Introduction to Robotics Jan Faigl Department of Computer Science Facily of Electrical Engineering Cach Technical University in Progret Lecture 01 B4M360UR – Artificial Intelligence in Robotics • Challenges in Robotics Is Faigl • Course Goals Users Goals • Challenges in Robotics Is Faigl • Challenges in Robotics Department of Activing the Course Oc. Introduction to Robotics • Challenges in Robotics Is Faigl • Course Goals Date of Activing the Course Oc. Introduction to Robotics • Challenges in Robotics Is Faigl • Course Goals Date of Activing the Course Oc. Introduction to Robotics • Challenges in Robotics Part 1 Course Goals • University of Retring the Course Oc. 2 / 92 Course Goals • University of Retring the Course Oc. 2 / 92 Course Coals • What is a Robot? • Locardonal Lectures B4M36UIR – Artificial Intelligence in Robotics • University of Course Coals Entry // Course Coals Part 1 Port 1 – Course Organization Course Goals • http:///course. Part 1 – Course Organization • Course on Habotis Laborits and Autonomous Systems (CRAS)			Overview of the Lecture
Jan Faigl, 2017 BM30UIR - Lecture 01: Introduction to Robotics 1 / 52 Jan Faigl, 2017 BM30UIR - Lecture 01: Introduction to Robotics 2 / 52 Course Goals Means of Achieving the Course Goals Evaluation and Exam Course Goals Means of Achieving the Course Goals Evaluation and Exam Part I Part 1 - Course Organization B4M36UIR - Artificial Intelligence in Robotics = https://cw.fel.cvut.cz/wiki/courses/b4m36uir/ Department of Computer Science - http://cs.fel.cvut.cz Part 1 - Course Organization Center for Robotics and Atonomous Systems (CRAS) Lecturers dc. Ing. Jan Faigl, Ph.D. Center for Robotics Laboratory (ComRob) Lectures Mgr. Viliam Lisá, M.Sc., Ph.D. Computational Robotics Laboratory (ComRob) Lettures Mgr. Viliam Lisá, M.Sc., Ph.D. Came Theory (GT) research group Lectures		Jan Faigl Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague Lecture 01	 Course Goals Means of Achieving the Course Goals Evaluation and Exam Part 2 – Introduction to Robotics Robots and Robotics Challenges in Robotics
Part I Part 1 – Course Organization Part 1 – Course Organization Part 1 – Course Organization Part 1 – Course Organization Course and Lecturers B4M36UIR – Artificial Intelligence in Robotics https://cw.fel.cvut.cz/wiki/courses/b4m36uir/ Department of Computer Science – http://cs.fel.cvut.cz Artificial Intelligence Center (AIC) – http://aic.fel.cvut.cz Lecturers doc. Ing. Jan Faigl, Ph.D. Computational Robotics Laboratory (ComRob) http://comrob.fel.cvut.cz Mgr. Viliam Lisá, M.Sc., Ph.D. Game Theory (GT) research group	_	,	Locomotion Jan Faigl, 2017 B4M36UIR – Lecture 01: Introduction to Robotics 2 / 52
Jan Faigl, 2017 B4M36UIR – Lecture 01: Introduction to Robotics 3 / 52 Jan Faigl, 2017 B4M36UIR – Lecture 01: Introduction to Robotics 5 / 52		Part I Part 1 – Course Organization	Course and Lecturers B4M36UIR – Artificial Intelligence in Robotics = https://cw.fel.cvut.cz/wiki/courses/b4m36uir/ = Department of Computer Science – http://cs.fel.cvut.cz = Artificial Intelligence Center (AIC) – http://aic.fel.cvut.cz = Lecturers doc. Ing. Jan Faigl, Ph.D. = Center for Robotics and Autonomous Systems (CRAS) http://robotics.fel.cvut.cz = Computational Robotics Laboratory (ComRob) http://comrob.fel.cvut.cz Mgr. Viliam Lisá, M.Sc., Ph.D. = Game Theory (GT) research group = Adversarial planning, Game Theory,

Course Goals Means of Achieving the Course Goals Evaluation	and Exam Course Goals Means of Achieving the Course Goals Evaluation and Ex
Course Goals	Course Organization and Evaluation
 Master (yourself) with applying AI methods in robotic tasks Labs, homeworks, exa Become familiar with the notion of intelligent robotics and a tonomous systems Acquire knowledge of robotic data collection planning Acquire experience on combining approaches in autonomous rob control programs Integration of existing algorithms (implementation) in to mission planing software and robot control program Experience solution of robotic problems 	 Extent of teaching: 2(lec)+2(lab); Completion: Z,ZK; Credits: 6; Ongoing work during the semester – labs' tasks and homeworks Exam: test and exam Be able to independently work with the computer in the lab (class room) Attendance to labs and successful evaluation of homeworks
Faigl, 2017 B4M36UIR – Lecture 01: Introduction to Robotics Course Goals Means of Achieving the Course Goals Evaluation Resources and Literature Touch a alua	6 / 52 Jan Faigl, 2017 B4M36UIR – Lecture 01: Introduction to Robotics 7 and Exam Course Goals Means of Achieving the Course Goals Evaluation and Exam Further Books 1/2
 Textbooks Introduction to AI Robotics, Robin R. Murphy, MIT Press, 2000, ISBN 978-0262133838 First lectures for the background and context The Robotics Primer, Maja J. Mataric, MIT Press, 2007, ISBN 978-0262633543 First lectures for the background and context Planning Algorithms, Steven M. LaValle, Cambridge University Press, 2006. http://planning.cs.uiuc.edu 	 Principles of Robot Motion: Theory, Algorithms, and Implementations, H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun, , MIT Press, Boston, 2005. Introduction to Autonomous Mobile Robots, 2nd Edition, Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza, MIT Press, 2011, ISBN 978-0521692120
 Lectures – "comments" on the textbooks, slides, and your note Laboratory Exercises – labs' tasks and homeworks Selected research papers – further specified during the course 	2010, ISBN 978-0262015356
P Fair 2017 PAM26UID Lasture 01. Introduction to Debation	0 / 52 Jan Exist 2017 P4M26UID Jacture 01, Introduction to Debatic

Course Goals	Means of Achieving the Course Goals	Evaluation and Exam	Course Goals	Means of Achieving the Course Goals	Evaluation and Exam
Further Books	; 2/2		Lectures – V	Vinter Semester (WS) Academic	c Year 2017/2018
Laumond Sciences, Probabilis Burgard, 978-0262	http://homepages.laas.fr/jpl/book stic Robotics, Sebastian Thrun, Wolfran Dieter Fox, MIT Press, 2005, ISBN 201629 http://www.probabilistic-robotics Vision and Control: Fundamental Algo AB, Peter Corke, Springer, 2011, ISBN	org/ rithms	 Lectures: Karlo 14 teaching 	for the academic year 2017/2018 http://www.fel.cvut.cz/en/educe ovo náměstí, Room No. KN:E-126, Monday, ng weeks 's Day – 1.1.2018 (Monday)	
Jan Faigl, 2017 Course Goals Teachers	B4M36UIR – Lecture 01: Introduction to I Means of Achieving the Course Goals	Robotics 11 / 52 Evaluation and Exam	Jan Faigl, 2017 ^{Course Goals} Communica	B4M36UIR - Lecture 01: Introduction Means of Achieving the Course Goals ting Any Issues Related to the (Evaluation and Exam
Vision bImage p	ížek d walking robots – design and motion contr ased Simultaneous Location and Mapping (rocessing and robot control on FPGA planning and terrain traversability assessme	(SLAM)	 Use e-ma Use y Put l mess 	ab teacher or the lecturer il for communication your faculty e-mail JIR or B4M36UIR, BE4M36UIR to the subj age copy (Cc) to lecturer/teacher	ject of your

14 / 52

Somputers and Development Tools Homeworks Network boot with home directories (NFS v4) Data transfer and file synchronizations - ownCloud, SSH, FTP, USB Python or/and C/C++ (gcc or clarg) V:REP robotic simulator Sources and libraries provided by Computational Robotics Laboratory Any other open source libraries Gitalab FEL - https://gitlab.fel.orut.cz/ Information resources (IEEE Kploce, ACM, Science Direct, Springer Link) If EL Google Account - access to Google Apps for Education See http://gogla-apps.fal.cutt.cz/ Information resources (IEEE Kploce, ACM, Science Direct, Springer Link) If ERE Robotics and Altoneurone Robotics (IPR), Resolution and Robotics and Producting the Course Gools Test Maximum Required Minimum Points Name of Activity the Course Gools Total 100 points 55 points is EL 30 points from the semester are required for awarding ungraded assessment 30 points from the semester are required for awarding ungraded assessment 30 points from the semester are required for awarding ungraded assessment Amount of the semester are required for awarding ungraded assessment	ourse Goals	Mear	ns of Achieving the C	ourse Goals	Evaluation and Exam	Course Goals	Mea	ns of Achieving	the Course	Goals	Evaluation and
Data transfer and the synchronizations - ownCloud, SSH, FTP, USB ■ Python or/and C/C++ (gcc or clang) ■ V-REP robotic simulator bython or/and C/C++ (gcc or clang) ■ Open Motion Planning Library (OMPL) Intp://oxpl.kareatilab.org/ ■ Sources and libraries provided by Computational Robotics Laboratory ■ Any other open source libraries ■ Gittab FEL - https://gitlab.fel.cvut.cz/ ■ Field. Google Account - access to Google Appendic (MH). ■ Information resources (IEEE Xplore, ACM, Science Direct, Springer Link) ■ Information resources (IEEE Xplore, ACM, Science Direct, Springer Link) ■ Information resources (ICEE Xplore, ACM, Science Direct, Springer Link) ■ Information resources (ICEE Xplore, ACM, Science Direct, Springer Link) ■ Information resources (ICEE Xplore, ACM, Science Direct, Springer Link) ■ Information resources (ICEE Xplore, ACM, Science Direct, Springer Link) ■ Information resources (ICEE Xplore, ACM, Science Direct, Springer Link) ■ Information resources (ICEE Xplore, ACM, Science Direct, Springer Link) ■ Information resources (ICAE). Bittlab Status Buttlab Status Mass of Achieving the Caurea One Motion (ICAE). Evaluation and Exam Evaluation and Exam Cource Gauk Grade Points Mark Evaluation	ompute	ers and Deve	lopment To	ools		Homeworks					
astional Journal of Robotis Research (JURR), Journal of Field Robotics (JFR), Robotics and Autonomous Robots (RAS), Autonomous Robots (AuRo), etc.BetM36UIR - Lecture 01: Introduction to Robotics15 / 52Jan Faigl 2017BetM36UIR - Lecture 01: Introduction to Robotics16Faigl 2017BetM36UIR - Lecture 01: Introduction to Robotics16Tourse GoalsMeans of Achieving the Course GoalsEvaluation and ExamOurse EvaluationFointsRequired Minimum PointsPointsMark EvaluationA ≥ 90 1EvaluationA ≥ 90 1EvaluationCourse GoalsMark Evaluation	 Pythol V-REF Open Source Any of Gitlab FEL G Inform 	Data tra on or/and C/C++ P robotic simulate Motion Planning tes and libraries pr other open source o FEL – https:// Google Account – nation resources (onsfer and file syn - (gcc or clang or ; Library (OMP rovided by Con libraries /gitlab.fel. • access to Goog S (IEEE Xplore, A	chronizations - ownCl g) http://www.copp L) nputational Robo cvut.cz/ gle Apps for Ed ee http://google-ap ACM, Science Direc	<pre>peliarobotics.com/ pl.kavrakilab.org/ tics Laboratory ucation ops.fel.cvut.cz/ ct, Springer Link)</pre>	TBD					
Grading ScaleOurse Evaluation \overline{Points} $\overline{Required Minimum}{Points}$ \overline{Points} $\overline{Required Minimum}{Points}$ $\overline{Lab tasks}$ 20 10 10 Homeworks 30 20 10 $\overline{Exam test}$ 30 20 10 \overline{Total} 100 points 55 points is E! 30 points from the semester are required for awarding ungraded	n				tics (JFR), Robotics and						
PointsPointsPointsLab tasks2010Homeworks3020Exam test3015Exam2010Total100 points55 points is E!30 points from the semester are required for awarding ungradedEradePoints3055 points ungradedE50-593SufficientSufficient	A aigl, 2017		B4M36UIR – Le	ecture 01: Introduction to	1	-	Mea				
Homeworks 30 20 A ≥ 90 1ExcellentExam test 30 15 B $80-89$ $1,5$ Very GoodExam 20 10 C $70-79$ 2 GoodTotal 100 points 55 points is E!D $60-69$ $2,5$ Satisfactory B $50-59$ 3 Sufficient	A Faigl, 2017 urse Goals	Mear	B4M36UIR – Le	ecture 01: Introduction to	1	Course Goals					
Exam test3015Exam2010Total100 pointsTotal100 points55 points is E!D60-692,5SatisfactoryE50-5930 points from the semester are required for awarding ungraded	A Faigl, 2017 urse Goals	Evaluation Points	B4M36UIR – Le ns of Achieving the C Maximum Points	ecture 01: Introduction to Course Goals Required Mini	Evaluation and Exam	Course Goals		ns of Achieving	the Course	Goals	
Exam 20 10 Total 100 points 55 points is E! D 60-69 2,5 Satisfactory 30 points from the semester are required for awarding ungraded E 50-59 3 Sufficient	A aigl, 2017 Irse Goals	Evaluation Points Lab tasks	B4M36UIR – Le ns of Achieving the C Maximum Points 20	ecture 01: Introduction to Course Goals Required Mini	Evaluation and Exam	Course Goals	Grade	ns of Achieving Points	the Course	Goals	
Total 100 points 55 points is E! D 60–69 2,5 Satisfactory Image: Straight of the semester are required for awarding ungraded Image: Straight of the semester are required for awarding ungraded Image: Straight of the semester are required for awarding ungraded Image: Straight of the semester are required for awarding ungraded Image: Straight of the semester are required for awarding ungraded	A T <mark>aigl, 2017</mark> Irse Goals	Evaluation Points Lab tasks Homeworks	B4M36UIR – Le ns of Achieving the C Maximum Points 20 30	ecture 01: Introduction to Course Goals Required Mini	Evaluation and Exam	Course Goals	Grade A	Points ≥ 90	the Course Mark	Goals Evaluation Excellent	
■ 30 points from the semester are required for awarding ungraded E 50–59 3 Sufficient	A T <mark>aigl, 2017</mark> Irse Goals	Evaluation Points Lab tasks Homeworks Exam test	B4M36UIR – Le ns of Achieving the C Maximum Points 20 30 30 30	ecture 01: Introduction to Course Goals Required Mini	Evaluation and Exam	Course Goals	Grade A B	Points ≥ 90 80–89	the Course Mark 1 1,5	Goals Evaluation Excellent Very Good	
30 points from the semester are required for awarding ungraded	A Faigl, 2017 urse Goals	Evaluation Points Lab tasks Homeworks Exam test Exam	B4M36UIR – Le ns of Achieving the C Maximum Points 20 30 30 30 20	Required Mini Points	Evaluation and Exam	Course Goals	Grade A B C	Points ≥ 90 80–89 70–79	Mark 1,5 2	Goals Evaluation Excellent Very Good Good	
	A Faigl, 2017 urse Goals	Evaluation Points Lab tasks Homeworks Exam test Exam	B4M36UIR – Le ns of Achieving the C Maximum Points 20 30 30 30 20	Required Mini Points	Evaluation and Exam	Course Goals	Grade A B C D	Points ≥ 90 80–89 70–79 60–69	the Course of Mark 1 1,5 2 2,5	Goals Evaluation Excellent Very Good Good Satisfactory	

All homeworks must be submitted and pass the evaluation

Course	Goals Me	eans of Achieving the Course Go	als Evalua	tion and Exam	Robots and Robotics	Challenges in Robotics	What is a Robot?	Locomotion	
Ove	erview of the Lec	tures							
1.	Course information, In	ntroduction to (AI) Rob	ootics and Robotic Para	digms					
2.	Navigation and path	planning							
3.	Path Planning - Grid	based methods							
4.	Path Planning - Grid	based methods				Part I			
5.	Motion Planning - Sa	mpling-based methods	5						
6.	Motion Planning - Ra	ndomized Sampling-ba	ased methods		P	art 2 – Introductio	on to Robotics		
7.	Robotic information g	athering and data coll	ection planning						
8.	Data collection planni	ing and multi-goal pat	h planning problems						
9.	Robotic exploration a	nd multi-robot explora	tion						
10.	Data collection plann and DOP(N))	ing with curvature-cor	nstrained vehicles (DTS	SP(N)					
11.	Game Theory in Robo	otics							
12.	Game Theory in Robo	otics							
13.	Game Theory in Robo	otics							
Jan Faigl	, 2017	B4M36UIR – Lecture 01	: Introduction to Robotics	20 / 52	Jan Faigl, 2017	B4M36UIR – Lectu	re 01: Introduction to Robotics	21 / 52	
Robots	and Robotics Cha	allenges in Robotics	What is a Robot?	Locomotion	Robots and Robotics	Challenges in Robotics	What is a Robot?	Locomotion	

What is Understood as Robot?

Rossum's Universal Robots (R.U.R)

Cyberdyne T-800

Industrial robots

NS-5 (Sonny) Artificial Intelligence (AI) is probably most typical understand as intelligent robot

Intelligent Robots

- React to the environment sensing
- Adapt to the current conditions
- Make decision and new goals

E.g., in robotic exploration

- Even though they are autonomous systems, the behaviour is relatively well defined
- Adaptation and ability to solve complex problems are implemented as algorithms and techniques of Artificial Intelligence

In addition to mechanical and electronical design, robot control, sensing, etc.

Robots and Robotics

Stacionary vs Mobile Robots

Stationary (industrial) robots

address the problem of **navigation**

Challenges in Robotics

Robots can be categorized into two main groups

Stationary robots – defined (limited) working space

planning tasks can be a challenging problem

■ Mobile robots – it can move, and therefore, it is necessary to

What is a Robot? Locomotion

Mobile robots

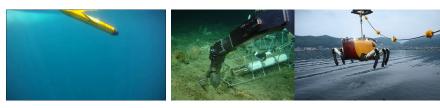
Locomotion

Stationary Robots

 Conventional robots needs separated and human inaccessible working space because of safety reasons

 Cooperating robots share the working space with humans

Jan Faigl, 2017	B4M36UIR – Lectur	re 01: Introduction to Robotics	25 / 52	Jan Faigl, 2017	B4M36UIR – Lectur	e 01: Introduction to Robotics	26 / 52
Robots and Robotics	Challenges in Robotics	What is a Robot?	Locomotion	Robots and Robotics	Challenges in Robotics	What is a Robot?	Locomotion


Types of Mobile Robots

Regarding the environment: ground, underground, aerial, surface, and underwater vehicles

Even stationary robots need an efficient motion, and thus motion

Based on the locomotion: wheeled, tracked, legged, modular

Challenges in Robotics

- Autonomous vehicles cars, delivers, etc
- Consumable robots toys, vacuum cleaner, lawn mover, pool cleaner
- Robotic companions
- Search and rescue missions
- Extraterrestrial exploration
- Robotic Surgery
- Multi-robot coordination

In addition to other technological challenges, new efficient AI algorithms have to be developed to address the nowadays and future challenges

Jan Faigl, 2017

B4M36UIR – Lecture 01: Introduction to Robotics

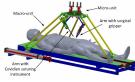
B4M36UIR - Lecture 01: Introduction to Robotics

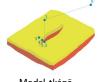
29 / 52

Robots and Robotics

Challenges in Robotics

What is a Robot? Locomotion **Robots and Robotics**


Locomotion


Robotic Surgery

- Evolution of Laparoscopic Surgery Complex operations with shorter postoperative recovery
- Precise robotic manipulators and teleoperated surgical robotic systems
- Further step is automation of a surgical procedures

One of the main main challenges is planning and navigation in tissue

Challenges in Robo

B4M36U

Model tkáně

Robotic Arm of the Da Vinci Surgical System

Surgical droid 2-1B

Jan Faigl, 2017 Robots and Robotics

Robotics in B4M36UIR

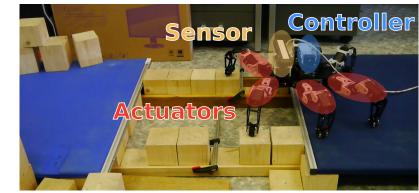
- Fundamental problems related to motion planning and mission planning with mobile robots
- The discussed motion planning methods are general and applicable also into other domains and different robotic platforms including stationary robotic arms
- Robotics is interdisciplinary field
 - Electrical, mechanical, control, and computer engineering
 - **Computer science** such as machine learning, artificial intelligence, computational intelligence, machine perception, etc.
 - Human-Robot interaction and cognitive robotics is also related to psychology, brain-robot interfaces to Neuroscience, robotic surgery to medicine, etc.

In B4M36UIR, we will touch a small portion of the whole field, mostly related to motion planning and mission planning that can be "encapsulated" as robotic information gathering

Artificial Intelligence and Robotics

- Artificial Intelligence (AI) field originates in 1956 with the summary that a intelligent machine needs:
 - Internal models of the world
 - Search through possible solutions
 - Planning and reasoning to solve problems
 - Symbolic representation of information
 - Hierarchical system organization
 - Sequential program execution M. Mataric, Robotic Primer
 - Al-inspired robot Shakey

Artificial Intelligence laboratory of Stanford Research Institute (1966-1972)


Shakey – perception, geometrical map building, planning, and acting – early Al-inspired robotics purely deliberative control

UIR – Lecture 01:	Introduction to Robotics	30 / 52	Jan Faigl, 2017	B4M36UIR – Lectur	e 01: Introduction to Robotics	31 / 52
ootics	What is a Robot?	Locomotion	Robots and Robotics	Challenges in Robotics	What is a Robot?	Locomotion

What is a Robot?

A robot is an autonomous system which exists in the physical world, can sense its environment, and can act on it to achieve some goals

- The robot has a physical body in the physical world embodiment
- The robot has sensors and it can sense/perceive its environment
- A robot has effectors and actuators it can act in the environment
- A robot has controller which allows it to be autonomous

Jan Faigl, 2017

34 / 52

Robots and Robotics	Challenges in Robotics	What is a Robot?	Locomotion	Robots and Robotics	Challenges in Robotics	What is a Robot?	Locomotion
Embodiment				Sensing / Pere	ception		
 Software age Embodied ro Cannot o It must u It needs It takes s Embodied ro Be aware 	ody allows the robot to a nt is not a robot bot is under the same pl change shape or size arbitra use actuators to move energy some time to speed up and bot has to be aware of o e of possible collisions ody influences how the ro	E.g., to go, to move ob nysical laws as other o arily slow down ther bodies in the wor	<i>jects, etc.</i> bjects Id	environment Exteroceptiv Sensing allow State can be State can colors) or State space which the space External robot can Internal s	state – the state of the r	it itself and its surroun otive sensors state observable, or unobsection of, up/down, le states es world as	dings
Jan Faigl, 2017	B4M36UIR – Lectur	re 01: Introduction to Robotics	35 / 52	Jan Faigl, 2017	B4M36UIR – Lectu	ure 01: Introduction to Robotics	36 / 52
Robots and Robotics	Challenges in Robotics	What is a Robot?	Locomotion	Robots and Robotics	Challenges in Robotics	What is a Robot?	Locomotion
Sensors				Action			
clinometer, in Positioning Sy	ve sensors – measure inte ertial navigation systems (vstem (GPS) e (proximity) sensors –	INS), compass, but also	o Global	■ They us actuato	nables a robot to take an e underlying mechanism su ors d actuators provides two	uch as muscles and moto	

- Contact sensors e.g., mechanical switches, physical contact sensors that measure the interaction forces and torques, tactile sensors etc.
- Range sensors measure the distance to objects, e.g., sonars, lasers, IR, RF, time-of-flight

Vision sensors – complex sensing process that involves extraction, characterization, and information interpretation from images

- activities
 - Locomotion moving around

Manipulation – handling objects

- Mobile robotics robots that move around
 - Robotic arms
- Locomotion mechanisms wheels, legs, modular robots, but also propellers etc.

With more and more complex robots, a separation between mobile and manipulator robots is less strict and robots combine mobility and manipulation

Jan Faigl, 2017

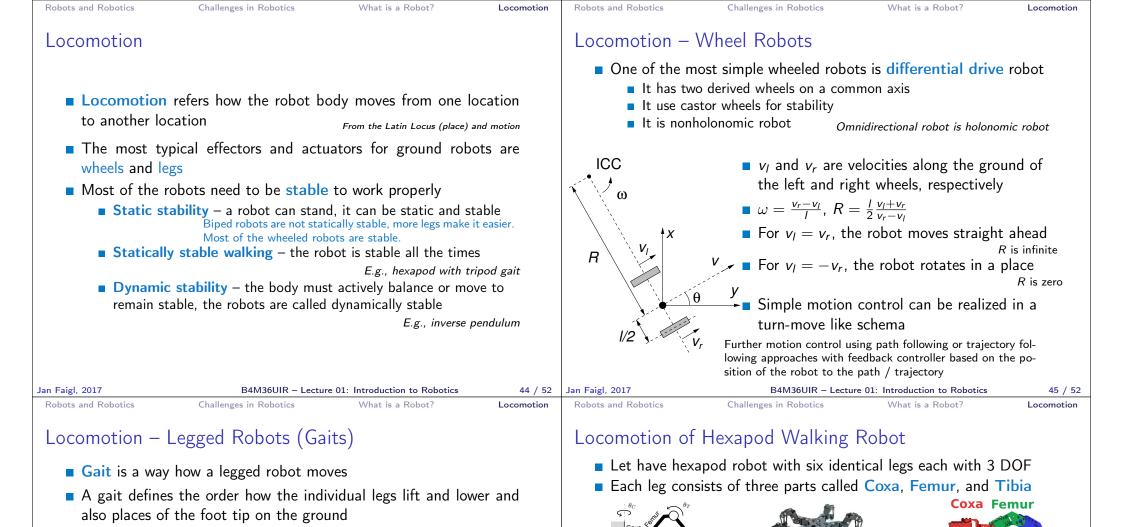
	Effectors and Actuators	Degrees of Freedom (DOF)
	<list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item>	 Degree of Freedom (DOF) is the minimal required number of independent parameters to completely specify the motion of a mechanical system It defines how the robot can move In 3D space, a body has usually 6 DOF (by convention) Translational DOF - x, y, z Rotational DOF - roll, pitch, and yaw Controllable DOF (CDOF) - the number of the DOF that are controllable, i.e., a robot has an actuator for such a DOF
-	Jan Faigl, 2017 B4M36UIR – Lecture 01: Introduction to Robotics 39 / 52 Robots and Robotics Challenges in Robotics What is a Robot? Locomotion	Jan Faigl, 2017 B4M36UIR – Lecture 01: Introduction to Robotics 40 Robots and Robotics Challenges in Robotics What is a Robot? Locomotics
	DOF vs CDOF	Ratio of CDOF to the Total DOF
	 If a vehicle moves on a surface, e.g., a car, it actually moves in 2D The body is at the position (x, y) ∈ ℝ² with an orientation θ ∈ S¹ A car in a plane has DOF = 3, (x, y, θ) but CDOF=2, (v, φ) Only forward/reverse direction and steering angle can be controlled 	 The ratio of Controllable DOF (CDOF) to the Total DOF (TDOF) represents how easy is to control the robot movement Holonomic (CDOF=TDOF, the ratio is 1) - holonomic robot can control all of its DOF E.g., Multirotor aerial vehicle can control each DOF Nonholonomic (CDOF<tdof, -="" 1)="" <="" <ul="" a="" can="" control="" dof="" has="" it="" more="" nonholonomic="" ratio="" robot="" that="" the=""> E.g., a car Redundant (CDOF>TDOF, the ratio > 1) - a redundant robot has more ways of control </tdof,>
	 That is why a parallel parking is difficult A car cannot move in an arbitrary direction, but 2 CDOF can get car to any position and orientation in 2D To get to a position, the car follows a continuous trajectory (path), but with discontinuous velocity Uncontrollable DOF makes the movement more complicated	IT CDOF 6 DOF Hexapod 24 TDOF, 18 CDOF Hexapod
	· · · · · · · · · · · · · · · · · · ·	Jan Faigl, 2017 B4M36UIR – Lecture 01: Introduction to Robotics 42

Robots and Robotics Challenges in Robotics

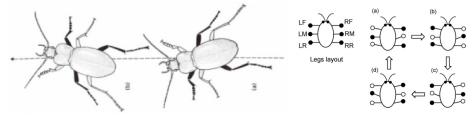
What is a Robot?

Locomotion

Robots and Robotics Challenges in Robotics


What is a Robot?

Locomotion


$D_{\text{opproved}} = \int \Gamma_{\text{readers}} \left(D \cap \Gamma \right)$

Jan Faigl, 2017	B4M36UIR – Lectu	re 01: Introduction to Robotics	39 / 52	Jan Faigl, 2017	B4M36UIR – Lectur	re 01: Introduction to Robotics	40 / 52
Robots and Robotics	Challenges in Robotics	What is a Robot?	Locomotion	Robots and Robotics	Challenges in Robotics	What is a Robot?	Locomotion

- Properties of gaits are: stability, speed, energy efficiency, robustness (how the gait can recover from some failures), simplicity (how complex is to generate the gait)
- A typical gait for hexapod walking robot is tripod which is stable as all the times at least three legs are on the ground

Gullan et al., The Insects: An outline of entomology, 2005

Jan Faigl, 2017

entomology, 2005 lida et al., Science Direct, 63, 2008 B4M36UIR – Lecture 01: Introduction to Robotics swing phases

 $\beta = T_{Stance} / T_{Stride}$

• The movement is a coordination of the stance and swing phases

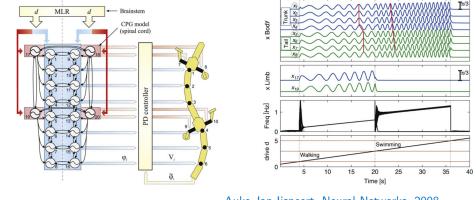
A stride is a combination of the leg movement with the foot tip on the ground (during the stance phase) and the leg movement in a particular direction (in the swing phase) within one gait cycle
 Various gaits can be created by different sequences of stance and

• T_{Stance} , T_{Swing} , $T_{Stride} = T_{Stance} + T_{Swing}$ defines the duty factor

of the legs defined by the gait, e.g., tripod

Tibia

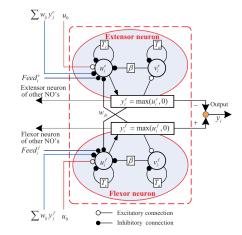
Triod $\beta = 0.5$


Challenges in Robotics

What is a Robot? Locomotion

Locomotion

Central Pattern Generator (CPG)


- Central Pattern Generators (CPGs) are neural circuits to produce rhythmic patterns for various activities, i.e., locomotor rhythms to control a periodic movement of a particular body parts
- Salamander CPG with 20 amplitude-controlled phase oscillators

Auke Jan Ijspeert, Neural Networks, 2008

Example of Rhythmic Pattern Oscillator

- One of the widely used oscillators is the Matsuoka oscillator model
- It is based on biological concepts of the extensor and flexor muscles
- The rhythmic patterns defined the trajectory of the leg end point (foot tip)
- The coordinates of the foot tip can be utilized to computed the joint angles using the Inverse Kinematics

Matsuoka, K. (1985). Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics 52, $367{-}376$

An example of simple CPG to control hexapod walking robot will be addressed during the labs

Jan Faigl, 2017	B4M36UIR – Lectur	e 01: Introduction to Robotics	48 / 52	Jan Faigl, 2017	B4M36UIR – Lecture 01: Introduction to Robotics	49 / 52
	Challenges in Robotics CCTURES Fol rule may provide simpotice, controller can be feed-f		Locomotion	Topics Discussed		
Robots shouldThe question	oller as in the previous exampl I do more than just avoi is "How to combine mu	le with vision based sensing iding obstacles Itiple controller togethe	er?"		Summary of the Lecture	
	itecture is a set of guid the robot control syste	• •	traints			
Guidelines	s to develop the robotic sy	stem to behave as desire	ed			
demo	not necessary to know contro os and tasks. But it is highly de omplex robots					

Topics	Discussed

Topics Discussed

- Information about the Course
- Overview of robots, robotics, and challenges
 - Robot Embodied software agent
 - Sensor, Controller, Actuators
 - Degrees of Freedom (DOF) and Controllable DOF
 - Mobile Robot Locomotion
 - Locomotion Gaits for Legged Robots
 - Central Pattern Generator

Next: Robotic Paradigms and Control Architectures

Jan Faigl, 2017B4M36UIR - Lecture 01: Introduction to Robotics52 / 52