
Grid and Graph based Path Planning
Methods

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 04

B4M36UIR – Artificial Intelligence in Robotics

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 1 / 38

Overview of the Lecture

Part 1 – Grid and Graph based Path Planning Methods

Grid-based Planning

DT for Path Planning

Graph Search Algorithms

D* Lite

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 2 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Part I

Part 1 – Grid and Graph based Path
Planning Methods

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 3 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Grid-based Planning

A subdivision of Cfree into smaller cells
Grow obstacles can be simplified by
growing borders by a diameter of the
robot
Construction of the planning graph
G = (V ,E) for V as a set of cells and
E as the neighbor-relations

4-neighbors and 8-neighbors

A grid map can be constructed from
the so-called occupancy grid maps

E.g., using thresholding

qgoalqstart

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 5 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Grid-based Environment Representations

Hiearchical planning
Coarse resolution and re-planning on
finer resolution

Holte, R. C. et al. (1996): Hierarchical A *: searching abstraction hierarchies efficiently. AAAI.

Octree can be used for the map
representation
In addition to squared (or rectangular)
grid a hexagonal grid can be used
3D grid maps – octomap

https://octomap.github.io

− Memory grows with the size of the
environment

− Due to limited resolution it may fail in
narrow passages of Cfree

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 6 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Example of Simple Grid-based Planning

Wave-front propagation using path simplication

Initial map with a robot and goal
Obstacle growing
Wave-front propagation – “flood fill”
Find a path using a navigation function
Path simplification

“Ray-shooting” technique combined
with Bresenham’s line algorithm
The path is a sequence of “key” cells
for avoiding obstacles

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 7 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Path Simplification

The initial path is found in a grid using 4-neighborhood
The rayshoot cast a line into a grid and possible collisions of the
robot with obstacles are checked
The “farthest” cells without collisions are used as “turn” points
The final path is a sequence of straight line segments

Initial and goal locations Obtacle growing,
wave-front propagation Ray-shooting Simplified path

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 8 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Bresenham’s Line Algorithm
Filling a grid by a line with avoding float numbers
A line from (x0, y0) to (x1, y1) is given by y = y1−y0

x1−x0 (x − x0) + y0
1 CoordsVector& bresenham(const Coords& pt1, const

Coords& pt2, CoordsVector& line)
2 {
3 // The pt2 point is not added into line
4 int x0 = pt1.c; int y0 = pt1.r;
5 int x1 = pt2.c; int y1 = pt2.r;
6 Coords p;
7 int dx = x1 - x0;
8 int dy = y1 - y0;
9 int steep = (abs(dy) >= abs(dx));

10 if (steep) {
11 SWAP(x0, y0);
12 SWAP(x1, y1);
13 dx = x1 - x0; // recompute Dx, Dy
14 dy = y1 - y0;
15 }
16 int xstep = 1;
17 if (dx < 0) {
18 xstep = -1;
19 dx = -dx;
20 }
21 int ystep = 1;
22 if (dy < 0) {
23 ystep = -1;
24 dy = -dy;
25 }

26 int twoDy = 2 * dy;
27 int twoDyTwoDx = twoDy - 2 * dx; //2*Dy - 2*Dx
28 int e = twoDy - dx; //2*Dy - Dx
29 int y = y0;
30 int xDraw, yDraw;
31 for (int x = x0; x != x1; x += xstep) {
32 if (steep) {
33 xDraw = y;
34 yDraw = x;
35 } else {
36 xDraw = x;
37 yDraw = y;
38 }
39 p.c = xDraw;
40 p.r = yDraw;
41 line.push_back(p); // add to the line
42 if (e > 0) {
43 e += twoDyTwoDx; //E += 2*Dy - 2*Dx
44 y = y + ystep;
45 } else {
46 e += twoDy; //E += 2*Dy
47 }
48 }
49 return line;
50 }

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 9 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Distance Transform based Path Planning
For a given goal location and grid map compute a navigational function
using wave-front algorithm, i.e., a kind of potential field

The value of the goal cell is set to 0 and all other free cells are set to
some very high value
For each free cell compute a number of cells towards the goal cell
It uses 8-neighbors and distance is the Euclidean distance of the centers of
two cells, i.e., EV=1 for orthogonal cells or EV =

√
2 for diagonal cells

The values are iteratively computed until the values are changed
The value of the cell c is computed as

cost(c) =
8

min
i=1

(cost(ci) + EVci ,c) ,

where ci is one of the neighboring cells from 8-neighborhood of the cell c

The algorithm provides a cost map of the path distance from any free cell
to the goal cell
The path is then used following the gradient of the cell cost
Jarvis, R. (2004): Distance Transform Based Visibility Measures for Covert Path Planning in
Known but Dynamic Environments

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 11 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Example – Distance Transform based Path Planning

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 12 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Distance Transform Path Planning
Algorithm 1: Distance Transform for Path Planning
for y:=0 to yMax+1 do

for x:=0 to xMax+1 do
if goal [x,y] then

cell [x,y]:=0;
else

cell [x,y]:=xMax*y Max;

repeat
for y:=2 to yMax do

for x:=2 to xMax do
if not blocked [x,y] then

cell [x,y]:= min (cell[x-1,y]+1, cell[x-1,y-1]+
√
2,cell[x,y-1]+1, cell[x+1,y-1]+

√
2,cell [x,y]);

for y:=yMax-1downto 1 do
for x:=xMax-1 downto 1 do

if not blocked [x,y] then
cell[x,y]:=min(cell[x+1,y]+1,cell[x+1,y+1]+

√
2,cell[x,y+1]+1,cell[x-1,y+1]+

√
2,cell[x,y]);

until no change;

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 13 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Distance Transform based Path Planning – Impl. 1/2
1 Grid& DT::compute(Grid& grid) const
2 {
3 static const double DIAGONAL = sqrt(2);
4 static const double ORTOGONAL = 1;
5 const int H = map.H;
6 const int W = map.W;
7 assert(grid.H == H and grid.W == W, "size");
8 bool anyChange = true;
9 int counter = 0;

10 while (anyChange) {
11 anyChange = false;
12 for (int r = 1; r < H - 1; r++) {
13 for (int c = 1; c < W - 1; c++) {
14 if (map[r][c] != FREESPACE) {
15 continue;
16 } //obstacle detected
17 double t[4];
18 t[0] = grid[r - 1][c - 1] + DIAGONAL;
19 t[1] = grid[r - 1][c] + ORTOGONAL;
20 t[2] = grid[r - 1][c + 1] + DIAGONAL;
21 t[3] = grid[r][c - 1] + ORTOGONAL;
22 double pom = grid[r][c];
23 for (int i = 0; i < 4; i++) {
24 if (pom > t[i]) {
25 pom = t[i];
26 anyChange = true;
27 }
28 }
29 if (anyChange) {
30 grid[r][c] = pom;
31 }
32 }
33 }

35 for (int r = H - 2; r >= 0; r--) {
36 for (int c = W - 2; c > 0; c--) {
37 if (map[r][c] != FREESPACE) {
38 continue;
39 } //obstacle detected
40 double t[4];
41 t[1] = grid[r + 1][c] + ORTOGONAL;
42 t[0] = grid[r + 1][c + 1] + DIAGONAL;
43 t[3] = grid[r][c + 1] + ORTOGONAL;
44 t[2] = grid[r + 1][c - 1] + DIAGONAL;
45 double pom = grid[r][c];
46 bool s = false;
47 for (int i = 0; i < 4; i++) {
48 if (pom > t[i]) {
49 pom = t[i];
50 s = true;
51 }
52 }
53 if (s) {
54 anyChange = true;
55 grid[r][c] = pom;
56 }
57 }
58 }
59 counter++;
60 } //end while any change
61 return grid;
62 }

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 14 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Distance Transform based Path Planning – Impl. 2/2

The path is retrived by following the minimal value towards the
goal using min8Point()

1 Coords& min8Point(const Grid& grid, Coords& p)
2 {
3 double min = std::numeric_limits<double>::max();
4 const int H = grid.H;
5 const int W = grid.W;
6 Coords t;
7
8 for (int r = p.r - 1; r <= p.r + 1; r++) {
9 if (r < 0 or r >= H) { continue; }

10 for (int c = p.c - 1; c <= p.c + 1; c++) {
11 if (c < 0 or c >= W) { continue; }
12 if (min > grid[r][c]) {
13 min = grid[r][c];
14 t.r = r; t.c = c;
15 }
16 }
17 }
18 p = t;
19 return p;
20 }

22 CoordsVector& DT::findPath(const Coords& start,
const Coords& goal, CoordsVector& path)

23 {
24 static const double DIAGONAL = sqrt(2);
25 static const double ORTOGONAL = 1;
26 const int H = map.H;
27 const int W = map.W;
28 Grid grid(H, W, H*W); // H*W max grid value
29 grid[goal.r][goal.c] = 0;
30 compute(grid);
31
32 if (grid[start.r][start.c] >= H*W) {
33 WARN("Path has not been found");
34 } else {
35 Coords pt = start;
36 while (pt.r != goal.r or pt.c != goal.c) {
37 path.push_back(pt);
38 min8Point(grid, pt);
39 }
40 path.push_back(goal);
41 }
42 return path;
43 }

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 15 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

DT Example

δ = 10 cm, L = 27.2 m δ = 30 cm, L = 42.8 m

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 16 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Graph Search Algorithms

The grid can be considered as a graph and the path can be found
using graph search algorithms
The search algorithms working on a graph are of general use, e.g.

Breadth-first search (BSD)
Depth first search (DFS)
Dijsktra’s algorithm,
A* algorithm and its variants

There can be grid based speedups techniques, e.g.,
Jump Search Algorithm (JPS) and JPS+

There are many search algorithm for on-line search, incremental
search and with any-time and real-time properties, e.g.,

Lifelong Planning A* (LPA*)
Koenig, S., Likhachev, M. and Furcy, D. (2004): Lifelong Planning A*. AIJ.

E-Graphs – Experience graphs
Phillips, M. et al. (2012): E-Graphs: Bootstrapping Planning with Experience Graphs. RSS.

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 18 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Examples of Graph/Grid Search Algorithms

https://www.youtube.com/watch?v=X5a149nSE9s

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 19 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Dijkstra’s Algorithm

Dijsktra’s algorithm determines paths as iterative update of the
cost of the shortest path to the particular nodes

Edsger W. Dijkstra, 1956
Let start with the initial cell (node)
with the cost set to 0 and update
all successors
Select the node

with a path from the initial node
and has a lower cost

Repeat until there is a reachable
node

I.e., a node with a path from the initial node
has a cost and parent (green nodes).

− 5

−

−

6

−

−

2
6

4

8

9

7

3

4

5

8

7

3

7

0

−

− 2

−

−1

−

−

3

−

−4

−

0

0

0

−1

2

4

8

9

4

5

8

7

3

7

4

6

0

6 3

7 2

−

−

5

−

−

6

−

−

1

7

0

3

3

0

1

7

0

2
6

4

8

9

7

3

4

5

8

7

3

7

4

6

0

2

−

−

5

−

−

6

−

−

0

0

−1

3

3

3

1

5

3

2
6

4

8

9

7

3

4

8

3

7

4

6

0

5

7

5

−

−

0

0

−1

3

3

0

2

8

3

6

10

The cost of nodes can only decrease (edge cost is positive). Therefore, for a
node with the currently lowest cost, there cannot be a shorter path from the
initial node.

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 20 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Example (cont.)
3

6

10

3

2
6

4

8

9

7

3

4

5

8

7

3

7

4

6

0 5

−

−

0

0

−1

3

3

0

1

5

3 2

8

3

6

10

3

2
6

4

8

9

7

3

4

5

8

7

3

7

4

6

0

1: 4 + 5 = 9 > 8!

5

−

−

0

0

−1 1

5

3

3

3

0

2

8

1: After the expansion, the shortest path to the
node 2 is over the node 3

2: There is not shorter path to the node 2 over the
node 1

3

5

11

2

2
6

4

8

9

7

3

4

5

8

7

7

4

6

0

3

0

0

−1

3

3

0

1

5

3 2

8

3

6

10

3

5

11

2

2
6

4

8

9

7

3

4

5

8

7

3

7

4

6

0

0

0

−1

3

3

0

1

5

3 2

8

3

6

10

3: After the expansion, there is a new path to the
node 5

4: The path does not improve for further
expansionsJan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 21 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Dijkstra’s Algorithm – Impl.
1 dij->nodes[dij->start_node].cost = 0; // init
2 void *pq = pq_alloc(dij->num_nodes); // set priority queue
3 int cur_label;
4 pq_push(pq, dij->start_node, 0);
5 while (!pq_is_empty(pq) && pq_pop(pq, &cur_label)) {
6 node_t *cur = &(dij->nodes[cur_label]); // remember the current node
7 for (int i = 0; i < cur->edge_count; ++i) { // all edges of cur
8 edge_t *edge = &(dij->graph->edges[cur->edge_start + i]);
9 node_t *to = &(dij->nodes[edge->to]);

10 const int cost = cur->cost + edge->cost;
11 if (to->cost == -1) { // node to has not been visited
12 to->cost = cost;
13 to->parent = cur_label;
14 pq_push(pq, edge->to, cost); // put node to the queue
15 } else if (cost < to->cost) { // node already in the queue
16 to->cost = cost; // test if the cost can be reduced
17 to->parent = cur_label; // update the parent node
18 pq_update(pq, edge->to, cost); // update the priority queue
19 }
20 } // loop for all edges of the cur node
21 } // priority queue empty
22 pq_free(pq); // release memory

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 22 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

A* Algorithm

A* uses a user-defined h-values (heuristic) to focus the search
Peter Hart, Nils Nilsson, and Bertram Raphael, 1968

Prefer expansion of the node n with the lowest value

f (n) = g(n) + h(n),

where g(n) is the cost (path length) from the start to n and h(n)
is the estimated cost from n to the goal

h-values approximate the goal distance from particular nodes
Admissiblity condition – heuristic always underestimate the
remaining cost to reach the goal

Let h∗(n) be the true cost of the optimal path from n to the goal
Then h(n) is admissible if for all n: h(n) ≤ h∗(n)
E.g., Euclidean distance is admissible

A straight line will always be the shortest path

Dijkstra’s algorithm – h(n) = 0

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 23 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

A* Implementation Notes
The most costly operations of A* are

Insert and lookup an element in the closed list
Insert element and get minimal element (according to f () value)
from the open list

The closed list can be efficiently implemented as a hash set
The open list is usually implemented as a priority queue, e.g.,

Fibonacii heap, binomial heap, k-level bucket
binary heap is usually sufficient (O(logn))

Forward A*
1. Create a search tree and initiate it with the start location
2. Select generated but not yet expanded state s with the smallest

f -value, f (s) = g(s) + h(s)
3. Stop if s is the goal
4. Expand the state s
5. Goto Step 2

Similar to Dijsktra’s algorithm but it used f (s) with heuristic h(s) instead of pure g(s)

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 24 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Dijsktra’s vs A* vs Jump Point Search (JPS)

https://www.youtube.com/watch?v=ROG4Ud08lLY

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 25 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Jump Point Search Algorithm for Grid-based Path Planning
Jump Point Search (JPS) algorithm is based on a macro operator that
identifies and selectively expands only certain nodes (jump points)

Harabor, D. and Grastien, A. (2011): Online Graph Pruning for Pathfinding on Grid Maps. AAAI.

Natural neighbors after neighbor
prunning with forced neighbors
because of obstacle

Intermediate nodes on a path
connecting two jump points are never
expanded

No preprocessing and no memory overheads while it speeds up A*
https://harablog.wordpress.com/2011/09/07/jump-point-search/

JPS+ – optimized preprocessed version of JPS with goal bounding
https://github.com/SteveRabin/JPSPlusWithGoalBounding

http://www.gdcvault.com/play/1022094/JPS-Over-100x-Faster-than

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 26 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Theta* – Any-Angle Path Planning Algorithm
Any-angle path planning algorithms simplify the path during the search
Theta* is an extension of A* with LineOfSight()

Nash, A., Daniel, K, Koenig, S. and Felner, A. (2007): Theta*: Any-Angle Path
Planning on Grids. AAAI.

Algorithm 2: Theta* Any-Angle Planning
if LineOfSight(parent(s), s’) then

/* Path 2 – any-angle path */
if g(parent(s))+ c(parent(s), s’) < g(s’) then

parent(s’) := parent(s);
g(s’) := g(parent(s)) + c(parent(s), s’);

else
/* Path 1 – A* path */
if g(s) + c(s,s’) < g(s’) then

parent(s’):= s;
g(s’) := g(s) + c(s,s’);

Path 2: considers path from start to parent(s) and
from parent(s) to s’ if s’ has line-of-sight to parent(s)

http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 27 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Theta* Any-Angle Path Planning Examples
Example of found paths by the Theta* algorithm for the same prob-
lems as for the DT-based examples on Slide 16

Both algorithms implemented in C++

δ = 10 cm, L = 26.3 m δ = 30 cm, L = 40.3 m
The same path planning problems solved by DT (without path smooth-
ing) have Lδ=10 = 27.2 m and Lδ=30 = 42.8 m, while DT seems to
be faster

Lazy Theta* – reduces the number of line-of-sight checks
Nash, A., Koenig, S. and Tovey, C. (2010): Lazy Theta*: Any-Angle Path Planning
and Path Length Analysis in 3D. AAAI.

http://aigamedev.com/open/tutorial/lazy-theta-star/

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 28 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

A* Variants – Online Search
The state space (map) may not be known exactly in advance

Environment can dynamically change
True travel costs are experienced during the path execution

Repeated A* searches can be computationally demanding
Incremental heuristic search

Repeated planning of the path from the current state to the goal
Planning under the free-space assumption
Reuse information from the previous searches (closed list entries):

Focused Dynamic A* (D*) – h∗ is based on traversability, it has
been used, e.g., for the Mars rover “Opportunity”
Stentz, A. (1995): The Focussed D* Algorithm for Real-Time Replanning. IJCAI.

D* Lite – similar to D*
Koenig, S. and Likhachev, M. (2005): Fast Replanning for Navigation in Unknown Terrain. T-RO.

Real-Time Heuristic Search
Repeated planning with limited look-ahead – suboptimal but fast

Learning Real-Time A* (LRTA*)
Korf, E. (1990): Real-time heuristic search. JAI

Real-Time Adaptive A* (RTAA*)
Koenig, S. and Likhachev, M. (2006): Real-time adaptive A*. AAMAS.

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 29 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Real-Time Adaptive A* (RTAA*)

Execute A* with limited look-
ahead
Learns better informed heuris-
tic from the experience, ini-
tially h(s), e.g., Euclidean dis-
tance
Look-ahead defines trade-off
between optimality and com-
putational cost

astar(lookahead)
A* expansion as far as ”looka-
head” nodes and it terminates
with the state s ′

while (scurr /∈ GOAL) do
astar(lookahead);
if s’ = FAILURE then

return FAILURE;
for all s ∈ CLOSED do

H(s) := g(s’) + h(s’) - g(s);
execute(plan); // perform one step

return SUCCESS;

s’ is the last state expanded during the
previous A* search

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 30 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

D* Lite – Demo

https://www.youtube.com/watch?v=X5a149nSE9s

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 32 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

D* Lite Overview
It is similar to D*, but it is based on Lifelong Planning A*

Koenig, S. and Likhachev, M. (2002): D* Lite. AAAI.

It searches from the goal node to the start node, i.e., g -values
estimate the goal distance
Store pending nodes in a priority queue
Process nodes in order of increasing objective function value
Incrementally repair solution paths when changes occur
Maintains two estimates of costs per node

g – the objective function value – based on what we know
rhs – one-step lookahead of the objective function value – based
on what we know

Consistency
Consistent – g = rhs
Inconsistent – g 6= rhs

Inconsistent nodes are stored in the priority queue (open list) for
processing

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 33 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

D* Lite: Cost Estimates

rhs of the node u is computed based on g of its successors in the
graph and the transition costs of the edge to those successors

rhs(u) = min
s′∈Succ(u)

(g(s ′) + c(u, s ′))

The key/priority of a node s in the open list is the minimum of
g(s) and rhs(s) plus a focusing heuristic h

[min(g(s), rhs(s)) + h(sstart , s);min(g(s), rhs(s))]

The first term is used as the primary key
The second term is used as the secondary key for tie-breaking

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 34 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

D* Lite Algorithm
Main – repeat until the robot reaches the goal (or g(sstart) =∞ there is no path)
Initialize();
ComputeShortestPath();
while (sstart 6= sgoal) do

sstart = argmins′∈Succ(sstart)(c(sstart , s
′) + g(s′));

Move to sstart ;
Scan the graph for changed edge costs;
if any edge cost changed perform then

foreach directed edges (u, v) with changed edge costs do
Update the edge cost c(u, v);
UpdateVertex(u);

foreach s ∈ U do
U.Update(s, CalculateKey(s));

ComputeShortestPath();

Procedure Initialize
U = 0;
foreach s ∈ S do

rhs(s) := g(s) :=∞;

rhs(sgoal) := 0;
U.Insert(sgoal , CalculateKey(sgoal));

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 35 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

D* Lite Algorithm – ComputeShortestPath()

Procedure ComputeShortestPath
while U.TopKey() < CalculateKey(sstart) OR rhs(sstart) 6= g(sstart) do

u := U.Pop();
if g(u) > rhs(u) then

g(u) := rhs(u);
foreach s ∈ Pred(u) do UpdateVertex(s);

else
g(u) := ∞;
foreach s ∈ Pred(u)

⋃{u} do UpdateVertex(s);

Procedure UpdateVertex
if u 6= sgoal then rhs(u) := mins′∈Succ(u)(c(u, s′) + g(s′));
if u ∈ U then U.Remove(u);
if g(u) 6= rhs(u) then U.Insert(u, CalculateKey(u));

Procedure CalculateKey
return [min(g(s), rhs(s)) + h(sstart , s);min(g(s), rhs(s))]

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 36 / 38

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 37 / 38

Summary of the Lecture

Jan Faigl, 2017 B4M36UIR – Lecture 04: Grid and Graph based Path Planning 38 / 38

