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Overview of the Lecture

m Part 1 — Grid and Graph based Path Planning Methods

= Grid-based Planning

= DT for Path Planning

= Graph Search Algorithms
= D* Lite

= Path Planning based on Reaction-Diffusion Process
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Part |

Part 1 — Grid and Graph based Path
Planning Methods
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Grid-based Planning D* Lite

Grid-based Planning

DT for Path Planning Graph Search Algorithms

m A subdivision of Cgee into smaller cells

RD-based Planning

m Grow obstacles can be simplified by I
growing borders by a diameter of the P
robot

oai

m Construction of the planning graph
G = (V,E) for V as a set of cells and
E as the neighbor-relations

m 4-neighbors and 8-neighbors

| [ 7

{ | |

m A grid map can be constructed from
the so-called occupancy grid maps

E.g., using thresholding

Jan Faigl, 2017
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

RD-based Planning

Grid-based Environment Representations

m Hiearchical planning

m Coarse resolution and re-planning on
finer resolution

Holte, R. C. et al. (1996): Hierarchical A *: searching abstraction hierarchies efficiently. AAAL.

m Octree can be used for the map

representation

m In addition to squared (or rectangular)
grid a hexagonal grid can be used
m 3D grid maps — octomap
https://octomap.github.io
Memory grows with the size of the
environment

Due to limited resolution it may fail in
narrow passages of Crree
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Example of Simple Grid-based Planning

m Wave-front propagation using path simplication

RD-based Planning

Initial map with a robot and goal

Obstacle growing

Find a path using a navigation function

m
m
m Wave-front propagation — “flood fill"
m
m

Path simplification

m “Ray-shooting” technique combined

with Bresenham’s line algorithm

m The path is a sequence of “key” cells

for avoiding obstacles
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Example — Wave-Front Propagation (Flood Fill)
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

Path Simplification

m The initial path is found in a grid using 4-neighborhood

m The rayshoot cast a line into a grid and possible collisions of the
robot with obstacles are checked

m The “farthest” cells without collisions are used as “turn” points

m The final path is a sequence of straight line segments

RD-based Planning

:ﬂil [ 11 [ 11 L

]

= - SEEfERdERE S

Obtacle growing,

Initial and goal locations .
wave-front propagation

Ray-shooting Simplified path
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Grid-based Planning

DT for Path Planning

Bresenham's Line Algorithm

Jan Faigl, 2017

Graph Search Algorithms

D* Lite RD-based Planning

m Filling a grid by a line with avoding float numbers

Yi—Yo

m A line from (xo, yo) to (x1,y1) is given by y = 2=2(x — x0) + yo

27
28
29
30

CoordsVector& bresenham(const Coords& ptl, const 26
Coords& pt2, CoordsVector& line)
{
// The pt2 point is not added into line
int x0 = ptl.c; int y0 = ptl.r;
int x1 = pt2.c; int yl = pt2.r;
Coords p;
int dx = x1 - x0;
int dy = y1 - yO0;

int steep = (abs(dy) >= abs(dx));
if (steep) {
SWAP(x0, y0);
SWAP(x1, y1);
dx = x1 - x0; // recompute Dx, Dy
dy = y1 - yo0;
}
int xstep = 1;
if (dx < 0) {
xstep = -1;
dx = -dx;
}
int ystep = 1;
if (dy < 0) {
ystep = -1;
dy = -dy;
}

B4M36UIR — Lecture 04: Grid and Graph based Path Planning

int twoDy = 2 * dy;
int twoDyTwoDx = twoDy - 2 * dx; //2%Dy - 2x*Dx
int e = twoDy - dx; //2#Dy - Dx

int y = y0;
int xDraw, yDraw;
for (int x = x0; x != x1; x += xstep) {
if (steep) {
xDraw = y;
yDraw = x;
} else {
xDraw = x;
yDraw = y;
}
p.c = xDraw;
p.r = yDraw;

line.push_back(p); // add to the line

if (e > 0) {
e += twoDyTwoDx; //E += 2#Dy - 2%Dx
y =y + ystep;

} else {
e += twoDy; //E += 2%Dy

}

}

return line;
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Distance Transform based Path Planning

m For a given goal location and grid map compute a navigational function
using wave-front algorithm, i.e., a kind of potential field

m The value of the goal cell is set to 0 and all other free cells are set to
some very high value

m For each free cell compute a number of cells towards the goal cell

m It uses 8-neighbors and distance is the Euclidean distance of the centers of
two cells, i.e., EV=1 for orthogonal cells or EV = /2 for diagonal cells

m The values are iteratively computed until the values are changing

m The value of the cell ¢ is computed as

8
cost(c) = rry? (cost(ci) + EVe o),

where ¢; is one of the neighboring cells from 8-neighborhood of the cell ¢

m The algorithm provides a cost map of the path distance from any free cell
to the goal cell

m The path is then used following the gradient of the cell cost

Jarvis, R. (2004): Distance Transform Based Visibility Measures for Covert Path Planning in
Known but Dynamic Environments
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Grid

Distance Transform Path Planning

-based Planning

DT for Path Planning

Graph Search Algorithms

D* Lite RD-based Planning

Algorithm 1: Distance Transform for Path Planning

for y := 0 to yMax do

repeat

for x := 0 to xMax do
if goal [x,y] then

‘ cell [x,y] ;== 0;
else

for y := 1 to (yMax - 1) do
for x := 1 to (xMax - 1) do
if not blocked [x,y] then
| cell [xy] := cost(x, y);

for y := (yMax-1) downto 1 do
for x := (xMax-1) downto 1 do
if not blocked [x,y] then

| celllxy] := cost(x, y);

until no change;

L cell [x,y] := xMax * yMax; //initialization, e.g., pragmatic of the use longest distance as o ;

Jan Faigl, 2017
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Distance Transform based Path Planning — Impl. 1/2

1  Grid& DT::compute(Grid& grid) const 35 for (int r =H - 2; r > 0; --r) {

2 { 36 for (int ¢ =W - 2; ¢ > 0; --c) {

3 static const double DIAGONAL = sqrt(2); 37 if (mapl[r]l[c] != FREESPACE) {

4 static const double ORTOGONAL = 1; 38 continue;

5 const int H = map.H; 39 } //obstacle detected

6 const int W = map.W; 40 double t[4];

7 assert(grid.H == H and grid.W == W, "size"); 41 t[1] = grid[r + 1][c] + ORTOGONAL;
8 bool anyChange = true; 42 t[0] = grid[r + 1][c + 1] + DIAGONAL;
9 int counter = 0; 43 t[3] = gridlr]l[c + 1] + ORTOGONAL;
10 while (anyChange) { 44 t[2] = grid[r + 1]1[c - 1] + DIAGONAL;
11 anyChange = false; 45 double pom = grid[r]([cl;

12 for (int r = 1; r < H - 1; ++r) { 46 bool s = false;

13 for (int ¢ = 1; ¢ < W - 1; ++c) { 47 for (int i = 0; i < 4; i++) {

14 if (mapl[r][c] != FREESPACE) { 48 if (pom > t[i]) {

15 continue; 49 pom = t[il;

16 } //obstacle detected 50 s = true;

17 double t[4]; 51 ¥

18 t[0] = grid[r - 1][c - 1] + DIAGONAL; 52 }

19 t[1] = gridlr - 1]1[c] + ORTOGONAL; 53 if (s) {

20 t[2] = grid[r - 1]1[c + 1] + DIAGONAL; 54 anyChange = true;

21 t[3] = grid[r]l[c - 1] + ORTOGONAL; 55 grid[r][c] = pom;

22 double pom = grid[r][c]; 56

23 for (int i = 0; i < 4; i++) { 57 }

24 if (pom > t[i]) { 58 3

25 pom = t[il; 59 counter++;

26 anyChange = true; 60 } //end while any change

27 } 61 return grid;

28 T 62

29 if (anyChange) {

30 grid[r] [c] = pom; A boundary is assumed around the rectangular map

31 }

32 }

33

}
Jan Faigl, 2017
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Distance Transform based Path Planning — Impl. 2/2

m The path is retrived by following the minimal value towards the
goal using min8Point ()

1 Coords& min8Point (const Grid& grid, Coords& p) 22  CoordsVector& DT::findPath(const Coords& start,
2 { const Coords& goal, CoordsVector& path)
3 double min = std::numeric_limits<double>::max(); 23 {
4 const int H = grid.H; 24 static const double DIAGONAL = sqrt(2);
5 const int W = grid.W; 25 static const double ORTOGONAL = 1;
6 Coords t; 26 const int H = map.H;
7 27 const int W = map.W;
8 for (int r = p.r - 1; r <= p.r + 1; r++) { 28 Grid grid(H, W, H*W); // H*W max grid value
9 if (r < 0 or r >= H) { continue; } 29 grid[goal.r] [goal.c] = 0;
10 for (int ¢ = p.c - 1; ¢ <= p.c + 1; c++) { 30 compute (grid) ;
11 if (c < 0 or ¢ >= W) { continue; } 31
12 if (min > grid[r][c]) { 32 if (grid[start.r][start.c] >= H¥W) {
13 min = grid[r][c]; 33 WARN("Path has not been found");
14 t.r =1; t.c = c; 34 } else {
15 ¥ 35 Coords pt = start;
16 } 36 while (pt.r != goal.r or pt.c != goal.c) {
17 } 37 path.push_back(pt) ;
18 p=t; 38 min8Point (grid, pt);
19 return p; 39 }
20 } 40 path.push_back(goal) ;
41 ¥
42 return path;
43 }
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Grid-based Planning D* Lite

DT Example

DT for Path Planning Graph Search Algorithms RD-based Planning

0=10cm, L =272 m 60=30cm, L =428 m
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Graph Search Algorithms

m The grid can be considered as a graph and the path can be found
using graph search algorithms

m The search algorithms working on a graph are of general use, e.g.
m Breadth-first search (BSD)
m Depth first search (DFS)
m Dijsktra’s algorithm,
m A* algorithm and its variants

m There can be grid based speedups techniques, e.g.,
m Jump Search Algorithm (JPS) and JPS+

m There are many search algorithm for on-line search, incremental
search and with any-time and real-time properties, e.g.,
m Lifelong Planning A* (LPA*)
Koenig, S., Likhachev, M. and Furcy, D. (2004): Lifelong Planning A*. AlJ.
m E-Graphs — Experience graphs
Phillips, M. et al. (2012): E-Graphs: Bootstrapping Planning with Experience Graphs. RSS.
Jan Faigl, 2017
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Examples of Graph/Grid Search Algorithms

ithptimal path
h & endpeints

A* (general)

https://www.youtube.com/watch?v=U2XNjCoKZjM.mp4

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 19 / 92
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Dijkstra’s Algorithm

m Dijsktra’s algorithm determines paths as iterative update of the
cost of the shortest path to the particular nodes
Edsger W. Dijkstra, 1956

B Let start with the initial cell (node)
with the cost set to 0 and update
all successors

m Select the node
B with a path from the initial node
B and has a lower cost

m Repeat until there is a reachable
node
B l.e., a node with a path from the initial node
B has a cost and parent (green nodes).

The cost of nodes can only decrease (edge cost is positive). Therefore, for a
node with the currently lowest cost, there cannot be a shorter path from the
initial node.

anning

Grid-based Planning DT for Path Planning D* Lite RD-based Planning

Graph Search Algorithms

Example (cont.)
(i3

2: There is not shorter path to the node 2 over the
node 1

1: After the expansion, the shortest path to the
node 2 is over the node 3

4: The path does not improve for further

3: After the expansion, there is a new path to the
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. ] . . 1 .
Dijkstra’s Algorithm Dijkstra’s Algorithm — Impl.
Algorithm 2: Dijkstra’s algorithm 1 dij->nodes[dij->start_node].cost = 0; // init
— 2 void *pq = pq_alloc(dij->num_nodes); // set priority queue
Imt'ahze(sstart); /* g(S) =005 g(sstart) 0 */ 3 int cur_label;
PQ-pUSh(sstartv g(sstart)); 4 pq_pus}(x(pq, dij->Stal(‘t_I)10de, 0); : ¢
. 5 while ! is_empt && o , &cur_label
Whlle (nOt 'DQempty?) dO 6 node_tpjcur = g(zi?c—l>nodels)%cﬁrp_>lzgel]); // remember the current node
S = Ponp(), 7 for (int i = 0; i < cur->edge_count; ++i) { // all edges of cur
/ 8 edge_t *edge = &(dij->graph->edges[cur->edge_start + i]);
foreaCh s € SUCC(S) do 9 noie_t *tog= &(dij—inoiesp[edge—éto]); )
if s'in PQ then 10 const int cost = cur->cost + edge->cost;
if g(s/) > g(s) + COSt(S,SI) then 11 if (to->cost == -1) { // node to has not been visited
) , 12 to->cost = cost;
g(s") == g(s) + cost(s,s’); 13 to->parent = cur_label;
PQ.update(s’,g(s’)); 14 pa_push(pq, edge->to, cost); // put node to the queue
15 } else if (cost < to->cost) { // node already in the queue
else if ¢ ¢ CLOSED then 16 to->cost = cost; // test if the cost can be reduced
’ ’ 17 to->parent = cur_label; // update the parent node
g(s ) = g(s) + COSt(57 S ); 18 pa_update(pq, edge->to, cost); // update the priority queue
PQ.push(s’, g(s')); 19
L = 20 } // loop for all edges of the cur node
CLOSED := CLOSED U{S}; 21} // priority queue empty
L 22 pq_free(pq); // release memory
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Graph Search Algorithms

A* Algorithm

m A* uses a user-defined h-values (heuristic) to focus the search
Peter Hart, Nils Nilsson, and Bertram Raphael, 1968

m Prefer expansion of the node n with the lowest value
f(n) = g(n) + h(n),

where g(n) is the cost (path length) from the start to n and h(n)
is the estimated cost from n to the goal

m h-values approximate the goal distance from particular nodes

m Admissiblity condition — heuristic always underestimate the
remaining cost to reach the goal
m Let h*(n) be the true cost of the optimal path from n to the goal

m Then h(n) is admissible if for all n: h(n) < h*(n)
m E.g., Euclidean distance is admissible

m A straight line will always be the shortest path
m Dijkstra's algorithm — h(n) =0

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning
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Graph Search Algorithms

A* Implementation Notes

m The most costly operations of A* are
m Insert and lookup an element in the closed list
m Insert element and get minimal element (according to f() value)
from the open list

m The closed list can be efficiently implemented as a hash set
m The open list is usually implemented as a priority queue, e.g.,

m Fibonacii heap, binomial heap, k-level bucket
m binary heap is usually sufficient (O(logn))

m Forward A*

1. Create a search tree and initiate it with the start location

2. Select generated but not yet expanded state s with the smallest
f-value, f(s) = g(s) + h(s)

3. Stop if s is the goal

Expand the state s

5. Goto Step 2

i

Similar to Dijsktra's algorithm but it used f(s) with heuristic h(s) instead of pure g(s)
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Graph Search Algorithms

Dijsktra’s vs A* vs Jump Point Search (JPS)

https://wuw.youtube.com/watch?v=R0G4Ud081LY
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Grid-based Planning DT for Path Planning lanning

Graph Search Algorithms D te RD-based

Jump Point Search Algorithm for Grid-based Path Planning

m Jump Point Search (JPS) algorithm is based on a macro operator that
identifies and selectively expands only certain nodes (jump points)

Harabor, D. and Grastien, A. (2011): Online Graph Pruning for Pathfinding on Grid Maps. AAAI.

m Natural neighbors after neighbor | + | 2 | = e 1 . 3
prunning with forced neighbors adex | s o | x| o dee | s
because of obstacle s |7 | e . s 1o 1.

m Intermediate nodes on a path s
connecting two jump points are never H i
expanded i ' g ||

m No preprocessing and no memory overheads while it speeds up A*
https://harablog.wordpress.com/2011/09/07/jump-point-search/

m JPS+ — optimized preprocessed version of JPS with goal bounding
https://github.com/SteveRabin/JPSPlusWithGoalBounding
http://www.gdcvault.com/play/1022094/JPS-0ver-100x-Faster-than
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Theta™ — Any-Angle Path Planning Algorithm

m Any-angle path planning algorithms simplify the path during the search
m Theta* is an extension of A* with Line0fSight ()

Nash, A., Daniel, K, Koenig, S. and Felner, A. (2007): Theta*: Any-Angle Path

Planning on Grids. AAAL.
1 2 3 4 5
A .

>>>>>

Algorithm 3: Theta* Any-Angle Planning

if LineOfSight(parent(s), s’) then B
/* Path 2 — any-angle path */
if g(parent(s))+ c(parent(s), s’) < g(s’) then
parent(s') := parent(s); o
L g(s") = g(parent(s)) + c(parent(s), s'); - Path1

Path 2

else

/* Path 1 — A* path */

if g(s) + c(s,;s’) < g(s’) then 1 2 3 4 5
L parent(s'):=s; A e

g(s') :=g(s) + c(s.s'); s
- B @/@'

m Path 2: considers path from start to parent(s) and
from parent(s) to s’ if s’ has line-of-sight to parent(s) .C;
- -- Path |

Path 2

http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
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Theta™ Any-Angle Path Planning Examples

m Example of found paths by the Theta* algorithm for the same prob-
lems as for the DT-based examples on Slide 16

Both algorithms implemented in C+4+

0=10cm, L=26.3 m 6=30cm, L=40.3 m

The same path planning problems solved by DT (without path smooth-
ing) have Ls_10 = 27.2 m and Ls_39 = 42.8 m, while DT seems to
be significantly faster

m Lazy Theta* — reduces the number of line-of-sight checks

Nash, A., Koenig, S. and Tovey, C. (2010): Lazy Theta*: Any-Angle Path Planning
and Path Length Analysis in 3D. AAAL.

http://aigamedev.com/open/tutorial/lazy-theta-star/
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A* Variants — Online Search

m The state space (map) may not be known exactly in advance
m Environment can dynamically change
m True travel costs are experienced during the path execution

m Repeated A* searches can be computationally demanding
m Incremental heuristic search
m Repeated planning of the path from the current state to the goal
m Planning under the free-space assumption
m Reuse information from the previous searches (closed list entries):
B Focused Dynamic A* (D*) — h* is based on traversability, it has

been used, e.g., for the Mars rover “Opportunity”
Stentz, A. (1995): The Focussed D* Algorithm for Real-Time Replanning. 1JCAL.

m D* Lite — similar to D*

Koenig, S. and Likhachev, M. (2005): Fast Replanning for Navigation in Unknown Terrain. T-RO.

m Real-Time Heuristic Search
m Repeated planning with limited look-ahead — suboptimal but fast

B Learning Real-Time A* (LRTA¥)
Korf, E. (1990): Real-time heuristic search. JAI

m Real-Time Adaptive A* (RTAA*)
Koenig, S. and Likhachev, M. (2006): Real-time adaptive A*. AAMAS.
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Real-Time Adaptive A* (RTAA¥)

m Execute A* with limited look-

while (scr ¢ GOAL) do
ahead

astar(lookahead);

if s"= FAILURE then
| return FAILURE;

for all s € CLOSED do

| H(s) = g(s) + h(s) - g(s);
| execute(plan); // perform one step
return SUCCESS;

s’ is the last state expanded during the
previous A* search

m Learns better informed heuris-
tic from the experience, ini-
tially h(s), e.g., Euclidean dis-
tance

m Look-ahead defines trade-off
between optimality and com-
putational cost

m astar(lookahead)

A* expansion as far as "looka-
head” nodes and it terminates
with the state s’
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D* Lite — Demo

anning

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite Overview

m It is similar to D*, but it is based on Lifelong Planning A*

Koenig, S. and Likhachev, M. (2002): D* Lite. AAAI.
It searches from the goal node to the start node, i.e., g-values
estimate the goal distance

Store pending nodes in a priority queue
Process nodes in order of increasing objective function value

Incrementally repair solution paths when changes occur
Maintains two estimates of costs per node

m g — the objective function value — based on what we know

m rhs — one-step lookahead of the objective function value — based

on what we know

Consistency

m Consistent — g = rhs

m Inconsistent — g # rhs

m Inconsistent nodes are stored in the priority queue (open list) for
processing
https://www.youtube.com/watch?v=X5a149nSE9s
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D* Lite: Cost Estimates D* Lite Algorithm
m Main — repeat until the robot reaches the goal (or g(sstar) = oo there is no path)
Initialize();
m rhs of the node u is computed based on g of its successors in the ComputeShortestPath();
graph and the transition costs of the edge to those successors while (Ssiart # Sgoat) do , ,
Sstart = argmlnslEsucc(sstart)(c(sstart, ')+ g(s));
Move to Sstart;
. / /
rhS(U) =, min (g(s ) + C(U, S )) Scan the graph for changed edge costs;
s'€Succ(u) if any edge cost changed perform then
foreach directed edges (u, v) with changed edge costs do
m The key/priority of a node s on the open list is the minimum of L Update the edge cost c(u, v);
. .. UpdateVerte ;
g(s) and rhs(s) plus a focusing heuristic h P x(u)
foreach s € U do
. . L U.Update(s, CalculateKey(s));
[min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s))] ComputeShortestPath():
m The first term is used as the primary key Procedure Initialize
. . . Uu=0;
m The second term is used as the secondary key for tie-breaking foreach s € S do
| rhs(s) := g(s) := oo
rhs(sgoar) 1= 0;
U.Insert(sgoa/, CalculateKey(sgoar));
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D* Lite

D* Lite Algorithm — ComputeShortestPath()

Procedure ComputeShortestPath

while U.TopKey() < CalculateKey(sstart) OR rhs(sstart) 7 g(Sstart) do
u := U.Pop();
if g(u) > rhs(u) then
g(u) := rhs(u);
‘ foreach s € Pred(u) do UpdateVertex(s);
else

g(u) := oo;
foreach s € Pred(u) | J{u} do UpdateVertex(s);

Procedure UpdateVertex

if U7 sgoas then rhs(u) 1= ming csycc(uy(c(u,s") +g(s’));
if u € U then U.Remove(u);
if g(u) # rhs(u) then U.Insert(u, CalculateKey(u));

Procedure CalculateKey
return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s))]
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D* Lite
D* Lite — Demo

alrn s le s

L TN A"
—

(44 [h\NY [V IS

NS
—

https://github.com/mdeyo/d-star-lite

H Obstacle node |

On open st

graph su-

D* Lite
D* Lite — Example
3.0 31 3.2 33 34 Legend
[ Free node
2,0 1 2 3 4
jtart m A grid map of the envi-
ronment (what is actu-
% ally known)
1,0 1 2 3 4 m 8-connected
perimposed on the grid
(bidirectional)
m Focusing heuristic is not
00 goalfo1 0,2 0.3 0.4 used (h = 0)

m Transition costs

B Free space — Free space: 1.0 and 1.4 (for diagonal edge)
B From/to obstacle: co
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D* Lite
D* Lite — Example Planning (1)
3.0 3.1 32 3.3 3.4 Legend
g: 0o g: 0o g oo g: oo g: 0o [Free node ” Obstacle node |
rhs: oo rhs: co rhs: oo rhs: oo rhs: co On open list
2,0 2,1 2,2 2,3 2,4 start itiali .
e o g o = 0o Initialization
rhs: co rhs: co rhs: co rhs: oo rhs: oo,?, = Set rhs = 0 for the goal
N m Set rhs = g = oo for all other

1,0 1,1 1,2 13 1,4 nodes
g: 0o g: 0o g: 0o g: 0o g: 00
rhs: co rhs: oo rhs: oo rhs: oo rhs: co
0,0 goal 0,1 0,2 0,3 0,4
g: o g: o g: co g: o g oo
rhs: 0 rhs: co rhs: co rhs: oo rhs: co
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (2)

3,0 3.1 3.2 33 34 Legend
g0 |[eoo |[eroc |[eoc |[eo0 || [Freenode |[Obstaclenode]
rhs: oo rhs: oo rhs: oo rhs: oo rhs: oo On open list
2,0 2,1 2,2 2,3 2,4 start itiali .
s prpes P prps P Initialization -
rhs: co rhs: oo rhs: co rhs: co rhs: 0@ m Put the goal to the open list
X It is inconsistent
1,0 1,1 1,2 13 1,4
g: 0o g: oo g: 0o
rhs: co rhs: oo rhs: co
0,0 goal 0,1 0,2 0,3 0,4
g: 0o g: 0o g: 0o g: oo
rhs: 0 rhs: co rhs: co rhs: co
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from the open list (goal)

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (3)
3.0 3.1 32 33 34 Legend
g0 |[eoo |[feroc |[eoc |[eo0 || [Freenode |(Obstaclenode]
rhs: oo rhs: co rhs: oo rhs: co rhs: co On open list
2,0 2,1 2,2 23 24 start
e s s s s ComputeShortestPath
rhs: oo rhs: co rhs: co rhs: oo rhs: oosl), = Pop the minimum element
ZAY

10 1.1 1.2 13 L4 m It is over-consistent (g >
g: 0o g: oo g: 00 rhs), therefore set g = rhs
rhs: co rhs: oo rhs: oo

0,0 gpal [0.1 0,2 0.3 0,4

g 0 g: 0o g: 0o g: 0o

rhs: 0 rhs: oo - rhs: co rhs: oo
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (4)
3.0 3.1 3.2 33 3.4 Legend
g [ |[ee |[so | || [Feenode |[ObstaclehadeT]
rhs: co rhs: oo rhs: co rhs: co rhs: co On open list
2,0 2,1 2,2 2,3 2,4 start
s e s s s ComputeShortestPath
rhs: co rhs: co rhs: oo rhs: oo rhs: oos)r = Expand popped no.de
X (UpdateVertex() on all its
1,0 1,1 1,2 13 1,4 predecessors)
g: 0o g: 0o g: 0o m This computes the rhs values
rhs: 1 ths: o0 rhs: 60 for the predecessors
I m Nodes that become inconsis-
Mo_al 01 0.2 03 0.4 tent are added to the open list
g 0 g: 0o g: 0o g: 0o
&
rhs: O rhs: 1 rhs: oo rhs: oo

Small black arrows denote the node used for computing the rhs value, i.e., using the respec-
tive transition cost

m The rhs value of (1,1) is co because the transition to obstacle has cost co
Jan Faigl, 2017
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (5)
3.0 3.1 32 33 34 Legend
g |[eoo |[eoc |[eo0 |[& o || [Freenode |(Obstaclenode’]
rhs: oo rhs: co rhs: oo rhs: co rhs: co On open list
2,0 21 2,2 2,3 2,4 start
o > o > o > o o o ComputeShortestPath
rhs: co rhs: co rhs: co rhs: oo rhs: oosl), = Pop the minimum element
X from the open list (1,0)
1.0 11 1.2 13 14 m It is over-consistent (g > rhs)
g1l g: g: o0 set g = rhs
rhs: 1 rhs: co rhs: co

I
0,0 koa| 0,1 0,2 0,3 0,4

g 0 g: 0o g: 0o g: 0o
T3
rhs: 1

rhs: 0

rhs: co rhs: co
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Graph Search Algorithms

Grid-based Planning DT for Path Planning D* Lite RD-based Planning
D* Lite — Example Planning (6)
30 31 32 33 34 Legend
g | [ |[eo | || [Freenode |[Obstaclenode]
rhs: co rhs: co rhs: co rhs: oo rhs: co On open list
2,0 2,1 2,2 2,3 24 start
s s e s g ComputeShortestPath
rhs: 2 rhs: 2.4 ||| rhs: co rhs: oo rhs: oopr = Expand the popped node
i S X (UpdateVertex() on all pre-
1,0 J, I/'1,1 1,2 1,3 1,4 decessors in the graph)
g1 g: 00 g: 0o m Compute rhs values of the
ths: 1 N . N P— predecessors accordingly
I m Put them to the open list if
00 goal |01 0.2 03 0.4 they become inconsistent
g0 g: 00 g: 00 g: 0o
&
rhs: 0 rhs: 1 rhs: co rhs: oo

m The rhs value of (0,0), (1,1) does not change

m They do not become inconsistent and thus they are not put on the open list
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (7)
3.0 3.1 32 33 34 Legend
g |[eo |fe~ |[e~ |[eo | [(Feenode |[ObsiaciemodeT]
rhs: oo rhs: co rhs: oo rhs: co rhs: co On open list
2,0 2,1 2,2 23 2,4 start
s s s s s ComputeShortestPath
rhs: 2 rhs: 2.4 ||| rhs: co rhs: co rhs: oosl), = Pop the minimum element
I S X from the open list (0,1)
0o § 11 1.2 13 14 m It is over-consistent (g > rhs)
g1 g: 00 g: oo and thus set g = rhs
rhs: 1 rhs: oo rhs: oo m Expand the popped element,

I e.g., call UpdateVertex()

0,0 koa| 0,1 0,2 0,3 0,4

g 0 g1l g: o0 g: co
1€
rhs: 1

rhs: 0

rhs: co rhs: co
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (8)
30 31 32 33 34 Legend
g [ |[ee |[so | || [Feenode |[ObstacleadeT]
rhs: co rhs: co rhs: co rhs: co rhs: co
2,0 2,1 2,2 2,3 24 start
o2 s s e s ComputeShortestPath
. . . . . .0 m Pop the minimum element
rhs,I2 /rhs. 2.4 ||| rhs: co rhs: oo rhs: OOX from the open list (2,0)
0 | A1l 1.2 L3 14 m It is over-consistent (g > rhs)
g1 g: 00 g: oo and thus set g = rhs
rhs: 1 rhs: oo rhs: co

I
0,0 toa| 0,1 0,2 0,3 0,4

|

rhs: 0 rhs: 1 rhs: co rhs: co

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (9)
3.0 3.1 32 33 34 Legend
g |fe> |fe~ |[e~ |fe~ | [(Feenode |[ObsiaciemodeT]
rhs: 3 rhs: 3.4 ||| rhs: co rhs: oo rhs: oo
I 7
20 | A21 2,2 2,3 24 start
g2 o > o > o o o ComputeShortestPath
; . . . .0 m Expand the popped element
rhs: 2 SRR || rhs: o hsgeo i OOX and put the predecessors that

|
1,0 l I/’1,1 1,2 1,3 1,4 become inconsistent onto the
g 1 g 0o g 0o open list
rhs: 1 rhs: co rhs: co

I
0,0 koa| 0,1 0,2 0,3 0,4

€|

rhs: 0 rhs: 1 rhs: co rhs: oo
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Jan Faigl, 2017 47 / 92

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 48 / 92




Grid-based Planning DT for Path Planning

D* Lite — Example Planning (10)

Graph Search Algorithms

3,0 3,1 3,2 3.3 3.4

g: 0o g: 0o g: 0o g: o© g: oo
rhs: 3 rhs: 3.4 ||| rhs: oo rhs: oo rhs: oo
2,0 i {’;,1 2,2 2,3 24 gtart
g 2 g 2.4 g: 00 g: 00 g: 0o
rhs: 2 rhs: 2.4 ||| rhs: co rhs: oo rhs: oos)r
1,0 i {’{,1 1,2 13 1,4 -
g1 g: o g: 0o
rhs: 1 - - rhs: oo rhs: oo

0,0 toa| 0,1 0,2 0,3 0,4

g0 g1 g: o0 g: 0o
&
rhs: 1

rhs: 0

rhs: co rhs: co
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D* Lite RD-based Planning

Legend

[Free node _|[Obstacle node |
On open lst

ComputeShortestPath

m Pop the minimum element
from the open list (2,1)

m It is over-consistent (g > rhs)
and thus set g = rhs
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (11)
30 31 32 33 34 Legend
g |feroo |[f[eros |[[eoc |[er0 || [Freenode |[Obstacle node]
rhs: 3 rhs: 3.4 rhs: 3.8 rhs: co rhs: co
I 7 7
2,0 i I/’2,1 (2,2 2,3 2,4 gtart
g 2 o 24 s s s ComputeShortestPath
] ; ) . .0 m Expand the popped element
rhs.l2 /rhs. R | QRRSESEE (| rhs: oo s OOX and put the predecessors that
1,0 l I/’1,1 1,2 1,3 1,4 become inconsistent onto the
g 1 g 0o g 0o open list
rhs: 1 rhs: oo rhs: co

0,0 koa| 0,1 0,2 0,3 0,4

g 0 g1 g: o0 g: co
1|
rhs: 1

rhs: 0

rhs: co rhs: co
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Grid-based Planning DT for Path Planning

D* Lite — Example Planning (12)

Graph Search Algorithms

3,0 3,1 3,2 33 3,4
g 3 g: o g: oo g: oo g: 00
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: co rhs: oo

I / /
20 | f21 /22 2,3 24 gstart
g: 2 g: 2.4 g: o© g: oo g: 0o
rhs: 2 rhs: 2.4 i rhs: 3.4 ||| rhs: co rhs: oos)r
1,0 i {’{,1 1,2 1,3 1,4 =
g1 g: 00 g: co
rhs: 1 - - rhs: oo rhs: oo
0,0 tl oal |01 0,2 0,3 0,4
g: 0 g1l g: © g: o
rhs: 0 i rhs: 1 - rhs: oo rhs: co
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D* Lite RD-based Planning

Legend

(Free node _|[Obstacle node |
On open list

ComputeShortestPath

m Pop the minimum element
from the open list (3,0)

m It is over-consistent (g > rhs)
and thus set g = rhs

m Expand the popped element
and put the predecessors that
become inconsistent onto the
open list

m In this cases, none of the pre-
decessors become inconsistent
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (13)
30 31 32 33 34 Legend
g3 |[e34 |[e= |[er |[eoc | [Freenode |[Obstaclenode’]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo rhs: oo On open list
I 7 /
20 | A21 /22 2,3 24 start
o2 o 24 s s s ComputeShortestPath
& -
) ] . . . .0 m Pop the minimum element
rhs.l2 /rhs. 2.4 || ISR | rhs: oo (s OOX from the open list (3,0)
0} A1 1.2 L3 14 m It is over-consistent (g > rhs)
g1 g: 00 g: oo and thus set g = rhs
rhs: 1 rhs: co rhs: co m Expand the popped element

and put the predecessors that
become inconsistent onto the
open list

I
0,0 toa| 0,1 0,2 0,3 0,4

g0 g1 g: oo g: 0o
&
rhs: 1

rhs: 0

rhs: co rhs: co n

In this cases, none of the pre-
decessors become inconsistent

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 52 /92




Grid-based Planning DT for Path Planning

D* Lite — Example Planning (14)

Graph Search Algorithms

3,0 3,1 3,2 3.3 3,4
g 3 g: 3.4 g: oo g: oo g: oo
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: oo rhs: oo

I 7 7
20 | A21 /22 2,3 24 gtart
g 2 g 2.4 g 3.4 g: 00 g: 0o
rhs: 2 ths: 2.4 ||| rhs: 3.4 ||| rhs: oo rhs: <>os)r
1,0 i {’{,1 1,2 13 1,4 -
g1 g: o g: 0o
rhs: 1 - - rhs: oo rhs: oo

0,0 toa| 0,1 0,2 0,3 0,4

rhs: 0 rhs: co rhs: co

g0 g1 g: o0 g: 0o
&
rhs: 1
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D* Lite RD-based Planning

Legend

[Free node _|[Obstacle node |
On open lst

ComputeShortestPath

m Pop the minimum element
from the open list (2,2)

m It is over-consistent (g > rhs)
and thus set g = rhs
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (15)
3.0 31 3.2 33 34 Legend
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: co
T 7 7 7
2,0 i I/’2,1 (2,2 I/’2,3 2,4 gtart
22 o 24 34 s s ComputeShortestPath
) ] ; M . .0 m Expand the popped element
rhs.l2 /rhs. 2.4 || QRS 3'4K RS (| rhs: OOX and put the predecessors that
1,0 l I/’1,1 1,2 \{3 1,4 become inconsistent onto the
g 1 g 00 g 0o open list, i.e., (3,2), (3,3),
(23)
rhs: 1 rhs: 4.8 ||| rhs: co

0,0 koa| 0,1 0,2 0,3 0,4

g 0 g1 g: o0 g: co
1|
rhs: 1

rhs: 0 rhs: co rhs: co
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Grid-based Planning DT for Path Planning

D* Lite — Example Planning (16)

Graph Search Algorithms

3,0 3,1 3,2 33 3,4
g3 g 3.4 g: 3.8 g g 0
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: oo

I 7 7 /
20 | f21 /22 /23 24 gstart
g2 g: 2.4 g: 3.4 g: 00 g: 0o
rhs: 2 rhs: 2.4 l rhs: 3.4 l rhs: 4.4 ||| rhs: oopr
1,0 i {’{,1 1,2 \Q3 1,4 =
g1 g: 00 g: co
rhs: 1 - - rhs: 4.8 ||| rhs: oo
0,0 tl oal |01 0,2 0,3 0,4
g: 0 gl g: © g: o
rhs: 0 i rhs: 1 - rhs: oo rhs: co
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D* Lite RD-based Planning

Legend

(Free node _|[Obstacle node |
On open list

ComputeShortestPath

m Pop the minimum element
from the open list (3,2)

m It is over-consistent (g > rhs)
and thus set g = rhs

m Expand the popped element
and put the predecessors that
become inconsistent onto the
open list

m In this cases, none of the pre-
decessors become inconsistent
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (17)
3.0 3.1 32 33 34 Legend
g3 |[e34 |[e38 |[er |[er | [Freenode |[Obstaclenode ]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: oo
| / / /
20 | A21 (2,2 /23 24 start
g2 o 24 e 34 o 44 o o ComputeShortestPath
< L3 ..
) ) ) ; . .0 m Pop the minimum element
rhs.l2 /rhs. 2.4 ||| rhs: 3.4K rhs: 4.4 ||| rhs: OOX from the open list (2.3)
o § 11 1.2 N3 14 m It is over-consistent (g > rhs)
g1 g: 00 g: 0o and thus set g = rhs
rhs: 1 rhs: 4.8 ||| rhs: co

I
0,0 koa| 0,1 0,2 0,3 0,4

g 0 g1 g: o0 g: co
1|
rhs: 0 rhs: 1

rhs: co rhs: co
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Grid-based Planning DT for Path Planning

D* Lite — Example Planning (18)

Graph Search Algorithms

3,0 3,1 3,2 3,3 3,4

g 3 g: 3.4 g: 3.8 g: oo g: o0

rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
T 7 7 7 7

20 | A21 /22 (2,3 /24 start

g: 2 g: 2.4 g: 3.4 g 4.4 g: oo

rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5.‘$

74}

[ |
1,0 J, I/’1,1 1,2 \Qs \{4

g1 g: © g: o
rhs: 1 - - rhs: 4.8 ||| rhs: 5.8
0,0 tl oal |01 0,2 0,3 0,4

g: 0 g1l g: 0o g oo
rhs: 0 i rhs: 1 - rhs: co rhs: co
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D* Lite RD-based Planning

Legend

[Free node _|[Obstacle node |
On open lst

ComputeShortestPath

m Expand the popped element
and put the predecessors that
become inconsistent onto the
open list, i.e., (3,4), (2.4),
(1.4)

m The start node is on the open
list

m However, the search does not
finish at this stage

m There are still inconsistent
nodes (on the open list) with
a lower value of rhs
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (19)
30 31 32 33 34 Legend
g3 |[e34 |[e3s |[e48 | | [Freenode |[Obstaclenode’]
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
2,0 i 1’?1 {’gz 1’?3 144 tart
: - ' - 4 star
o2 o 24 o34 e 4d s ComputeShortestPath
& € K| P th ini | t
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5-‘$ " fOP the mlnllr'n:m3 2e emen
; ba K. K| ¢ rom the open list (3,2)
10} A1 1.2 N3 N4 m It is over-consistent (g > rhs)
g1l g: 00 g: o0 and thus set g = rhs
rhs: 1 rhs: 4.8 ||| rhs: 5.8 m Expand the popped element

and put the predecessors that
become inconsistent onto the
open list

I
0,0 koa| 0,1 0,2 0,3 0.4

g0 g1 g: oo g: oo
&
rhs: 1

rhs: 0

rhs: co rhs: co n

In this cases, none of the pre-
decessors become inconsistent
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Grid-based Planning DT for Path Planning

D* Lite — Example Planning (20)

Graph Search Algorithms

3,0 3,1 3,2 33 3,4
g 3 g: 3.4 g: 3.8 g 4.8 g: 0o
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
T 7 7 7 7
2,0 J, I/’2,1 I/'2,2 (2,3 I/’2,4 start
g: 2 g: 2.4 g: 3.4 g 4.4 g: oo
< < &
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5.‘$
T y4 K 7AY
10 | A1 1,2 N3 \{4
g1 g: 4.8 g: oo
rhs: 1 rhs: 4.8 ||| rhs: 5.8

I
0,0 toa| 0,1 0,2 0,3 0,4

g0 g1 g: o0 g: oo
&
rhs: 1

rhs: 0 rhs: co rhs: co
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D* Lite RD-based Planning

Legend

[Free node _|[Obstacle node |
On open lst

ComputeShortestPath

m Pop the minimum element
from the open list (1,3)

m It is over-consistent (g > rhs)
and thus set g = rhs
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (21)
3.0 31 3.2 33 34 Legend
g 3 g 3.4 g: 3.8 g: 4.8 & e _
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
,i, W 7 7 7
2,0 21 2,2 /23 /24 start
g2 o 24 o 34 g 44 s ComputeShortestPath
) ) N ) N ) M . m Expand the popped element
rhs.l2 /rhs. 24 |||Lrhs: 3'4K rhs: 4'4K i 5'1% and put the predecessors that
1,0 l I/’1,1 1,2 \13 \{4 become inconsistent onto the
g 1 g 4.8 g 0o open list, i.e., (0,3) and (0,4)
rhs: 1 rhs: 4.8 ||| rhs: 5.8
| A N
0,0 koa| 0,1 0,2 0,3 | \Q“
g 0 g1 g: 00 g: co
€|
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (22)

30 31 32 33 34 Legend

g3 g: 3.4 g: 3.8 g: 4.8 g e _

Grid-based Planning DT for Path Planning

Graph Search Algorithms D* Lite RD-based Planning

D* Lite — Example Planning (23)

A A A A . | 34 Legend
2,0 (2,1 (2,2 (2,3 (2,4 . ; :
_— 4] == start | o mputeShortestPath rhs: 4.8 ||| rhs: 5.8 On open list
g 2 g 2.4 g: 3.4 g 4.4 g: 5.4 7
1§ N 1§ P th ini | t 2,4
rhs: 2 rhs: 2.4 ||| rhs: 3.4 ||| rhs: 4.4 ||| rhs: 5.19 " fOP he m|n|F1um2:emen ¢ start .
I 7 4 14 7AY rom the open list (2,4) . g: 5.4 = Follow the gradient of g val-
P
0 | A1l 1.2 N3 N4 m It is over-consistent (g > rhs) 4 |I| rhs: 5_49 ues from the start node
g1 g 4.8 g: o0 and thus set g = rhs K
4
rhs: 1 rhs: 4.8 ||| rhs: 5.8 m Expand the popped element N
I E = and put the predecessors that g: o
00 goal |01 0.2 03 | R4 become inconsistent (none in rhs: 4.8 ||| rhs: 5.8
g0 jel g: 00 g: 00 this case) onto the open list o
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2 R
g: 0o
rhs: 5.8 ||| rhs: 6.2
m The start node becomes consistent and the top key on the open list is not less than the
key of the start node
m An optimal path is found and the loop of the ComputeShortestPath is breaked
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D* Lite — Example Planning (24)

3.0 31 3.2 33 34 Legend

g3 |[e34 |[e38 |[eas |[[eroc || [Freenode ][Obstaclenode |
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
7

2,0 ,]', Z (24 start

g 2 l2.4 m Follow the gradient of g val-
rhs: 2 rhs: 5.4 ues from the start node

1,0 i Ve , , N4

g1 g: 4.8 g: 0o

rhs: 1 - - rhs: 4.8 ||| rhs: 5.8

0,0 tl oal |01 0,2 0,3 T \Q“

g0 g1 g: o0 g: co
&
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2
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D* Lite — Example Planning (25)

3,4

rhs: 4.8

g: 0o

rhs: 5.8

/

/24 start

g: 5.4

rhs: 5.4

\{4

g: 0o

rhs: 5.8

rhs: 4.8
A~

\Q‘l

rhs: 5.8

g: 0o

rhs: 6.2

Jan Faigl, 2017

Legend

[Free node _|[Obstacle node |
On open list

m A new obstacle is detected
during the movement from
(2,3) to (2,2)

= Replanning is needed!
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (25 update)
3,0 3.1 3.2 33 34 Legend
g3 |[e34 |[e38 |[s48 |[[ero0 || [Freenode |[Obstacle node ]
rhs: 3 rhs:%\.{ rhs:|3.8 ||| rhé: 4.8 ||| rhs: 5.8
I 7 7 7 7
2,0 J, I/’2,1 2 2 ;
g 2 g 2.4 m All directed edges with
rhs: 2 ths: 2.4 changed edge, we need to call
T 7 the UpdateVertex ()
10 | g1 12 m All edges into and out of (2,2)
g1l have to be considered
rhs: 1
|
0,0 toa| 0,1 0,2
g 0 ) g1l
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2
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D* Lite — Example Planning (26 update 1/2)

RD-based Planning

30 31 32 33 34 Legend
g 3 g 3.4 g: 3.8 g: 4.8 & e _
rhs: 3 rhs:%’\.{ rhs:|3.8 ||| rhs: 4.8 ||| rhs: 5.8
T 7 7 7 7
2,0 i I/’2,1 (%,2 I/’2,3 l/’2,4 start
g: 2 g 2.4 g g 4.4 g: 5.4 Update Vertex
Fl i f 2,2
rhs: 2 rhs: 2.4 ||| r rhs: 4. rhs: 5.4 = Outgoing edges from (2,2)
I W 14 m Call UpdateVertex() on (2,2)
1,0 1,1 1,2 3 ,
‘l’ e N \{4 m The transition costs are now
g1 - g4.8 g: o oo because of obstacle
rhs: 1 ths: 4.8 ||| rhs: 5.8 m Therefore the rhs = oo
00 'I oal o1 02 03 T K\Q4 and (2,2) !oecomes inconsis-
; ; tent and it is put on the open
g 0 | g1 g: oo g: co list
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2
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D* Lite — Example Planning (26 update 2/2)

RD-based Planning

3.0 31 3.2 33 34 Legend
g3 |[e34 |[e38 |[s48 |[[ero0 || [Freenode |[Obstacle node ]
rhs: 3 rhs:%\.{ rhs:|3.8 ||| rhs: 4.8 ||| rhs: 5.8

T 7 7 7 7
2,0 J, I/’2,1 2({2 (2,3 I/’2,4 start
g 2 g 2.4 g g 4.4 g: 5.4 Update Vertex

H | i 2,2

rhs: 2 rhs: 2.4 ||| r rhs: 4. rhs: 5.4 = Incomming edges to (2,2)

I b d m Call UpdateVertex() on the
0] A1 12 N3 N4 neighbors (2,2)
g1 g~4.8 g e m The transition cost is oo, and
rhs: 1 rhs: 4.8 ||| rhs: 5.8 therefore, the rhs value previ-

I K ously computed using (2,2) is
0,0 toa| 0,1 0,2 0,3 | \Q“ changed
g0 g1 g: o0 g: co

&

rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2
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D* Lite — Example Planning (27)
30 31 32 33 34 Legend
g 3 g 3.4 g: 3.8 g: 4.8 & e _
&
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhé: 4.8 ||| rhs: 5.8
| / / /
20 | A21 (2,2 2,3 /24 start
g 2 g 24 g: 3/ g 4.4 g: 5.4 Update Vertex
7] F Th igh f(2,2) i
rhs: 2 rhs: 2.4 ||| rhs: co rhs: 4. rhs: 5.4 " e neighbor of (2,2) is (3.3)
I 7 K| m The minimum possible rhs
o § 11 12 N3 N4 value of (3,3) is 4.8 but it is
g1 g 4.8 g: o0 based on the g value of (3,2)
ths: 1 ths: 4.8 ||| rhs: 5.8 and not (2,2), which is the de-
T  — tected obstacle
N
00 goal [0 02 03 | R4 m The node (3,3) is still consis-
g0 J g1 g g © tent and thus it is not put on
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2 the open list
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (28)
3,0 3.1 3.2 33 34 Legend
g3 |[e34 |[e38 |[e4s |[eoe | [Freenode |[Obstaclenode]
€
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
I 7 Vi 7
20 | A21 /22 3 /24 start
g 2 g 2.4 g 3.4 g 4.4 g: 5.4 Update Vertex
1 2 is al igh f
rhs: 2 rhs: 2.4 ||| rhs: oo rhs: 5. rhs: 5.4 = (23) s also a neighbor o
2L | (22)
0] A1 12 N3 N4 m The minimum possible rhs
gl - - g 4.8 g: o0 value of (2,3) is 5.2 because of
: 4 ths: 5.8 (2,2) is obstacle (using (3,2)
rhs: 1 rhs: 4.8 | with 3.8 + 1.4)
N
00 goal |01 0.2 03 | R4 m The rhs value of (2,3) is dif-
g0 g1 g: 0o g: o0 ferent than g thus (2,3) is put
Lyl .
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2 on the open list
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D* Lite — Example Planning (29)
3.0 3.1 32 33 34 Legend
g 3 g 3.4 g: 3.8 g: 4.8 & e _
&
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
,i, 7 7 K 7
2,0 21 2,2 N3 /24 start
g 2 g 24 g: 3.4 g 4.4 g: 5.4 Update Vertex
] . i i 1 m Another neighbor of (2,2) is
rhs.l2 /rhs. 2.4 rhs.%@\ rhs.A5. rhs: 5.4 (1,3)
4
o] A1 1.2 3| N4 m The minimum possible rhs
g1 g7 4.8 g: 0o value of (1,3) is 5.4 computed
ths: 1 ths: 5.4 ||| rhs: 5.8 based on g of (2,3) with 4.4
T 2 K +1=54
N
0.0 goal |01 0.2 03 | R4 m The rhs value is always com-
g: 0 J g1 g o© g: o© puted using the g values of its
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2 successors

Jan Faigl, 2017
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D* Lite — Example Planning (29 update) D* Lite — Example Planning (30)
30 31 32 33 34 Legend 30 31 s 33 e Legend
rhs:l3 /rhs:\3\.4 /rhs: 3-8;( rhs: 4.8 /rhs: 25 On open list Active node rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list
20 | A21 22 3 /(24 start 20 ] o 702 s e
' ' ' ' 4 start
g 2 g 2.4 g:3.4 g 4.4 g: 5.4 Update Vertex , j 4 Ty 4] R W 4] 5.4 ComputeShortestPath
1 m None of the other neighbor of & g < g & ) & 2 p h . |
rhs: 2 rhs: 2.4 ||| rhs:|co rhs: 5. rhs: 5.4 (2,2) end being i . ths: 2 ths: 2.4 ths: 5 ths: 5.4 ® Pop the minimum element
T 7 x 4 14£) end up being Inconsis- - L= o~ i from the open list (2,2), which
1.0 Jr 1t 12 13 I N4 tent 1,0 i I/'1,1 1,2 1,3 | \{4 is obstacle
g1 g: 4.8 g: m We go back to «calling g 1 g 4.8 g: 00 m It is under-consistent (g <
I A K . o ..
00 $oal |01 0.2 0.3 NO 4 determined I Z Su—_ m Expand the popped element
_'Ot— 1 = olo \Qg_ s Mo_al 01 0.2 03 | R4 and put the predecessors that
& | & ’ ’ g0 IS 1 g: o0 g: oo become inconsistent (none in
rhs: 0 rhs: 1 ths: 5.8 ||| rhs: 6.2 ths: 0 ths: 1 rhs: 5.8 ||| rhs: 6.2 this case) onto the open list
m The node correspor?d'lng to the robot's currept position is inconsistent and its key is m Because (2,2) was under-consistent (when popped), UpdateVertex() has to be called on it
greater than the minimum key on the open list ] ) ) ]
. . m However, it has no effect as its rhs value is up to date and consistent
m Thus, the optimal path is not found yet
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Grid-based Planning

DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (31)
3,0 3.1 3.2 33 34 Legend
g 3 g oo _
rhs: 3 rhs: 5.8
| / /
2,0 , : (2.4 start
- L - ComputeShortestPath
g' 2 - g. 5'4
1 m Pop the minimum element
rhs.l2 UEE B4 from the open list (2,3)
10 »L ¢ 12 J N4 m It is under-consistent (g <
g1 g: oo rhs), therefore set g = oo
rhs: 1 rhs: 5.8
|
0,0 toa| 0,2 , N4
g 0 g 0
"
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2

Jan Faigl, 2017

Grid-based Planning

DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (32)
3.0 31 3.2 33 34 Legend
g 3 g 3.4 g: 3.8 g: 4.8 & e _
"
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
I Vi Vi K K
20 | A21 (2,2 \Q‘?’ N4 start
g2 o 24 - e ¢ 5.4 ComputeShortestPath
) ] . i m Expand the popped element
rhs.l2 /rhs. 5 15 5'% ;hs' i and update the predecessors
1o § 11 1.2 13 /14 m (2,4) becomes inconsistent
g1 g 4.8 ) g: m (1,3) gets updated and still in-
rhs: 1 rhs: 6.8 rhs: 5.8 consistent
00 i oal o1 02 03 T K\Q4 m The rhs value (1,4) does not
0 1 P~ - changed, but it is now com-
& & g & & puted from the g value of
rhs: 0 rhs: 1 rhs: 5.8 ||| rhs: 6.2 (1,3)

Jan Faigl, 2017
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D* Lite — Example Planning (33) D* Lite — Example Planning (34)
3,0 3.1 3.2 33 34 Legend 3.0 3.1 32 33 34 Legend
g3 |[e34 |[e38 |[e4s | | [Freenode |[Obstaclenode] g3 |[e34 |[e38 |[e48 |[e || [Freenode |[Obstaclenode ]
Ny €l
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
| / / N | / / N N
20 | 21 NEE W3 N4 start 20 | A1 722 N E R4 start
e 2 e 24 - o e 5.4 ComputeShortestPath g2 o 24 o > e 5.4 ComputeShortestPath
) ) . ) m Because (2,3) was under- ) _ . i m Pop the minimum element
rhs: 2 ||| ths: 2.4 rhs: 5.% rhs: 6.2 consistent  (when _popped), rhs:2_ || rhs: 2.4 rhs: 5.% | ths: 6.2 from the open list (1,3)
1,0 J, I/’1,1 1,2 1,3 /’1,4 call UpdateVertex() on it is 1,0 J, I/'1,1 1,2 1,3 /’1,4 = It is under-consistent (g <
g1 g: 4.8 g: oo needed g1 g: o0 g: o0 rhs), therefore set g = oo
& T . . &
ths: 1 ths: 5.4 |l| rhs: 5.8 m As it is still |ncon5|stent.|t is ths: 1 rhs: 6.8 || rhs: 5.8
y K put back onto the open list y K
0,0 koa| 0,1 0,2 0,3 | \Q“ 0,0 koa| 0,1 0,2 0.3 | \Q“
g0 g1 g: 00 g: 00 g 0 g1 g: 0o g: 00
Lyl 1
rhs: O rhs: 1 rhs: 5.8 rhs: 6.2 rhs: 0 rhs: 1 rhs: 5.8 rhs: 6.2
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Grid-based Planning

DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (35)
3,0 3.1 3.2 33 34 Legend
€
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
| / / K
2,0 J, I/’2,1 I/'2,2 ‘%3 \%4 start
o 2 o 24 - s ¢ 5.4 ComputeShortestPath
] ) ) ) m Expand the popped element
rhs.l2 /rhs. Cihis s 5'% rhs.A6.2 and update the predecessors
o § 11 1.2 L3 /14 | m (1,4) gets updated and still in-
g1l g: 00 g: 00 consistent
rhs: 1 rhs: 6.8 ||| rhs: 6.4 m (0,3) and (0,4) get updated
I and now consistent (both g
00 goal |01 0.2 03 0.4 and rhs are oo)
g: 0 g1l g: 0o g oo
"
rhs: 0 rhs: 1 rhs: co rhs: co
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DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (36)
3.0 3.1 32 33 34 Legend
g 3 g 3.4 g: 3.8 g: 4.8 & e _
"
rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8
i ,/ '/ K‘ K\
2,0 21 2,2 N3 N4 start
g 2 o 24 s ¢ 5.4 ComputeShortestPath
B 1 -
rhs: 2 rhs: 2.4 rhs: 5.8 rhs: 6.2 ® because (1,3) was under
: - X consistent (when popped),
1,0 l I/’1,1 1,2 1,3 /'1,4 | call UpdateVertex() on it is
g 1 g 00 g 00 needed
ths: 1 rhs: 6.8 ||l rhs: 6.4 m As it is still inconsistent it is
T put back onto the open list
0,0 koa| 0,1 0,2 0,3 0,4
g 0 g1 g: 0o g: co
pa
rhs: 0 rhs: 1 rhs: co rhs: oo

Jan Faigl, 2017
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D* Lite — Example Planning (37) D* Lite — Example Planning (38)
3,0 31 32 33 34 Legend
e 3 g 3.4 g 3.8 g 4.8 g 0o _ rhs: 3 rhs: 3.4 ||| rhs: 3.8 ||| rhs: 4.8 ||| rhs: 5.8 On open list Active node
i '/ V/ K\ K\
hs: 3 hs: 3.4 hs: 3.8 hs: 4.8 rhs: 5.8 2,0 2,1 2,2 3 4 start
i L= L= e On open st | EeeiiElions 5 o 24 o i 50 s 54 ComputeShortestPath
20 | A2 NEE R3 N4 start C teShortestPath & &= - &> &> m Expand the popped element
ompute ortestra . o . .
g2 g 2.4 - g 5.2 g 5.4 ; p ) " | rhs.l2 /rhs. 2.4 rhsf.% rhs.d‘6.2 and update the predecessors
. . . . m Pop the minimum element 10 11 12 13 14 o
rhs.l2 /rhs. Cifs rhs: 5'% rhs.A6.2 from the open list (2,3) iL 4] g olo e Olo " (1'3). %etiupdated and still in-
: 3 3 consisten
10 A1 12 13 N1 | m It is over-consistent (g > € .
g1 g: 0o g: 00 rhs), therefore set g = rhs rhs: 1 rhs: 6.2 ||| rhs: 6.4 m The node (2,,3) co.rr.espf)ndmg
I to the robot’s position is con-
rhs: 1 rhs: 6.8 ||| rhs: 6.4 0,0 koal 0,1 0,2 0.3 0,4 sistent
I . . . .
00 foal [01 02 0,3 0.4 g0 | & 1 g o0 & o0 m Besides, top of the key on the
g 0 g 1 g 0o g 0o rhs: 0 rhs: 1 rhs: co rhs: oo open list is not less than the
€ key of (2,3)
rhs: 0 rhs: 1 rhs: oo rhs: co

The optimal path has been
found and we can break out
of the loop
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Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning
D* Lite — Example Planning (39)
3.0 31 3.2 33 34 Legend
g: 3.8 g 4.8 g: 0 [Free node H Obstacle node |
A [ s a0 s 53
K
2,2 3 R4 start
.2 g: 5.4 = Follow the gradient of g val-
il 5, rhs: 6.2 ues from the robot's current
7, S 7S position (node)
1,2 1,3 | 1,4 |
g: 0o g: 0o
rhs: 6.2 rhs: 6.4
0,2 0,3 0,4
g: 0o g: oo
rhs: 0 rhs: 1 rhs: oo rhs: oo
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D* Lite — Comments

m D* Lite works with real valued costs, not only with binary costs
(free/obstacle)
m The search can be focused with an admissible heuristic that would
be added to the g and rhs values
m The final version of D* Lite includes further optimization (not
shown in the example)
m Updating the rhs value without considering all successors every
time
m Re-focusing the serarch as the robot moves without reordering the
entire open list
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Reaction-Diffusion Processes Background

m Reaction-Diffusion (RD) models — dynamical systems capable to
reproduce the autowaves

m Autowaves - a class of nonlinear waves that propagate through an
active media

At the expense of the energy stored in the medium, e.g., grass combustion.

m RD model describes spatio-temporal evolution of two state
variables u = u(x, t) and v = v(X, t) in space X and time t

f(u,v)+ D,Au

g(u,v)+D,Av’

u
v

where /\ is the Laplacian.

This RD-based path planning is informative, just for curiosity
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Reaction-Diffusion Background

m FitzHugh-Nagumo (FHN) model
FitzHugh R, Biophysical Journal (1961)
6(u—u3— v+</>) + D,Au
(u—av+pB)+ D,Au '
where a, 3, €, and ¢ are parameters of the model.
m Dynamics of RD system is determined by the associated nullcline
configurations for t=0 and v=0 in the absence of diffusion, i.e.,
a(u—u3—v+gz5) 0,
(u—av+p) 0,

which have associated geometrical shapes
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Nullcline Configurations and Steady States

051 . R R
m Nullclines intersections represent

y m Stable States (5Ss)
007 m Unstable States
m Bistable regime

The system (concentration levels of (u, v) for
each grid cell) tends to be in SSs.

-0.57

-15 -1.0 =05 00 05 1.0 15

u

m We can modulate relative stability of both SS
“preference” of SS* over SS—
m System moves from SS™ to SST,
if a small perturbation is introduced.

m The SSs are separated by a mobile frontier

a kind of traveling frontwave (autowaves)

Jan Faigl, 2017 B4M36UIR — Lecture 04: Grid and Graph based Path Planning 86 / 92

Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite

RD-based Path Planning — Computational Model

m Finite difference method on a Cartesian grid with Dirichlet boundary
conditions (FTCS)

m External forcing — introducing additional information
i.e., constraining concentration levels to some specific values

discretization — grid based computation — grid map

m Two-phase evolution of the underlying RD model
1. Propagation phase
m Freespace is set to SS~ and the start location SS™
m Parallel propagation of the frontwave with non-
annihilation property
Vazquez-Otero and Mufiuzuri, CNNA (2010)
m Terminate when the frontwave reaches the goal

2. Contraction phase

m Different nullclines configuration

m Start and goal positions are forced towards SS*

m 5SS shrinks until only the path linking the forced
points remains
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Example of Found Paths
\\\\
\3
;\\\
N
\\\
\\
AN
3
700 x 700 700 x 700 1200 x 1200

m The path clearance maybe adjusted by the wavelength and size of
the computational grid.

Control of the path distance from the obstacles (path safety)
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Comparison with Standard Approaches

Distance Transform Voronoi Diagram Reaction-Diffusion

P

— —_—

Jarvis R
Advanced Mobile Robots (1994)

Beeson P, Jong N, Kuipers B
ICRA (2005)

m RD-based approach provides competitive paths regarding path
length and clearance, while they seem to be smooth
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Otero A, Faigl J, MuAuzuri A
IROS (2012)

89 / 92




Grid-based Planning DT for Path Planning Graph Search Algorithms D* Lite RD-based Planning

Robustness to Noisy Data

Vazquez-Otero, A., Faigl, J., Duro, N. and Dormido, R. (2014): Reaction-Diffusion based Computational
Model for Autonomous Mobile Robot Exploration of Unknown Environments. International Journal of
Unconventional Computing (1JUC).
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Summary of the Lecture
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Topics Discussed

Topics Discussed

m Front-Wave propagation and path simplification

m Distance Transform based planning

m Graph based planning methods: Dijsktra’s, A*, JPS, Theta*
m D* Lite

]

Reaction-Diffusion based planning (informative)

m Next: Randomized Sampling-based Motion Planning Methods
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