 2 is over the node 3

2: There is not shorter path to the node 2 over the
node 1

3: After the expansion, there is a new path to the

4: The path does not improve for further
node 5 i
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Dijkstra’s Algorithm
Algorithm 2: Dijkstra’s algorithm

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Dijkstra’s Algorithm — Impl.

dij->nodes[dij->start_node].cost = 0; // init
void *pq = pq_alloc(dij->num_nodes); // set priority queue

RD-based Planning

Grid-based Planning

A* Algorithm

DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

m A¥* uses a user-defined h-values (heuristic) to focus the search

1
g . 2
|n|t|a|IZe(55tart); /* g(s) 1= 00; g(sstart) =0 */ 3 int cur_label; Peter Hart, Nils Nilsson, and Bertram Raphael, 1968
. 4 _push(pq, dij->start_node, 0); . .
PQ.push(sstart, g(Sstart)); papus P, m Prefer expansion of the node n with the lowest value
hil P 7) d 5 while ( !pq_is_empty(pq) && pq_pop(pq, &cur_label)) {
while (not Q.empty.) o 6 node_t *cur = &(dij->nodes[cur_labell); // remember the current node F(n) = g(n) + h(n)
S = PQPOP(), 7 for (int i = 0; i < cur->edge_count; ++i) { // all edges of cur =& ’
foreach s’ € Succ(s) do 8 edge_t *edge = &(dij->graph->edges[cur->edge_start + il); where g(n) is the cost (path length) from the start to n and h(n)
T ° node_t xto = £(dij->nodes[edge->tol); is the estimated cost from n to the goal
If Ssin PQ then 10 const int cost = cur->cost + edge->cost; g
if g(s') > g(s) + cost(s, s’) then u it Ez‘f;zz:t:zo;) 1 // node to has not been visited m h-values approximate the goal distance from particular nodes
N o— /Y. ’ TR o . .
L g(s) = 5(52 + C?St(svs )i 13 t°->Par?nt = cur_label; " = Admissiblity condition — heuristic always underestimate the
PQ.U date(s’. g(s’ : 14 pq-push(pq, edge->to, cost); put node to the queue . .
P ( g( )) 15 } else if (cost < to->cost) { // node already in the queue remaining cost to reach the goal
e _ - . ; .
else if s ¢ CLOSED then e to->cost = cost; // test if the cost can be reduced m Let h*(n) be the true cost of the optimal path from n to the goal
N . 17 to->parent = cur_label; // update the parent node 3 L N - "
g(s') := g(s) + cost(s,s'); 18 pq_update(pq, edge->to, cost); // update the priority queue m Then h(n)_ is admissible if for all n: h(n) < h*(n)
PQ.push(s’, g(s)); 19 m E.g., Euclidean distance is admissible
L 20 N /i // loop for all edges of the cur node m A straight line will always be the shortest path
CLOSED = CLOSED sk 21 priority queue empty . , .
L U{ } 22 pq_free(pq); // release memory [ ] Dukstra S algorlthm - h(n) =0
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A* Implementation Notes

m The most costly operations of A* are
m Insert and lookup an element in the closed list
m Insert element and get minimal element (according to f() value)
from the open list
m The closed list can be efficiently implemented as a hash set
m The open list is usually implemented as a priority queue, e.g.,
m Fibonacii heap, binomial heap, k-level bucket
m binary heap is usually sufficient (O(logn))
m Forward A*
1. Create a search tree and initiate it with the start location
2. Select generated but not yet expanded state s with the smallest
f-value, f(s) = g(s) + h(s)
3. Stop if s is the goal
Expand the state s
5. Goto Step 2

>

Similar to Dijsktra's algorithm but it used f(s) with heuristic h(s) instead of pure g(s)
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Dijsktra's vs A* vs Jump Point Search (JPS)

https://www.youtube.com/watch?v=R0G4Ud0O81LY
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Jump Point Search Algorithm for Grid-based Path Planning

m Jump Point Search (JPS) algorithm is based on a macro operator that
identifies and selectively expands only certain nodes (jump points)

Harabor, D. and Grastien, A. (2011): Online Graph Pruning for Pathfinding on Grid Maps. AAAL

m Natural neighbors after neighbor | + | 2 | ¢ NN
prunning with forced neighbors adex | s o |« s
because of obstacle s |7 | e o1 e

= Intermediate nodes on a path | |
connecting two jump points are never *fff#f

expanded | 42“‘

= No preprocessing and no memory overheads while it speeds up A*

https://harablog.wordpress.com/2011/09/07/ jump-point-search/

m JPS+ — optimized preprocessed version of JPS with goal bounding
https://github.com/SteveRabin/JPSPlusWithGoalBounding
http://www.gdcvault.com/play/1022094/JPS-0ver-100x-Faster-than
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Theta* — Any-Angle Path Planning Algorithm

m Any-angle path planning algorithms simplify the path during the search

m Theta* is an extension of A* with Line0fSight ()

Nash, A., Daniel, K, Koenig, S. and Felner, A. (2007): Theta*: Any-Angle Path
Planning on Grids. AAAI.

1 2 3 4 s
A .
Algorithm 3: Theta* Any-Angle Planning A
if LineOfSight(parent(s), s’) then B )/
/* Path 2 — any-angle path */
if g(parent(s))+ c(parent(s), s') < g(s') then

L parent(s') := parent(s); i o

g(s') := g(parent(s)) + c(parent(s), s'); - - -Path 1 Path 2
else
/* Path 1 — A* path */
if g(s) + c(s;s’) < g(s’) then 1 2 3 4 s

L parent(s'):='s; A
g(s") == g(s) + c(s,s');

m Path 2: considers path from start to parent(s) and
from parent(s) to s’ if s has line-of-sight to parent(s)

-~~~ Path | Path 2

http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
Jan Faigl, 2017
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Theta* Any-Angle Path Planning Examples

m Example of found paths by the Theta* algorithm for the same prob-
lems as for the DT-based examples on Slide 16
Both algorithms implemented in C++

A~
SN

0=10cm, L=26.3m 0=30cm, L=403m

The same path planning problems solved by DT (without path smooth-
ing) have Ls—10 = 27.2 m and Ls—30 = 42.8 m, while DT seems to
be significantly faster

m Lazy Theta* — reduces the number of line-of-sight checks

Nash, A., Koenig, S. and Tovey, C. (2010): Lazy Theta*: Any-Angle Path Planning
and Path Length Analysis in 3D. AAAI

http://aigamedev.com/open/tutorial/lazy-theta-star/
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A* Variants — Online Search

m The state space (map) may not be known exactly in advance
m Environment can dynamically change
m True travel costs are experienced during the path execution
m Repeated A* searches can be computationally demanding
m Incremental heuristic search
m Repeated planning of the path from the current state to the goal
m Planning under the free-space assumption
m Reuse information from the previous searches (closed list entries):
m Focused Dynamic A* (D*) — h* is based on traversability, it has
been used, e.g., for the Mars rover “Opportunity”
Stentz, A. (1995): The Focussed D* Algorithm for Real-Time Replanning. 1JCAI.
m D* Lite — similar to D*
Koenig, S. and Likhachev, M. (2005): Fast Replanning for Navigation in Unknown Terrain. T-RO.

RD-based Planning

m Real-Time Heuristic Search
m Repeated planning with limited look-ahead — suboptimal but fast
m Learning Real-Time A* (LRTA*)
Korf, E. (1990): Real-time heuristic search. JAI
B Real-Time Adaptive A* (RTAA¥)
Koenig, S. and Likhachev, M. (2006): Real-time adaptive A*. AAMAS.
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Grid-based Planning DT for Path Planning D* Lite

Real-Time Adaptive A* (RTAA%*)

Graph Search Algorithms

m Execute A* with limited look-
ahead

m Learns better informed heuris-
tic from the experience, ini-
tially h(s), e.g., Euclidean dis-
tance

while (seurr ¢ GOAL) do
astar(lookahead);
if s’ = FAILURE then
| return FAILURE;

for all s € CLOSED do

L H(s) = g(s") + h(s) - g(s)i

execute(plan); // perform one step
return SUCCESS;

m Look-ahead defines trade-off
between optimality and com-

putational cost

m astar(lookahead)
A* expansion as far as "looka-
head” nodes and it terminates
with the state s’

s’ is the last state expanded during the
previous A* search

RD-based Planning

Grid-based Planning D* Lite RD-based Planning

D* Lite — Demo

DT for Path Planning Graph Search Algorithms

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite Overview

m It is similar to D*, but it is based on Lifelong Planning A*
Koenig, S. and Likhachev, M. (2002): D* Lite. AAAI.
m It searches from the goal node to the start node, i.e., g-values
estimate the goal distance
m Store pending nodes in a priority queue
m Process nodes in order of increasing objective function value
m Incrementally repair solution paths when changes occur
m Maintains two estimates of costs per node
m g — the objective function value — based on what we know
m rhs — one-step lookahead of the objective function value — based
on what we know
m Consistency
n Consistent — g = rhs
m Inconsistent — g # rhs
m Inconsistent nodes are stored in the priority queue (open list) for

processing
https://wwu.youtube. com/watch?v=X5a149nSE9s
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D* Lite: Cost Estimates D* Lite Algorithm D* Lite Algorithm — ComputeShortestPath()

m Main — repeat until the robot reaches the goal (or g(ssar) = oo there is no path)

Initialize(); Procedure ComputeShortestPath

m rhs of the node u is computed based on g of its successors in the ComputeShortestPath(); while U.TopKey() < CalculateKey(sstart) OR rhs(sstart) # &(Sstart) do

graph and the transition costs of the edge to those successors while (Sstart 7 Sgoar) do , , u = U.Pop();
Sstart = ABMING/ ¢ Suec(syare) (C(Sstart; 8') + &(57)); if g(u) > rhs(u) then
) , , Move to Sstart; ‘ f(u) :: rhS(;);d do UpdateVert ;
rhs(u) =, _min (g(s ) + C(”v S )) Scan the graph for changed edge costs; oreach s € Pred(u) do UpdateVertex(s);
s'€Succ(u) if any edge cost changed perform then else .
foreach directed edges (u, v) with changed edge costs do L &lu) = oo;
.. N .. ’ foreach s € Pred(u u} do UpdateVertex(s);
m The key/priority of a node s on the open list is the minimum of Update the edge cost c(u, v); () Utu} do Up )
. - UpdateVertex(u);
g(s) and rhs(s) plus a focusing heuristic h
foreach s € U do Procedure UpdateVertex
" b " | U.Update(s, CalculateKey(s)); fus hen rh(u) - (c(,) + ()
min(g(s), rhs(s S, s); min(g(s), rhs(s if U # sgoa then rhs(u) := ming csuce(u)(c(u, s) + &(s")):
[ (g( ) ( )) + ( start ) (g( )7 ( ))] ComputeShortestPath(); if u € U then U.Remove(u);
- if g(u) # rhs(u) then U.Insert(u, CalculateKey(u));
m The first term is used as the primary key Procedure Initialize p d CalculateK
m The second term is used as the secondary key for tie-breaking ;J - O'h csd rocedure Lalcu ateKey )

oreach s o return [min(g(s), rhs(s)) + h(Sstart, s); min(g(s), rhs(s))]
| rhs(s) = g(s) == oo;
rhs(sgoar) := 0;
U.Insert(sgoqr, CalculateKey(sgoar)):
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Demo D* Lite — Example D* Lite — Example Planning (1)

———_ Legend
l Free node H Obstacle node ] 30 31 33 3 33 Legend
[On open list HActive node ] g 0o ‘ g 0o ‘ g oo ‘ g oo ‘ g oo lFree node HObstacIe node ]
| ] 2.0 1 2 3 2 . . . . . - -
_‘ 51413]|2 start u A grid map of the envi- rhs: oo rhs: oo rhs: co rhs: oo rhs: oo lOn open list HAcnve node l
5 4 3 D 1 ronment (what is actu- 2,0 2,1 2,2 23 24 gtart
2 o e g .
21312 1 e ally known) B B Bes E6S A Initialization
1.0 1 2 3 7 u 8-c$>nnected graph su- rhs: 00 rhs: 00 ths: 00 ths: 00 rhs: 00 m Set rhs = 0 for the goal
3 Y 1 perimposed on the grid N m Set rhs = g = oo for all other
(bidirectional) 1,0 11 12 13 14 nodes
2 m Focusing heuristic is not g: 00 g: o0 g g: 0o g: 00
0.0 goa i 2 3 4 used (h =0) rhs: co rhs: oo rhs: oo rhs: co rhs: co
0,0 g03| 01 0.2 03 04
g oo g oo g: 00 g oo g oo
. rhs: 0 rhs: oo rhs: oo rhs: co rhs: oo
m Transition costs

https://github.com/mdeyo/d-star-lite

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning

38 / 92

® Free space — Free space: 1.0 and 1.4 (for diagonal edge)
m From/to obstacle: oo
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D* Lite D* Lite D* Lite
D* Lite — Example Planning (2) D* Lite — Example Planning (3) D* Lite — Example Planning (4)
3.0 31 32 33 34 Legend
30 31 2 EE 37 Legend 3o R 2 33 32 Legend g: oo g oo g oo g: oo g oo [Free node HObstacle node ]
g oo ‘ g oo ‘ g oo ‘ g oo ‘ g oo ‘ lFree node HObstacIe node ] g oo ‘ g oo ‘ g oo ‘ g oo ‘ g oo ‘ lFree node HObstacle node ] rhs: 0o ||| rhs: o0 rhs: oo rhs: oo ||| rhs: 0o lon open list “Active node ]
rhs: co rhs: co rhs: oo rhs: co rhs: co i i rhs: oo rhs: co rhs: co rhs: oo rhs: co i i 2,0 21 2,2 2,3 24
[On open list H Active node | [o” open list “ Active node | — — — = - f:art ComputeShortestPath
2,0 2,1 2,2 2,3 24 start Initiali . 2,0 2,1 2,2 2,3 2,4 start C Sh Path & ‘ & ‘ & ‘ & ‘ & J = Expand popped node
. . . . . o)
g oo g: oo g: oo g oo g: oo nitialization . g: oo g oo g: oo g: oo g o OmPUte o_n_:eSt at rhs: oo rhs: oo rhs: oo rhs: oo s OO,\ (UpdateVertex() on all its
rhs: co rhs: oo rhs: oo rhs: co rhs: 002 ® Put the goal to Itthé .openlllst rhs: oo rhs: co rhs: oo rhs: oo rhs: 00 &) - fPrZ':n tt:: O;‘::Ilin;:n(ﬂgozlle):ment 1,0 1,1 1.2 13 14 predecessors)
X is ~ " . T - . ;
o 1 12 13 14 ) 11 ) i3 T4 u It is over-consistent ( S g: oo g: 0o g: 0o g o© g: oo m This computes the rhs values
g hse il e e hs: her for the predecessors
g oo g 0o g oo g oo g oo g oo g 0o g: 0o g 0o g oo rhs), therefore set g = rhs fs: rhs: oo rhs: oo rhs: oo hs: oo . .
I = Nodes that become inconsis-

rhs: co rhs: co ||| rhs: oo rhs: co rhs: co rhs: oo ||| 'thsi eo ||lrhs: o0 ||| rhs: oo rhs: oo 00 foal |01 0.2 0.3 0.4 tent are added to the open list
00 goal |01 02 03 0.4 0.0 goal |01 02 03 04 g0 {g: & g g ‘ g o0 ‘
g: 00 ‘ g 0o ‘ g 00 g: 0o ‘ g 0o ‘ g 0 g oo ‘ g 0o g oo ‘ g oo ‘ rhs: 0 rhs: 1 rhs: co rhs: co rhs: oo
ghs10 s hsod fhsloo hsloo rhs: 0 fhsoo hsiod oo fhsiloo Small black arrows denote the node used for computing the rhs value, i.e., using the respec-

tive transition cost

m The rhs value of (1,1) is co because the transition to obstacle has cost co
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D* Lite D* Lite
D* Lite — Example Planning (5) D* Lite — Example Planning (6)
3,0 3.1 32 33 34 Legend
3,0 31 32 33 34 Legend g: o0 ‘ g: 00 ‘ g o© ‘ g: 00 ‘ g: 00 ‘ l Free node H Obstacle node ]
g: 0o ‘ g oo ‘ g oo ‘ g: oo ‘ g oo ‘ [Free node HObstacIe node ] rhs: oo ||| rhs: 0o ||| rhs: 0o ||| rhs: 0o ||| rhs: 0o [On open list HActive node ]
rhs: oo rhs: oo rhs: oo rhs: 0o rhs: oo On open list i 2,0 2,1 2,2 23 24 start
[ b H Active node_| - - - - - ComputeShortestPath
20 21 >2 i 24 start h h & & g g & m Expand the popped node
e g oo g oo g 0o g oo ComputeShortestPat rhs: 2 rhs: 2.4 ||| rhs: 0o ||| rhs: co ||| rhs: 0o (UpdateVertex() on all pre-
- T -
rhs: co rhs: co rhs: oo rhs: co rhs: 009 = Pop the minimum element 1,1 12 13 14 decessors in the graph)
from the open list (1,0) 1 c b | ‘i
3 o] 1 00 tile ] 1 00 t tl
1.0 11 12 13 14 m |t is over-consistent (g > rhs) B d 8 = & - IZ’(;]:Cuesesorrs sacc\:/zr;ie: IO ©
gl g: 0o g g g: oo set g = rhs rhs: 1 rhs: co rhs: oo rhs: oo rhs: oo P! gly
T m Put them to the open list if
rhs: I1 rhs: oo rhs: co rhs: oo rhs: oo 00 foal [o1 0,2 03 0,4 they become inconsistent
00 goal [0 0.2 03 04 g0 & e 8: 0 (HEI HE
g0 g: 0o g 0o g oo g 0o rhs: 0 rhs: 1 rhs: co rhs: oo rhs: co
rhs: 0 rhs: 1 rhs: co rhs: oo rhs: oo

m The rhs value of (0,0), (1,1) does not change

= They do not become inconsistent and thus they are not put on the open list
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D* Lite
D* Lite — Example Planning (7)
30 31 32 33 34 Legend
g oo g oo g oo g oo g oo [Free node HObstacIe node ]
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo [On open list HActive node ]
2,0 2,1 22 23 24 start
AT T T S T ComputeShortestPath
rhs: 2 rhs: 2.4 ||| rhs: co rhs: co rhs: 00 Q) ® Pop the minimum element
from the open list (0,1)
1.2 13 14 m It is over-consistent (g > rhs)
g: oo g: oo g: oo and thus set g = rhs
rhs: oo rhs: oo rhs: oo m Expand the popped element,
e.g., call UpdateVertex()
0,2 03 0,4
g: 0o g: 0o g: oo
rhs: co rhs: oo rhs: oo
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D* Lite
D* Lite — Example Planning (8)
3,0 31 32 33 34 Legend
g oo g: oo g oo g oo g: 00 [Free node “Obstacle node ]
rhs: oo rhs: co rhs: oo rhs: oo rhs: co [On open list HActive node ]
2,2 23 24 start
=T ‘ T ‘ T ComputeShortestPath
. . . 0 m Pop the minimum element
fhsJoo fhs 100 fhs; OO,\ from the open list (2,0)
12 13 14 m It is over-consistent (g > rhs)
& e g o0 g © and thus set g = rhs
rhs: co rhs: co rhs: oo
0,2 03 04
g: 00 g oo g: oo
rhs: oo rhs: oo rhs: co
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D* Lite
D* Lite — Example Planning (9)
3,0 3.1 32 33 34 Legend
g g g 0o g g [Free node H Obstacle node ]
rhs: 3 rhs: 3.4 ||| rhs: co rhs: oo rhs: oo [On open list H Active node l
T
2,0 /21 2,2 2,3 24 start
z2 7 o5 BeS ‘ B ‘ T J ComputeShortestPath
" . . X .0 m Expand the popped element
rhs.l2 US| | rhs: 0o || ths: oo ||| ths: OO,\ and put the predecessors that
1,0 A11 12 13 1,4 become inconsistent onto the
gl g: 0o g: 0o g o0 g oo open list
rhs: 1 rhs: co rhs: oo rhs: oo rhs: oo
|
00 goal|o01 0,2 03 04
g0 g1 g: 0o g: 00 g: 00
K
rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo
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D* Lite
D* Lite — Example Planning (10)
3.0 31 32 33 34 Legend
g: 0o g g g oo g o lFree node HObstacIe node ]
rhs: 3 rhs: 3.4 ||| rhs: co rhs: oo rhs: oo lon open list HActive node l
T
2,0 A21 2,2 2,3 2,4 start
o2 o 24 T ‘ A ‘ A ComputeShortestPath
. . . i . 0 m Pop the minimum element
rhs.l2 rhs: 2.4 ||| rhs: oo rhs: oo rhs: oo'\ from the open list (2,1)
0] At 12 13 14 m It is over-consistent (g > rhs)
gl g: oo g: 0o g: oo g: oo and thus set g = rhs
rhs: 1 rhs: oo rhs: co rhs: oo rhs: co
T
00 goal|o01 0.2 03 04
g0 g: 0o g: 0o g oo
¢
rhs: 0 rhs: co rhs: oo rhs: co
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D* Lite — Example Planning (11)

3.0 3.1 32 33 3.4

g o0 g: 00 g: oo g o0 g: 0o
rhs: 3 ‘ rhs: 3.4 ||| rhs: 3.8 ||| rhs: co ‘ rhs: co ‘
2,0 I /21 /22 23 24 start
g2 g 2.4 g: 0o g 0o g 0o
rhs: 2 rhs: 2.4 H rhs: 3.4 ||| rhs: co ‘ rhs: 002
1,0 i A 12 13 14 =
g1l g o0 g oo g: oo
rhs: 1 rhs: co rhs: oo ‘ rhs: oo ‘
00 § oal [o 0,2 0,3 04

g0 : g: oo g: oo g: oo
rhs: 0 I B rhs: co rhs: co ‘ rhs: oo ‘
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D* Lite

D* Lite — Example Planning (12)

Legend 3,0 3,1 3,2 33 3,4
[ Free node |[Obstacle node | g3 g g o0 g o ‘ g ‘
[On open list HActive — ] rhs;l3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: co rhs: co
2,0 /21 22 23 24 start
ComputeShortestPath g 2 g 2.4 g oo g 00 g 0
= Expand the popped element rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: co rhs: 00 &)
and put the predecessors that T 74y
become inconsistent onto the o] A1 1.2 13 1.4
open list g1 g: 0o g: 0o g: 0o g: 0o
rhs: 1 rhs: co rhs: oo rhs: oo rhs: oo
T
00 foal ot 0.2 0,3 0,4
g0 l g1 g: 00 g: oo g: 0o
rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: co

D* Lite
D* Lite — Example Planning (13)
Legend 3.0 31 32 33 34
lFree node H Obstacle node ] g3 g 3.4 g oo g: 0© g o
[On open list HACtive node ] rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: co rhs: oo
T
2,0 A2.1 22 2,3 24 start
ComputeShortestPath o2 o 24 H TS T ‘ A
m Pop the minimum element . . X X . 0O
from the open list (3,0) rhs,l2 rhs: 2.4 ||| rhs: 3.4 rhs: 0o rhs: oo,\
= It is over-consistent (g > rhs) 10 | 1.2 1.3 L4
and thus set g = rhs gl g: 0o g 0o g: 00
m Expand the popped element rhs: 1 rhs: oo rhs: co rhs: oo
and put the predecessors that
become inconsistent onto the 00 goal |0 0.2 03 04
open list g0 Il g: 00 g o0 g: 00
= In this cases, none of the pre- rhs: 0 rhs: 1 rhs: oo rhs: co rhs: oo
decessors become inconsistent

D* Lite
Legend
[ Free node |[Obstacle node |
lOn open list HActive node ]
ComputeShortestPath

m Pop the minimum element
from the open list (3,0)

It is over-consistent (g > rhs)
and thus set g = rhs

Expand the popped element
and put the predecessors that
become inconsistent onto the
open list

In this cases, none of the pre-
decessors become inconsistent

D* Lite — Example Planning (14)

30 3.1 32 33 3.4

g3 g: 3.4 g o g: oo g oo
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: co ‘ rhs: oo ‘
2,0 I /21 /22 23 24 start
g2 g 2.4 g: 3.4 g: 0o g: 0o
rhs: 2 rhs: 2.4 H rhs: 3.4 ||| rhs: oo ‘ rhs: DOQJ
1,0 I A11 1,2 13 14 =
g1 g: 0o g: 00 g: 00 g: 0o
rhs: 1 rhs: oo rhs: oo rhs: co ‘ rhs: co ‘
0,0 anl 01 0,2 03 0,4

g0 g1l g o g: oo g: oo
rhs: 0 “‘ rhs: 1 ‘ rhs: co rhs: oo ‘ rhs: co ‘
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D* Lite D* Lite D* Lite
D* Lite — Example Planning (15) D* Lite — Example Planning (16)
Legend 30 31 32 33 34 Legend 3,0 3.1 3.2 33 34 Legend
[Free node H Obstacle node ] g3 g 3.4 g 0o g 0o g 0o [Free node H Obstacle node ] g3 g 3.4 g: 3.8 g: 0o g oo [Free node H Obstacle node ]
[On open list H Active node ] rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: co [On open list H e neak l rhs:l3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: oo lon open list HActive node ]
I 2,0 A21 2.2 23 24
2,0 /21 22 /23 24 start : J Y 4 start
ComputeShortestPath 52 =24 }‘ o34 H s ) J ComputeShortestPath e 2 24 234 g T oo Co:lput:Sholrt.estPatlh
= Pop the minimum element X X . . . 0O m Expand the popped element rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 0@ m Pop the minimum e lement
from the open list (2,2) rhs,l2 rhs: 2.4 J|| rhs: 3'4;( rhs: 4.4 || rhs: OCA and put the predecessors that T . X from the open list (3,2)
It is over-consistent (g > rhs) 10 /11 12 14 become inconsistent onto the 0 | 11 1.2 N3 14 u It is over-consistent (g > rhs)
and thus set g = rhs g1 g 0o g: 0o g o open list, ie., (3,2), (3.3), g1 g: © g oo g: 0© g: o0 and thus set g = rhs
rhs: 1 rhs: oo rhs: co rhs: 4.8 ||| rhs: oo (23) rhs: 1 rhs: co rhs: co rhs: 4.8 ||| rhs: 0o m Expand the popped element
: T and put the predecessors that
0,0 koal 01 0.2 03 0.4 00 ‘koal o1 02 03 0.4 become inconsistent onto the
. . - . . : 0 01 : 00 1 00 Hies) i
g0 e 1 g: 0o g: 00 g 00 g \ g g g g open-llst
rhs: 0 rhs: 1 rhs: 0o ||| rhs: co rhs: co rhs: 0 rhs: 1 rthsi o0 ||| rhs: co ||| rhs: o0 = In this cases, none of the pre-
decessors become inconsistent

Jan Faigl, 2017

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

D* Lite — Example Planning (17)

3,0 31 32 33 3.4

g3 g 3.4 g: 3.8 g: 0o g: 0o
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: oo
2,0 | en /22 /23 2,4 start
g2 g 2.4 g: 3.4 g 4.4 g oo
rhs: 2 rhs: 2.4 H rhs: 3.4 H rhs: 4.4 ||| rhs: 0@
1,0 I A1 12 1.4 =
g1l g: 00 g: 0o
rhs: 1 rhs: co rhs: 4.8 ||| rhs: co ‘
0.0 | oal 0,2 0,3 0,4

g0 g: 00 g 0o g oo
rhs: 0 rhs: oo rhs: oo ‘ rhs: co ‘
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D* Lite D* Lite
D* Lite — Example Planning (18)
3,0 3,1 32 33 34 Legend
Legend g3 g 3.4 g 3.8 g oo g o [Free node HObstacIe node
{Free node “Obstacle node % rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list HActive node
On open list Active node 2.0 I 21 22 23 2,4
" " " " 4 start
24 1 I of 2 ComputeShortestPath
g: 2 g: 2.4 g 3.4 g: 4.4 g oo
ComputeShortestPath = Expand the popped element
. rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5.
m Pop the minimum element T K < X and put the predecessors that
from the open list (2,3) 1,0 A11 1,2 \{3 N4 become inconsistent onto the
m It is over-consistent (g > rhs) g1 g 0o g: oo g: oo g oo ‘(){)z'; list, ie., (34), (24),
and thus set g = rhs rhs: 1 rhs: 0o ||| rhs: oo ||| rhs: 4.8 ||| rhs: 5.8 ' .
T m The start node is on the open
00 goal|o01 0,2 03 04 list
g0 e 1 g: 00 g oo g o0 = However, the search does not
rhs: 0 rhs: 1 rhs: 00 ||| rhs: oo ||| rhs: oo finish at this stage
There are still inconsistent
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nodes (on the open list) with
a lower value of rhs
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D* Lite — Example Planning (19)

3,0 31 32 33 3.4
g3 g: 3.4 g: 3.8 g 4.8 g: 00
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8

2,0 /21 22 23 ¥4 start

g2 g: 2.4 g: 3.4 g 4.4 g o
rhs: 2 rhs: 2.4 H rhs: 3.4 }‘ rhs: 4.4 H rhs: 5.4
1,0 I /11 1,2 K N3 K 4 =
g1 g: oo g: 0o g: 0o g: oo
rhs: 1 rhs: co rhs: co rhs: 4.8 ||| rhs: 5.8
0,0 ! oal [01 0,2 0,3 0,4

g0 g: oo g: oo g: oo
rhs: 0 I rhs: 1 rhs: co rhs: co ‘ rhs: co ‘
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D* Lite
Legend
lFree node H Obstacle node ]
lOn open list HActive node ]
ComputeShortestPath

m Pop the minimum element
from the open list (3,2)

It is over-consistent (g > rhs)
and thus set g = rhs

Expand the popped element
and put the predecessors that
become inconsistent onto the
open list

In this cases, none of the pre-
decessors become inconsistent
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (20) D* Lite — Example Planning (21) D* Lite — Example Planning (22)
3.0 31 32 33 34 Legend
2 &) 3.4 ;3.8 4.8 g: 0o Free node Obstacle node
3,0 3,1 3,2 3,3 3.4 Legend 3,0 3,1 3,2 33 3,4 Legend gh 0 gh aa gh an gh o hs: 5.8 IO i H ]
. . 8 . rhs: 5. i
g3 g 34 |[[g38 |[[g48 |[eoo [ Free node |[Obstacle node | g3 g 3.4 g 3.8 g 4.8 g 0 [ Free node |[Obstacle node | e g 22 | ms 58 JIU s & l WCEEEOLE: HACt“’e node |
- . 2,0 2,1 2,2 2,3 2,4
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list H Active node ] rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list H Active node ] 2‘1’ vy o ¢ ar ] wa ¢ :iart ComputeShortestPath
T T g g 2. g 3. g 4. g: 5.
2,0 A21 22 23 |24 start 2,0 /21 N EE 23 |24 start H }1 4‘| 4 m Pop the minimum element
hs: 2 hs: 2.4 hs: 3.4 hs: 4.4 hs: 5. .
o2 24 |[z232 |[gaa |[E ComputeShortestPath o2 24 234 |[eaa ComputeShortestPath i) rhs rhs: 3.4 J|Lrhs: 44 ) B 547 from the open list (2,4)
o 1€ ini e % . .
rhs: 2 rhs: 2.4 ||| rhs: 3.4 rhs: 4.4 rhs: 5. " fPop tt:e m|n|F1um1 ?)element rhs: 2 rhs: 2.4 rhs: 3.4 ||| rhs: 4.4 " Exgand t:e pogped elem:nt J—\‘Lo L 12 N2 N4 u It is over-consistent (g > rhs)
: ) < X rom the open list (1,3) : X abn put the predecessors t l:t g1 g o g: 0o g 4.8 g: o and thus set g = rhs
1,0 1,1 1,2 3 4 H o 1,0 1,1 1,2 3 ecome inconsistent onto the
ol g - - N = It is over-consistent (g > rhs) o) g - - N open list, i.e., (0,3) and (0,4) rhs: 1 rhs: co rhs: co rhs: 4.8 ||| rhs: 5.8 m Expand the popped element
g1 g: 0o g: 0o g 4.8 g: 0o and thus set g = rhs g1 g: 00 g: 0o g 4.8 H ! T ——F K and put the predecessors that
rhs: 1 rhs: oo rhs: oo rhs: 4.8 ||| rhs: 5.8 rhs: 1 rhs: oo rhs: oo rhs: 4.8 MLal 0.1 0.2 0.3 | e become inconsistent (none in
T g0 1 g: oo g: o g o this case) onto the open list
00 §oal 01 02 03 0.4 00 $oal o1 0,2 03 | ¢
rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2
g0 g1 g: o0 g: oo g: oo g0 g1 g: 00 g: oo
€ €
rhs: 0 rhs: 1 rhs: co rhs: co rhs: co rhs: 0 rhs: 1 rhs: oo rhs: 5.8
m The start node becomes consistent and the top key on the open list is not less than the
key of the start node
= An optimal path is found and the loop of the ComputeShortestPath is breaked
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (23) D* Lite — Example Planning (24) D* Lite — Example Planning (25)
3.0 3.1 32 33 3.4 Legend 3.0 3.1 3.2 Legend 3.0 3.1 32 33 3.4 Legend
g3 g 3.4 g 3.8 g 4.8 g oo [Free node H Obstacle node ] g3 g 3.4 g 3.8 [Free node H Obstacle node ] g3 g 34 g 3.8 g 4.8 g: oo [Free node H Obstacle node ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list H Active node ] rhs: 3 rhs: 3.4 ||| rhs: 3.8 [On open list H Active node l rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list HACtiVé node l
| |
2,0 /21 /22 23 /24 start 2,0 /21 2,2
g2 g 2.4 g 3.4 g4 g: 5.4 m Follow the gradient of g val- g2 g 2.4 g 34 m Follow the gradient of g val- m A new obstacle is detected
rhs: 2 vhs: 2.4 ||| rhs: 3.4 il rhs rhs: 5. ues from the start node rhs: 2 rhs: 2.4 ||| rhs: 3.4 ues from the start node ((:Izur?l’l;gt t(h;z)movement from
T K T T , o (4,
10 S11 12 0 ] A11 12 0] v u Replanning is needed!
g1l g: 0o g: 00 g1 g oo g: oo g1
rhs: 1 rhs: oo rhs: oo rhs: 1 rhs: rhs: rhs: 1
T T T
00 goal [0 0,2 00 goal |01 0,2 00 goal
g0 gl g: 00 g0 g1 g g0 3
1€ € |
rhs: 0 rhs: 1 rhs: co rhs: 0 rhs: 1 rhs: oo rhs: 0 rhs: 1 rhs: co rhs: 5.8 ||| rhs: 6.2
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (25 update) D* Lite — Example Planning (26 update 1/2) D* Lite — Example Planning (26 update 2/2)

33 32 Legend 30 32 33 34 Legend 30 31 32 33 34 Legend
g 4.8 g: oo lFree node H Obstacle node ] g3 g: 3.8 g 4.8 g lFree node H Obstacle node ] g3 g 3.4 g 3.8 g 4.8 g o0 lFree node H Obstacle node ]
%4.8 rhs: 5.8 [On open list HActive node ] rhs: 3 rhs:|3.8 ||| rhé: 4.8 ||| rhs: 5.8 [On open list HActive node ] rhs: 3 rhs:N rhs:|3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list HActive node ]
T
2.3 24 start 20 | A 24 start 23 ¥ 24 start
’—ﬁ date Vertex date Vertex
g: 4.4 g: 5.4 m All  directed edges with : Up . g 4.4 Up i
he 3 *he: 5.4 changed edge, we need to call = Outgoing edges from (2,2) . ¢ = Incomming edges to (2,2)
the UpdateVertex () m Call UpdateVertex() on (2,2) B— — 4 m Call UpdateVertex() on the
m All edges into and out of (2,2) m The transition costs are now M_)/ 1.1 12 N3 neighbors (2,2)
have to be considered oo because of obstacle g1 g 0 gn4.8 m The transition cost is co, and
m Therefore the rhs = oo rhs: 1 rhs: oo rhs: 4.8 therefore, the rhs value previ-
- - and (2,2) becomes inconsis- 00 I03| o1 02 03 | OESIY czmputed using (2,2) is
tent and it is put on the open change
l gl gl list g0 l g1 g o g oo
k
rhs: 0 rhs: 1 rhs: co rhs: 0 rhs: 1 rhs: oo rhs: 5.8 ||| rhs: 6.2 rhs: 0 rhs: 1 rhs: oo rhs: 5.8 ||| rhs: 6.2
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D* Lite D* Lite
D* Lite — Example Planning (27) D* Lite — Example Planning (28) D* Lite — Example Planning (29)
3,0 3,1 3,2 3,3 3.4 Legend 3,0 3,1 3,2 33 3,4 Legend 3,0 3,1 3,2 33 3,4
g3 g: 3.4 g: 338 g 4.8 g: o© lFree node HObstacIe node ] g3 g 3.4 g: 3.8 g 4.8 g: 00 lFree node HObstacle node ] g3 g 3.4 g 3.8 g 4.8 g: 00
rhs: 3 rhs: 3.4 ||| rhs: 3.8 r))s/:4,8 rhs: 5.8 [On open list H Active node ] rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list H Active node ] rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
I

2,0 /(2,1 2,2 23 2,4
- | - - w22 start Update Vertex
g 24 |[e 3}/}‘ g 4.4

! D! . .
rhs: 2 rhs: 2.4 ||| rhs: co rhs: 4.§ rhs: 5.4 = The neighbor of (2.2) is (3.3)
T .4 m The minimum possible rhs

10l AL 1.2 3 N4 value of (3,3) is 4.8 but it is

g1 g oo g 4.8 g oo based on the g value of (3,2)

Thel ths: 00 ths: 4.8 rhs: 5.8 and not (2,2), which is the de-
5 - === — tected obstacle

00 $oal 0.2 03 | R4 m The node (3,3) is still consis-

g0 g o0 g o0 g tent and thus it is not put on

rhs: 0 rhs: co rhs: 5.8 ||| rhs: 6.2 the open list

Update Vertex

m (2,3) is also a neighbor of
(22)

m The minimum possible rhs

gl g: 0o g: 0o g 4.8 g 0o value of (2,3) is 5.2 because of
. rhs: rhs: . rhs: 5.8 (2,2) is obstacle (using (3,2)

rhs.ll 00 o rhs: 4.8 with 3.8 + 1.4)

00 goal |01 02 03 | R4 m The rhs value of (2,3) is dif-

g0 \ g1 g: 00 g o g 00 ferent than g thus (2,3) is put

rhs: 0 rhs: 1 rhs: oo rhs: 5.8 ||| rhs: 6.2 on the open list

D* Lite
Legend
‘ Free node H Obstacle node ]
lOn open list HActive node ]

Update Vertex

m Another neighbor of (2,2) is
(1.3)
m The minimum possible rhs
value of (1,3) is 5.4 computed
based on g of (2,3) with 4.4
+1=54
The rhs value is always com-
puted using the g values of its
successors
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D* Lite D* Lite D* Lite
D* Lite — Example Planning (29 update) D* Lite — Example Planning (30) D* Lite — Example Planning (31)
3.0 3.1 3:2 33 3.4 Legend 3,0 31 32 33 3,4 Legend
g3 g: 3.4 g 3.8 }‘ g 4.8 g: 0o [Free node “Obstacle node ] B8 o 3.4 e 38 e 48 5 6= lFree — HObstacle — l - - — - - Legend
'h5:|3 rhs:}& rhs:‘3.8K ths: 4.8 ||| rhs: 5.8 [O" open list H Active node ] rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list H Active node ] [Free node H Obstacle node ]
20 | A21 22 N 3 /24 start ) . -
n open list
g 2 g24 |[e34 ‘ g 44 |[e54 Update Vertex ComputeShortestPath [On open list _|[Active node |
m None of the other neighbor of .
rhs: 2 rhs: 2.4 ||| rhs:|co rhs: 5. rhs: 5.4 - - = Pop the minimum element ComputeShortestPath
T ‘ ‘ (22) end up being inconsis- from the open list (2,2), which p .
1,0 11 1,2 13 | N4 tent is obstacle m Pop the minimum element
g1 g oo g ola g 4.8 g oo m We go back to calling u It is under-consistent (g < ffo.m the open |'5_t (2.3)
ths: 1 rhs: 0o rhs: 0o rhs: 5.4 Com'puteShorte.stPath() ) rhs), therefore set g = co m It is under-consistent (g <
T until an optimal path is rhs), therefore set g = co
0.0 koa| 02 03 | determined o1 o3 m Expand the popped element
0 5 6s & 6 . ! | and put the predecessors that
g 2 : g0 g1 g oo g: 00 become inconsistent (none in
rhs: 0 rhs: oo rhs: 5.8 rhs: 0 h rhs: 1 e 5o rhs: 5.8 this case) onto the open list
m The node corresporjdling to the robot's curre'nt position is inconsistent and its key is  Because (2,2) was under-consistent (when popped), UpdateVertex() has to be called on it
greater than the minimum key on the open list
. . m However, it has no effect as its rhs value is up to date and consistent
m Thus, the optimal path is not found yet
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D* Lite D* Lite D* Lite
D* Lite — Example Planning (32) D* Lite — Example Planning (33) D* Lite — Example Planning (34)
30 31 32 33 32 Legend 30 31 32 33 34 Legend 30 31 32 33 34 Legend
g3 g 34 |[||g38 ||g48 |[&0 [Free node [Obstacle node | g3 g 34 |[e38 |[|e48 e [ Free node |[Obstacle node ] g3 g:34 |[eg:38 |[e:48 e [Free node |[Obstacle node |
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list H Active node ] rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list H Active node l rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 lOn open list HActive node l
T 1.4 T K 1.4 T .4
2,0 A2.1 22 R 2,0 A21 22
o2 o 24 o 63 ComputeShortestPath ComputeShortestPath o2 o 24 & 65 ComputeShortestPath
) . . m Expand the popped element = Because (2,3) was under- . . . m Pop the minimum element
I'hS.I2 rhs: 2.4 | [thsi o0 and update the predecessors consistent (when popped), I’hS.I2 ths: 2.4 | |ithsi oo from the open list (1,3)
10 /11 12 = (2,4) becomes inconsistent call UpdateVertex() on it is 10 ) A1 12 m It is under-consistent (g <
g1 e EFee m (1,3) gets updated and still in- neefietfi o . . g1 g 0 e F e e rhs), therefore set g = co
rhs: 1 rhs: co rhs: oo consistent = As it is still mconsnstentllt s rhs: 1 rhs: oo rhs: oo rhs: 6.8 ||| rhs: 5.8
T put back onto the open list T
00 doal |01 02 m The rhs value (1,4) does not - 00 $oal |04 02 03 | 2
0 1 s changed, but it is now com- 1 0 = s =
& e & & puted from the g value of I & g & & &
rhs: 0 rhs: 1 rhs: 00 ||| rhs: 5.8 ||| rhs: 6.2 (1,3) rhs: 0 rhs: 1 rhs: oo ||| rhs: 5.8 ||| rhs: 6.2 rhs: 0 rhs: o0 ||| rhs: 5.8 ||| rhs: 6.2
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found and we can break out
of the loop

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 80 / 92

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 81 /92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (35) D* Lite — Example Planning (36) D* Lite — Example Planning (37)
3,0 3,1 3,2 3,3 3,4 Legend 3,0 3,1 3,2 3.3 3,4 Legend 3,0 3,1 3,2 3,3 3,4 Legend
g3 g 3.4 g 3.8 g 4.8 g oo [ Free node |[Obstacle node | g3 g 3.4 g: 3.8 g 4.8 g oo [ Free node |[Obstacle node | g3 g 3.4 g 3.8 g 4.8 g 00 [Free node | Obstacle node ]
€ | €
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list H Active node ] rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list H Active node ] rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 [On open list HActive node ]
T K T T
2,0 /21 /22 4 start 2,0 2,1 /22 2,0 /21 /22 4 start
o2 o 24 e = - ComputeShortestPath o2 o 24 o ComputeShortestPath o2 o 24 T ComputeShortestPath
. . . . m Expand the popped element . . . = Because (1,3) was under- . ) . m Pop the minimum element
rhs.l2 rhs: 2.4 | [thsi o0 hs5; and update the predecessors rhs.l2 rhs: 2.4 | [thsi’e0 consistent  (when popped), rhs.l2 ths: 2.4 | |[thst'e0 from the open list (2,3)
1,0 A11 1,2 13 14 | = (1,4) gets updated and still in- 1,0 Af11 12 call UpdateVertex() on it is o | A1 12 13 1,4 | = It is over-consistent (g >
g1 g: oo g: o g oo g: oo consistent g1 g oo g: 0o needed g1 : g oo g: 0o g: oo rhs), therefore set g = rhs
rhs: 1 rhs: co rhs: oo rhs: 6.8 ||| rhs: 6.4 = (0,3) and (0,4) get updated rhs: 1 rhs: oo rhs: co " Astlrn 'SkSt'”t'":Ens'Ste"tll'i Is rhs: 1 rhs: oo rhs: 6.8 ||| rhs: 6.4
T d istent (both T pu acK onto € open IS’ T
0,0 koa| 0,1 0.2 03 0,4 ::d :;:;V\;r:ogos;s ent (both g 0,0 koa| 0,1 0,2 0,0 ioal 0.2 03 04
g0 g1 g: 0o g 0o g: 0o g0 g1 g: 0o g0 I g: 0o g: 0o g: 00
rhs: 0 rhs: 1 rhs: co rhs: co rhs: co rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo rhs: 0 rhs: co rhs: co rhs: oo
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (38) D* Lite — Example Planning (39) D* Lite — Comments
3,0 31 32 33 34 Legend
g3 g 3.4 g: 3.8 g 4.8 g: oo [Free node H Obstacle node ] 3o Legend
ths: 3 J|(rhs: 34 ||| rhs: 38 ||| ths: 4.8 Jths: 58 [On open list |[Active node | g3 [Free node  |[Obstacle node | m D* Lite works with real valued costs, not only with binary costs
2,0 /21 /2. 3 . n - fr I
g2 g 2.4 ComputeShortestPath ﬁfrhs' g [O” GhenllEs H Active node | (free/obstacle)
‘ - u Expand the popped element 20 | A m The search can be focused with an admissible heuristic that would
rh5:|2 hs:12 and update the predecessors g2 m Follow the gradient of g val- be added to the g and rhs values
1,0 1,1 TR . ues from the robot’s current . ) . L. )
—_1’];’( e - Eifs)isgt:?t”pdated and still in ihs:12 position (node) m The final version of D* Lite includes further optimization (not
& . 10 shown in the example)
rhs: 1 rhs: oo rhs: oo rhs: 6.2 rhs: 6.4 m The node (2,3) corresponding 1 i . i .
T to the robot’s position is con- & m Updating the rhs value without considering all successors every
00 foal |01 0.2 03 04 sistent rhsf{1 rhs: 0o ||[rhs: oo ||| rhs: 6.2 ||| rhs: 6.4 time
g0 el Lt B e u Besides, top of the key on the 00 Boal o1 02 03 04 m Re-focusing the serarch as the robot moves without reordering the
rhs: 0 rhs: 1 rhs: co rhs: oo rhs: co (Izpen fll?; |35) not less than the g d, g1 g o g oo g oo entire open list
ey of (2, N
Y . rhs: 0 rhs: 1 rhs: oo rhs: oo rhs: oo
m The optimal path has been
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

RD-based Planning

Reaction-Diffusion Processes Background

m Reaction-Diffusion (RD) models — dynamical systems capable to
reproduce the autowaves
m Autowaves - a class of nonlinear waves that propagate through an
active media
At the expense of the energy stored in the medium, e.g., grass combustion.
m RD model describes spatio-temporal evolution of two state
variables u = u(x, t) and v = v(X, t) in space X and time t
f(u,v)+ D,Au
g(u,v)+D,Av’

0 =
v

where A is the Laplacian.

This RD-based path planning is informative, just for curiosity
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

RD-based Planning

Reaction-Diffusion Background

m FitzHugh-Nagumo (FHN) model

FitzHugh R, Biophysical Journal (1961)
€(u7u37v+¢)+DuAu
(v—av+p)+ D,Au '

where «, B, €, and ¢ are parameters of the model.

<.
I

m Dynamics of RD system is determined by the associated nullcline
configurations for 4=0 and v=0 in the absence of diffusion, i.e.,
€(u7u37v+¢) 0,
(u—av+p) 0,

which have associated geometrical shapes
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Nullcline Configurations and Steady States

m Nullclines intersections represent
' m Stable States (SSs)
m Unstable States
m Bistable regime

The system (concentration levels of (u, v) for
each grid cell) tends to be in SSs.

-05

-15 -1.0 -05 00
u

0.5 15

m We can modulate relative stability of both SS

“preference” of SS* over SS— v

m System moves from SS~ to SST,
if a small perturbation is introduced.
m The SSs are separated by a mobile frontier -

a kind of traveling frontwave (autowaves)
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based PI

RD-based Path Planning — Computational Model

m Finite difference method on a Cartesian grid with Dirichlet boundary
conditions (FTCS)

m External forcing — introducing additional information
i.e., constraining concentration levels to some specific values

discretization — grid based computation — grid map

m Two-phase evolution of the underlying RD model
1. Propagation phase
m Freespace is set to SS™ and the start location SS™
m Parallel propagation of the frontwave with non-
annihilation property
Vazquez-Otero and Mufiuzuri, CNNA (2010)
m Terminate when the frontwave reaches the goal

2. Contraction phase
m Different nullclines configuration
m Start and goal positions are forced towards SS+
m 5SS~ shrinks until only the path linking the forced
points remains

anning

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
Example of Found Paths
700 x 700 700 x 700 1200 x 1200

= The path clearance maybe adjusted by the wavelength and size of
the computational grid.
Control of the path distance from the obstacles (path safety)

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Comparison with Standard Approaches

Distance Transform Voronoi Diagram Reaction-Diffusion

Jarvis R
Advanced Mobile Robots (1994)

Beeson P, Jong N, Kuipers B
ICRA (2005)

Otero A, Faigl J, Mufiuzuri A
IROS (2012)

m RD-based approach provides competitive paths regarding path
length and clearance, while they seem to be smooth
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning Topics Discussed Topics Discussed
Robustness to Noisy Data Topics Discussed
m Front-Wave propagation and path simplification
m Distance Transform based planning
Summary of the Lecture . >
m Graph based planning methods: Dijsktra's, A*, JPS, Theta*
m D* Lite
m Reaction-Diffusion based planning (informative)
m Next: Randomized Sampling-based Motion Planning Methods
Vazquez-Otero, A., Faigl, J., Duro, N. and Dormido, R. (2014): Reaction-Diffusion based Computational
Model for Autonomous Mobile Robot Exploration of Unknown Environments. International Journal of
Unconventional Computing (1JUC).
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