

Course Goals Means of Achieving the Course Goals Evaluation and Exam	Course Goals Means of Achieving the Course Goals Evaluation and Exam	Course Goals Means of Achieving the Course Goals Evaluation and Exa
Lectures – Winter Semester (WS) Academic Year 2017/2018	Teachers	Communicating Any Issues Related to the Course
 Schedule for the academic year 2017/2018 http://www.fel.cvut.cz/en/education/calendar.html Lectures: Karlovo náměstí, Room No. KN:E-126, Monday, 9:15–10:45 14 teaching weeks 13 lectures New Year's Day – 1.1.2018 (Monday) 	 Ing. Petr Čížek Hexapod walking robots – design and motion control Vision based Simultaneous Location and Mapping (SLAM) Image processing and robot control on FPGA Motion planning and terrain traversability assessment 	 Ask the lab teacher or the lecturer Use e-mail for communication Use your faculty e-mail Put UIR or B4M36UIR, BE4M36UIR to the subject of your message Send copy (Cc) to lecturer/teacher
a Faigl, 2017 B4M36UIR – Lecture 01: Introduction to Robotics 12 / 52 J Jourse Goals Means of Achieving the Course Goals Evaluation and Exam Computers and Development Tools	Jan Faigl, 2017 B4M36UIR – Lecture 01: Introduction to Robotics 13 / 52 Course Goals Means of Achieving the Course Goals Evaluation and Exam	Jan Faigl, 2017 B4M36UIR – Lecture 01: Introduction to Robotics 14 Course Goals Means of Achieving the Course Goals Evaluation and Ex Course Evaluation
 Network boot with home directories (NFS v4) Data transfer and file synchronizations - ownCloud, SSH, FTP, USB Python or/and C/C++ (gcc or clang) V-REP robotic simulator http://www.coppeliarobotics.com/ Open Motion Planning Library (OMPL) http://ompl.kavrakilab.org/ Sources and libraries provided by Computational Robotics Laboratory Any other open source libraries Gitlab FEL - https://gitlab.fel.cvut.cz/ FEL Google Account - access to Google Apps for Education See http://google-apps.fel.cvut.cz/ Information resources (IEEE Xplore, ACM, Science Direct, Springer Link) IEEE Robotics and Automation Letters (RA-L). IEEE Transactions on Robotics (T-RO). International Journal of Robotics Research (IJRR), Journal of Field Robotics (JFR), Robotics and Autonomous Robots (RAS), Autonomous Robots (AuRo), etc. 	 HW 01 (10 points) - Grid (graph) based planning HW 02 (10 points) - Motion planning in configuration space HW 03 (10 points) - Data collection planning HW 04 (10 points) - Adversarial planning All homeworks must be submitted to award an ungraded assessment Late submission will be penalized! 	Points Maximum Points Required Minimum Points Lab tasks 20 10 Homeworks* 40 20 Exam test 20 10 Exam 20 10 Total 100 points 50 points is E! *All homeworks have to be submited • 30 points from the semester are required for awarding ungraded assessment • The course can be passed with ungraded assessment and exam • All homeworks must be submitted and pass the evaluation
Faigl, 2017 B4M36UIR - Lecture 01: Introduction to Robotics 15 / 52	Jan Faigl, 2017 B4M36UIR – Lecture 01: Introduction to Robotics 16 / 52	Jan Faigl, 2017 B4M36UIR – Lecture 01: Introduction to Robotics 18
Evaluation and ExamGrading ScaleGradePointsMarkEvaluationA ≥ 90 1ExcellentB $80-89$ 1,5Very GoodC $70-79$ 2GoodD $60-69$ 2,5SatisfactoryE $50-59$ 3SufficientF <50 4Fail	Course Goals Means of Achieving the Course Goals Evaluation and Exam Overview of the Lectures 1. Course information, Introduction to (AI) robotics 2. Robotic paradigms and control architectures 3. Path and motion planning 4. Trajectory planning - Grid and graph based methods 5. Trajectory planning - Randomized sampling-based motion planning methods 6. Trajectory planning - Improved sampling-based motion planning methods 7. Robotic information gathering and robotic exploration 8. Data collection planning with curvature-constrained vehicles 10. Multi-robot data collection planning 11. Game theory in robotics 12. Game theory in robotics 13. Game theory in robotics	Robots and Robotics Challenges in Robotics What is a Robot? Locomot Part II Part 2 – Introduction to Robotics

What is Understood as Robot?

Rossum's Universal Robots (R.U.R)

Cvberdvne T-800 NS-5 (Sonny) Artificial Intelligence (AI) is probably most typically understand as an intelligent robot

Robots and Robotics

Robots and Robotic

Jan Faigl, 2017

Jan Faigl, 2017

Robots and Robotics

dures

Jan Faigl, 201

Robotic Surgery

Evolution of Laparoscopic Surgery

navigation in tissue

surgical robotic systems

B4M36UIR - Lecture 01: Introduction to Robotics 23 / 52 Jan Faigl, 2017 What is a Robot

Stationary Robots

Conventional robots needs separated and human inaccessible working space because of safety reasons

Challenges in Robotics

Cooperating robots share the working space with humans

Challenges in Robotics

Complex operations with shorter postoperative recovery

Precise robotic manipulators and teleoperated

Further step is automation of surgical proce-

B4M36UIR - Lecture 01: Introduction to Robotics

Intelligent Robots

React to the environment – sensing Adapt to the current conditions Make decision and new goals

behaviour is relatively well defined Adaptation and ability to solve complex problems are implemented as algorithms and tech-

niques of Artificial Intelligence

robot control, sensing, etc.

Even though they are autonomous systems, the

In addition to mechanical and electronical design.

Challenges in Robotics

Regarding the environment: ground, underground, aerial, surface, and underwater vehicles

B4M36UIR - Lecture 01: Introduction to Robotics

What is a Robot

E.g., in robotic exploration

Based on the locomotion: wheeled, tracked, legged, modular

B4M36UIR - Lecture 01: Introduction to Robotic

Jan Faigl, 2017 Challenges in Robotics Robots and Robotics

26 / 52

Robots and Robotics

- Artificial Intelligence (AI) field originates in 1956 with the summary that a intelligent machine needs:
 - Internal models of the world
 - Search through possible solutions
 - problems
 - Symbolic representation of information

 - M. Mataric, Robotic Prime

 - Artificial Intelligence laboratory of Stanford Research Institute (1966-1972)
- Shakey perception, geometrical map building, planning, and acting - early Al-inspired robot with purely deliberative control

Stacionary vs Mobile Robots

Robots can be categorized into two main groups

Stationary (industrial) robots

Mobile robots

Vhat is a Robot

25 / 52

29 / 52

Locomotion

- Stationary robots defined (limited) working space Even stationary robots need an efficient motion, and thus motion planning tasks can be a challenging problem
- Mobile robots it can move, and therefore, it is necessary to address the problem of navigation

Challenges in Robotics

B4M36UIR - Lecture 01: Introduction to Robotics

Challenges in Robotics

24 / 52

an Faigl, 2017

an Faigl, 2017

Jan Faigl, 2017

Robots and Robotic

27 / 52

Robots and Robotics

- Autonomous vehicles cars. delivers. etc
- Consumable robots toys, vacuum cleaner, lawn mover, pool cleaner
- Robotic companions
- Search and rescue missions
- Extraterrestrial exploration
- Robotic surgery
- Multi-robot coordination

In addition to other technological challenges, new efficient AI algorithms have to be developed to address the nowadays and future challenges

B4M36UIR - Lecture 01: Introduction to Robotics

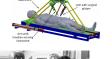
Robotics in B4M36UIR

Fundamental problems related to motion planning and mission planning with mobile robots

Challenges in Robotics

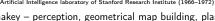
- The discussed motion planning methods are general and applicable also into other domains and different robotic platforms including stationary robotic arms
- Robotics is interdisciplinary field
 - Electrical, mechanical, control, and computer engineering
 - **Computer science** such as machine learning, artificial intelligence, computational intelligence, machine perception, etc.
 - Human-Robot interaction and cognitive robotics are also related to psychology, brain-robot interfaces to Neuroscience, robotic surgery to medicine, etc.

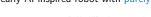
In B4M36UIR, we will touch a small portion of the whole field, mostly related to motion planning and mission planning that can be "encapsulated" as robotic information gathering



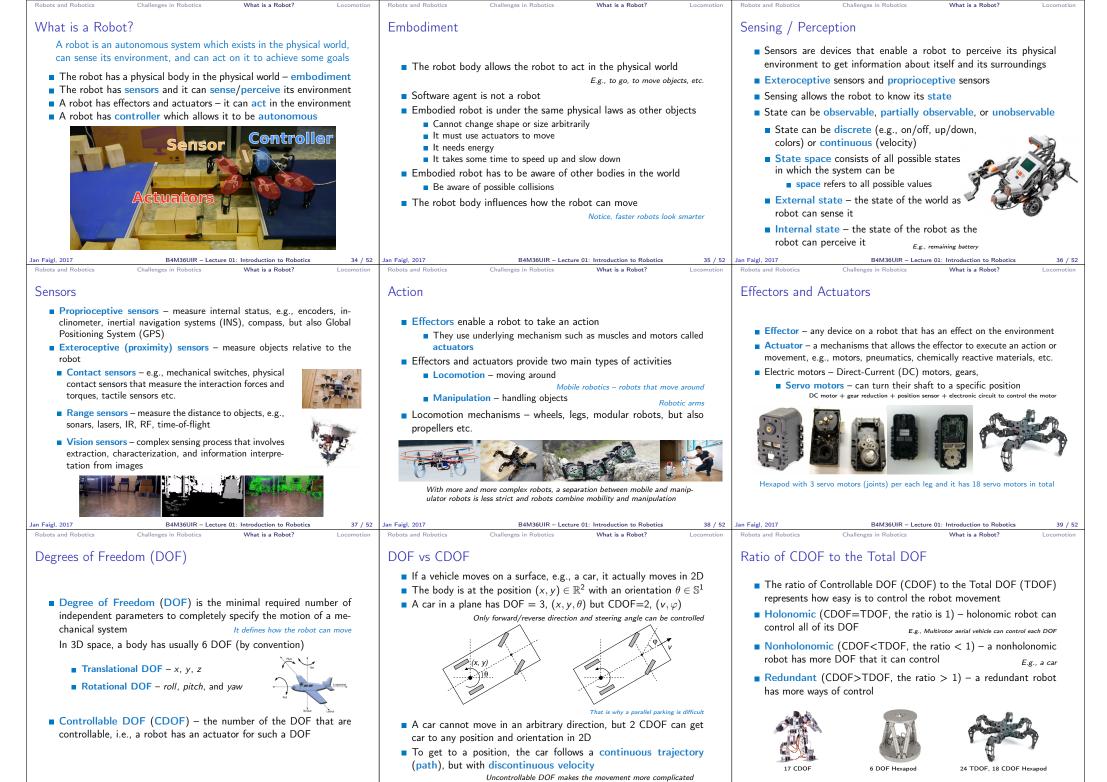
Robotic Arm of the Da Vinci

B4M36UIR - Lecture 01: Introduction to Robotics


30 / 52 Jan Faigl, 2017 B4M36UIR - Lecture 01: Introduction to Robotics



- Planning and reasoning to solve
- Hierarchical system organization
- Sequential program execution
- Al-inspired robot Shakey

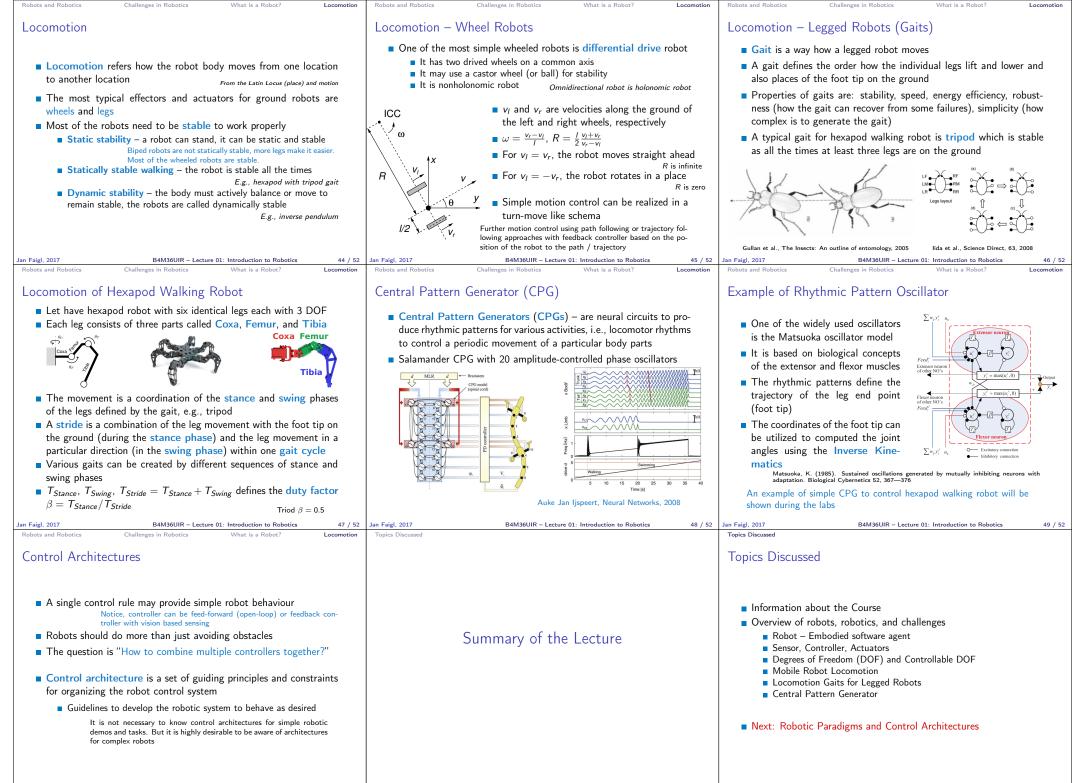

31 / 52

Jan Faigl, 2017

B4M36UIR - Lecture 01: Introduction to Robotics

40 / 52

Jan Faigl, 2017


B4M36UIR - Lecture 01: Introduction to Robotics

41 / 52

Jan Faigl, 2017

B4M36UIR - Lecture 01: Introduction to Robotics

42 / 52

Jan Faigl, 2017

B4M36UIR - Lecture 01: Introduction to Robotics

50 / 52 Jan Faigl, 2017

B4M36UIR - Lecture 01: Introduction to Robotics

51 / 52

Jan Faigl, 2017

B4M36UIR - Lecture 01: Introduction to Robotics

52 / 52