This textbook contains all material needed for the Symbolic
Machine Learning course exam. The slide sets cross-referenced
in Sections [§] and [6] are considered part of this textbook. The
teachers are ready to answer your questions. Questions regard-
ing Sections should be addressed to Filip Zelezny, questions
regarding Sections [f] and [6] should be addressed to [Jif{ Kléma.

mailto:zelezny@fel.cvut.cz
mailto:klema@fel.cvut.cz

Symbolic Machine Learning

Filip Zelezny and Ji¥i Kléma

Contents

[l A General Framework] 4
II.1 Percepts and Actions|. 4
1.2 Nonsequential Cases| 6
I1.3 Batch Learning| o000 6
L4 Rewardsand Goald 8
[Environment Stated 9
1.6 Agent Hypotheses| 11
1.7 Nonsequential and Batch Cases with States and Hypotheses| . . . 12
I1.8 Prior Knowledge| o oL 15
1.9 Hypothesis Representations| 15
|1.10 Learning Scenarios| 15

12 On-line Concept Learning]| 17
2.1 Generalizing Agent| Lo oL 19
2.2 The Subsumption Relation] 23
2.3 Separating agent|o 24
2.4 Version Space Agent| Lo 27

2.5 The Mistake Bound Learning Model|

13 Batch Concept Learning]

3.1 Batch Learning with the Generalizing Agent|.

3.2 Batch Learning with General On-line Agents|

3.3 Consistent Agent| oo

8.4 The PAC Learning Modell

4 Learning First-Order Logic Concepts|

4.1 Generalizing Agent| L Lo

[5 Learning Probabilistic Graphical Models|

6 Reinforcement Learning|

29

30

31

32

32

34

37

41

53

53

1 A General Framework

1.1 Percepts and Actions

Percepts

Actions

Figure 1: The basic situation under study.

e Discrete time

k=1,2,
e Percepts

Vk:xp, € X
o Actions

Vk:yp €Y

X and Y are finite.
A history is a sequence of alternating percepts and actions, i.e,

T1,Y1,22,Y2, -y Tk, Yk

and is denoted as xy<y. Similarly, 2y<r = 1,41, 22,92,...,Tk—1,Yk—1. There
is a probability distribution p on histories

wry<k) = p() p(yslzy) p(welzy, yi) - - pl@eley <) plyel o, zy<k) (1)

After the initial ‘kick-off” z; from the environment distributed according to
u(xy1), any percept xy, generated by the environment at time & depends on the
entire preceding history xy.; according to

p(xp|ry<i) (2)

Actions y; are determined by agent’s decision policy which also depends on
the history as well as the current percept and are distributed according to

1 (Yk|Tr, y<r). We will assume that the policy is deterministic. Thus we iden-
tify the policy with function 7: (X x Y)* x X =Y, so

yr = m(TY<k, Tk) (3)

This means that pu(yx|ry<k,xr) =1 for yx = 7(xy<k,) and 0 otherwise.

The following diagram illustrates the influences between the introduced vari-
ables.

Figure 2: Influence diagram for actions y; and percepts x for 1 < k < 3 with
full lines indicating deterministic influences (via 7) and dashed lines showing
probabilistic influences (via).

While we have yet to define what goals the agent should achieve through in-
teraction with the environment, obviously some histories will be “better” than
others in terms of the goal achievement. To maximize the probability of
good histories, the agent cannot influence the conditional probability , which
is inherent to the environment, but it can follow a good policy . However,
the effect of actions proposed by the policy depends on which is generally
not known to the agent. So the agent needs to recognize the environment by
experimenting with it. This is formally reflected by where action y;, depends
not only on the current percept z; but also on the history zyr. So the agent
will generally make different decisions y, # yi for k > k' even if xp = zp/
because the experience zyy at time k is larger than experience xy.ys at time
k’. This is our first reflection of learning.

How does the agent know how well it is doing? This information comes from
the environment through a specially distinguished part of the percepts, called
rewards. The remaining part of each percept contains observations. Formally,

X=0xR,0,€0, 1, € RCR, so

Ty = (0k, k) (4)

Since X is assumed finite, it follows that rewards have their finite minimum and
maximum.

The probability of xj in can be written in terms of the marginals po and
MR

w(wrlzy<k) = p(or, Tr|ry<i) =
1o (0k|rks xy<i)r(Tk|Ty<k) = 1r(Tk|ok, TY<k) 10 (0K |2Y <)

which also makes it clear that o and rj are in general not mutually independent,
even if conditioned on zy.k.

1.2 Nonsequential Cases

Scenarios where current percepts depend on the history of previous percepts and
actions are called sequential. The framework described so far is maximally gen-
eral in that dependence is assumed on the entire history from £ =1 on. On the
other extreme are nonsequential scenarios. Here, observations are independent
of the history as well as the current reward, i.e.

po (oK, Ty<k) = po(ok) (5)

and thus o1, 09, ... are mutually independent random variables sampled from
the same distribution po (they are “i.i.d.”).

Rewards in the nonsequential case are assumed to depend only the immediately
preceding observation and the action taken on it, i.e.

Lr(Telok, xy<k) = wr(rK|oOK—1, Yr—1) (6)

however, since yi_1 is functionally determined by the history zy,_1 and per-
cept x_1 = (0k—1,7K—1) through , we may rewrite @ as

MR(Tk|0k—1,Tk—1,Iy<k—1) (7)

which makes it clear that reward r; depends on previous rewards, and thus
rewards 71,79,... are not i.i.d.. This is natural since if they were, it would
mean the agent never improves its performance.

1.3 Batch Learning

We will also consider a specific yet important nonsequential case called batch
learning consisting of two phases switching right after time K

Figure 3: Influence diagram for actions yi, observations oy, and rewards rj, for
1 < k < 3 with full lines indicating deterministic influences (via) and dashed
lines showing probabilistic influences (via u) in the nonsequential case.

e the learning (training, exploration) phase at k=1,2,... K

e the action (testing, exploitation) phase taking place ink = K4+1, K+2,...

In the action phase, the agent no longer changes its decision making policy, so
if k,k' > K and 7}, = 73 then y, = ypr (8)

and ignores rewards. So the action proposed by the policy depends only on
the current observation and the history only up to time K. So for k > K,
changes here into

Yk = m(TY<K, Ok))
and @, change into
1R(TE|0k—1,Yk—1) = PR(TK|Ok—1, TY<K) (10)

because due to @, Yr—1 is determined by or_; and zy<g. The observation
or_1 does not depend on rewards due to . So reward 7 does not depend on
previous rewards 7/, k > k' > K. Another way to say this is that rewards in
the action phase are conditionally independent of each other, given the learning
phase history:

pr(rk, T |2y < i) = PR(TE|[TY< i) LR (TR |TY < 1) (11)

The following figure illustrates the batch-learning situation.

TY<g = 01,71,Y1,02,72,Y2,..., 0K, TK, YK

Y YK+1 YK 42 YK+3
\ \ \
\ \ \
N\ A\
\ \ \
\ \ \
\ \ \
\ N \
\ N \
N \
\ \ \
Y OK+1 N OK+2 R OK+3
\ N \ NN \
\ ~ \ ~ \
~ N ~
\ S N S AN
\ ~ \ ~ \
\ N \ N \
\ ~ \ ~ \
N \ N \
. R DAY
TK+1 TK+2 TK+3

Figure 4: Influence diagram for actions yy, observations oy, and rewards 7, in the
action phase (k > K) of batch learning with full lines indicating deterministic
influences (via 7) and dashed lines showing probabilistic influences (via). The
top row indicates the influence of the learning phase on the agent’s decisions in
the action phase.

We can further express the distribution of 4, (Vk > K) without conditioning on
the observations, which are i.i.d. by

pr(relry<x) = Z 1o (0k—1) pr(rk|ok—1, 2Y<K) (12)
or—1€0

So rewards in the action phase are i.i.d. according to the above distribution
conditioned only on the history of the learning phase.

1.4 Rewards and Goals

It has been obvious that the agent’s goal is to maximize rewards. Here we
formalize this goal. Since rewards come at each point of the history, we want
the agent to maximize their sum up to a finite time horizon m € N

ri+nro+...+rm,

or, more generally, maximize the discounted sum

oo
S e
k=1

where VEk : vy, > 0 and Zfil v; < 00, so the above sum converges.

But since rewards are probabilistic, the agent should choose a sequence y<,, of
actions leading to a high ezpected cumulative reward

Z NR(T§m|y§m)(T1 +ro+...+ Tm)

T<m

or, in the discounted case

Jim > nr(r<mly<m) > e

T<m k=1

where the first sum in both cases goes over all possible reward sequences r<,
(since R and m are finite, there is a finite number of them).

However, for the specific case of batch learning, we establish a more appropriate
learning goal. First, we do not care about maximizing rewards in the learning
phase as the purpose of this phase is to probe the environment even at the price
of possibly poor rewards. Second, in the action phase after time K, the rewards
rg, k > K are sampled independently from the same distribution SO we can
simply maximize their expectation with respect to this distribution

Z 1r(re|zy<w)ri (13)
rLE€R

It is again obvious from the formula that the expected reward only depends on
the learning phase history zy<x, after which the agent no longer changes its
action policy. Note also that the batch learning scenario allowed us to define an
objective without the need to choose the parameters m or v (k =1,2,...)
needed in the sequential scenario.

1.5 Environment States

With the exception of the non-sequential scenario, our framework has been very
general in that percepts xx generally depend on entire histories zy~x. In the real
world, many histories may be equivalent, i.e. leading to the same probabilities
of z, conditioned on action y;_1. This can be formalized through the notion of
environment state s € S at time k.

For generality, let us first assume that the state is probabilistically established by
the preceding state, the last percept, and the last action through the following
state update distribution

S(sklsk—1,Trk—1,Yr-1) (14)
and that this state generates the current percept
(x| sk) (15)

This modification does not lessen the generality of the framework if we allow
S to be infinite as then there could simply exist a distinct state for each possi-
ble history (there is an infinite number of possible histories for unbounded k).
Indeed, if one instantiates the distribution to the functional dependence

Sk = Sk—1 || (xk—layk—l) (16)

where || denotes concatenation, s will simply collect the entire history and its
occurrence in would be just a different name for zy., in . However,
we will make an important assumption, which will significantly simplify the
framework, that the number of possible states is bounded by a finite constant
Smax € R which does not depend on k

In practical tasks, there will be far fewer states than possible histories.

We can afford further simplifying assumptions under which the state-based
framework will still encompass the learning scenarios we are going to elabo-
rate. First, we will assume that the influence between environment states and

the emitted percepts are single-directional. In particular, the percepts depend
on states by but not vice versa, so we remove xj_1 from

S(sk|sk—1, Th—1,Yk—1) = S(Sk[Sk—1, Yr—1) (18)

As a consequence, the state cannot collect the history of percepts as in but
it can still collect the history of actions

sk =sk—1 || Y1 (19)
If the state evolves according to then the percept in depends on all his-
torical states sy_1,Sk—2,...,51 as well as all historical actions yx_1,yrx—2,...91

embedded in them, and not on any other factors. So instead of assuming the
specific update rule , we may equivalently assume that the state evolves in
any other way but the state-percept dependencies are preserved, so that percepts
are sampled according to

Pk |8k s Sk—15 Sk—25 - -5 ST, Yk—1> Yk—25 - - - » Y1) (20)

Our simplification plan is to remove some of the dependencies above. We will
do it differently for the two components of the percept, i.e. the observations

Lo (Ok Tk Sky Sk—1, Sk—2, - -+ 815 Yk—15 Yk—25 - - - » Y1) (21)
and the rewards
P (k| Ok s Sky Sk—15 Sk—25 -+, 51, Yk—15 Yk—2, - - -, Y1) (22)

In particular, the observation will depend only on the current state and the last
agent’s action
fio(Ok| sk, Yr—1) (23)

10

and the reward will depend on the last state and the action taken immediately
on it
/II'<7Q/~’T‘SA:713 ?/Aa-—l) (24)

1.6 Agent Hypotheses

A reasoning similar to the previous section applies to the agent, whose actions
generally depend on the entire history as in . Again, many histories can lead
to the same mapping from percepts to actions, for example because the agent
has built the same hypothesis about the environment throughout the different
histories. So analogically to the environmental states, we introduce the notion
of agent’s hypothesis hy € H. Since we work with deterministic agents, we
will assume that the hypothesis is updated given the current percept through a
functional prescription

hi, = H(hg—1,xk) (25)

and instead of , we will assume that actions depend on the (updated) hy-
pothesis rather than the history, and the current observation

yr = m(hi, o) (26)

Unlike in , explicit dependence on xj is no longer needed in as the
latter can always be stored as part of hy in . However, we do keep the
o component of z; as an argument of 7 because this will allow us to describe
conveniently cases where the agent’s hypothesis is kept constant and the actions
depend only on their immediately preceding observation. This will in particular
include the batch-learning case discussed below in the present context of state-
and hypothesis-based descriptions.

Again, we will postulate that
|H| < Humax (27)
for some constant Hp,,x that does not depend on k.

The formalization using enviroment states and agent hypotheses results in the
agent and environment structures depicted in Fig. The diagram of variable
influences is shown in Fig. [6]

The agent hypothesis h; has a very natural interpretation as it corresponds to
the agent’s model of the environment at time k, whereas 7 is the the interpreter
of the modelﬂ For example, h; may encode a set of logical rules, and = may

1We might as well call h;, a model rather than a hypothesis but that would cause terminology
clash in cases where the hy is expressed in the formalism of logic, where the word model is
already established and has a different meaning.

11

Agent Environment

Figure 5: The state-based scheme of agent-environment interaction. Full and
dashed lines denote functional and probabilistic influences, respectively. The
k — 1 nodes denote a one-step time lag. The highlighted dependence is only
relevant for the reward part r of the percept = generated by u; if the diagram
only captured observations o and actions y, it would not contain this dependence
and thus would be symmetric.

be a logical prover deriving actions as logical consequences of the rules. Since
the hypothesis description has to fit in a finitely bounded memory, there can be
only a finite number of different hypotheses. Therefore, the assumption in (27))
is well justified.

The history of percepts and actions (in combination with the current percept)
is obviously informative for updating the hypothesis so it seems the hypothesis
update in should also include previous percepts zy_1,Tg_o2,... and actions
Yk—1,Yk_2, ... as arguments. However, this is not necessary as the update func-
tion H in can always be made to store any finite number of percepts and
previous hypotheses in the memory, i.e. as part hy, because they are inputs to
the update step . But also any historical action y/, k' < k can be retrieved
by first retrieving hjs from the memory and then using . This is possible
because 7 is deterministic and can be simulated by .

1.7 Nonsequential and Batch Cases with States and Hy-
potheses

Just like in the framework using entire histories, also with the formulation based
on states and hypotheses the situation simplifies a lot in the nonsequential case.
Here, the environment has no memory at all so the conditioning factors in
and states are updated by i.i.d. sampling from the marginal distribution

S(sk) (28)

12

hl h2 h3

Y1 Y2 Ys
NSO NSO
N\ ~ \ ~
NN NS
\ ~N \ ~N
\ ~ \ ~
~ ~
\ ~ N\ ~
\ ~ \ ~
\ NN \ NN
\ ~ \ ~
\ N \ N
I \ To \ I3
\ N
~ N RN N PR
I N | N l
| N 1 N |
P
| F 1 PRERN)
< \ 4 N
l e \ 1 e N l
| - \ 1 - \ I
- -
| . N . N
(I N7 N
S —-—-=-—-=-=--—---- >89 - - - - — - - > 83

Figure 6: Influence diagram for states hy, actions y, and percepts xj for 1 <
k < 3 with full lines indicating deterministic influences (via 7 and H) and
dashed lines showing probabilistic influences (via p and §). The highlighted
dependencies are only needed for generating the reward part 7 of the percepts
L.

Furthermore, observations o no longer depend on agent’s last action as in
so they are sampled from

to(Ok|Sk) (29)
Since si’s are i.i.d., the og’s are also i.i.d.
Rewards, given by , are however still generally non-i.i.d. as they depend on

the agent’s actions, which in turn depend on the evolving agent’s hypothesis.
Fig. [7] shows the complete set of influences in the nonsequential case.

A further simplification comes in the special batch-learning scenario of the non-
sequential case. While in the learning phase of the latter, the agent uses the
update rule , in the action phase it no longer updates the hypothesis, so

hie = hi, ¥k > K (30)

This is illustrated in Fig. [8] Special attention is needed regarding the variables
at time K. Reward rx (part of percept z) is the last training reward, according
to which the last update is conducted towards the final hx. Observation ox
(another part of percept x) is, however, the first testing observation.

For k > K, yi_1 is fully determined by ogx_; and hg through in which

13

Figure 7: Influence diagram for hypothesis hy, actions yg, observations oy, and
rewards 1y, for 1 < k < 3 with full lines corresponding to deterministic influences
(via m and H) and dashed lines showing probabilistic influences (via p and S)
in the nonsequential case.

hip—1 = hi. So we can rewrite (24) into
o (78| Sk—1,0k—1, hKc) (31)

and further express

pr(Tilhi) = Z Z pr (TklhEc, Sk—1, 0k—1) o (0Ok—1|Sk—1)S(sk=1) (32)
$—1€0 0,1 €0

where u, and S, i.e. and , are independent of k. So in the testing phase,
rewards 7 are i.i.d. according to the distribution u,(r|hx) depending only on
the learned hypothesis hx. This is analogical to the state-free formulation .
Similarly to , an agent operating in the batch-learning scenario with states
will be assessed by the expected reward in the testing phase

Z PR (T P)T (33)

rkER

and should find a hypothesis h g maximizing this quantity.

14

YK+1 YK 42 YK+2
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \
OK+1 \ OK+2 OK+2
! \\ ! \\ !
I \ I \ I
\	\
\	\
\	\
\	\
\	\
\ \ >	
SK+1 . SK+2 . SK+2	
1N \ AN \	
I AN \ AN \	
1 N \ N \	
N \ N \	
AN \ AN \	
N \ N \	
N \ N \	
~ My My
TK+1 TK+2 TK+2

Figure 8: Influence diagram for actions yj, observations og, states sg, and re-
wards 7 in the action phase (k > K) of batch learning with full lines indicating
deterministic influences (via 7) and dashed lines showing probabilistic influ-
ences (via p). The top row indicates the influence of the agent’s last hypothesis
learned in the learning phase on the action phase. The dependence of rx1 on
sk and yg is not shown.

1.8 Prior Knowledge

e Implicit: the setting of H (“hard bias”) and H (“soft bias”)
e [Luplicit: the setting of hy (“background knowledge”)
1.9 Hypothesis Representations

See Fig. [0}

1.10 Learning Scenarios

1. on-line concept learning
2. batch concept learning

3. query-based and active learning (not covered here)

15

Figure 9: Hypothesis representations and their corresponding policy classes
(interpreters) considered in this course. Arrow directions indicate increasing
expressiveness. Note: the bottom box was not covered in SMU 2017 and will not

be part of the exam. The box above it was covered in the lectures but is not part
of this book or the exam.

4. reinforcement learning

5. universal learning (not covered here)

16

2 On-line Concept Learning

We first motivate the on-line concept learning scenario with an example, in
which the agent is an artificial scientist. The agent conducts repeated experi-
ments with a living cell, which represents the environment. In each experiment,
it observes two proteins of interest in the cell. More specifically, the agent de-
tects whether the proteins are present in the cell at all, and it also determines
whether they are in an active state (a special spatial conformation of a protein).
The agent suspects that these proteins (both or only one of them) initiate apop-
tosis (cellular suicide). After each observation of the proteins, it tries to predict
whether the cell will die or not. If the prediction is incorrect, the agent receives
a negative reward. This can be for example a cut-down on the agent’s salary by
the boss of the lab who is not happy with wrong biological predictions, in which
case the boss would be a part of the environment. However, we will simply
model such a reward with the number -1 for wrong predictions and with 0 for
correct predictions.

experiment apoptosis prot. 1 prot. 1 prot. 2 prot. 2 apoptosis

number initiated = present active present active prediction reward
k Sk 0,1C oi oi oi Yk Tk
1 0 0 0 0 0 0 0
2 0 0 0 1 0 1 -1
3 0 1 0 0 0 1 -1
4 1 1 0 0 0 0 -1
5 0 1 0 1 1 0 0
6 1 1 1 1 0 1 0
7 1 1 1 0 0 1 0
8 0 1 0 1 1 0 0
(etc.)

Table 1: A concept learning experiment.

Table [2] illustrates a history of such agent-environment interaction, in which
the agent eventually learns the apoptosis is induced if and only if protein 1 is
present and it is in the active form. From time & = 5 on, the agent makes
correct predictions and is no longer punished with negative reward.

In the sequel, we will see how to model the illustrated scenario in our frameworks
and we will see examples of agents able to learn as the agent-scientist has in the
story above.

We implement the on-line concept learning scenario as a specific case of the gen-

eral sequential learning framework. The central assumption of concept learning
is that the current observation uniquely determines the current state through

17

function
c:0—= S (34)

so for it holds

o (0K |8k, yp—1) = 0 if sg # c(ok) (35)

In other words, the observations are partitioned into classes co-inciding with
states, and function ¢, which is unknown to the agent, and which classifies the
observations into these classes.

In the concept learning scenario we will work with two classes only, i.e.
S={0,1} (36)
Then function ¢ can be conveniently identified with the subset of observations
c={0€0 | clo)=1} (37)

and write o € ¢ or ¢(0) = 1 interchangeably. This subset view earns ¢ the name
concept. In the later text, whenever we speak of a concept ¢, ¢ will represent

the set given by .

In the concept learning scenario, we want the agent to learn the unknown concept
¢ by guessing the state s at each time k and providing the guess through y; =
7(hg, o). The environment will punish the agent by a negative reward for each
incorrect guess, and this will make the agent adapt its policy through changing
hi. Ideally, these changes should eventually lead to a hypothesis according
to which the policy makes only correct guesses. To implement this guessing
scenario, we first make sure that the range of actions coincides with the range
of states

Y==¢ (38)

The rewards should be functionally determined only by the true state and the
guess made. So we prescribe it by function L : S x Y — R so that takes
the specific form (incrementing the time index inconsequentially for shorter
notation)

1 lf Tk4+1 = —L(Sk,yk)

. (39)
0 otherwise

p’r(rk-l-l'skayk) = {
The first reward 7 is immaterial and is still sampled from the marginal pg(rq).

Function L is called loss. The loss should evidently be zero if s = y; and in
other cases it quantifies how serious a mistake is made by the wrong guess. Since

18

our goal is just that the agent identifies the concept, we consider all mistakes
equally bad and set the loss ag?]

0 if sk = yx (40)
1 otherwise

L(sk,yr) = {

Given 7 and assuming a fixed policy 7, also any hypothesis h € H can be
formally identified with the set

h={o€O | w(h,0)=1}

so that
H={h|heH)} (41)

Again, whenever we speak of a hypothesis h (possibly with the time index, hg),
then & (hy,) will automatically mean the set given by (4I]).

The fact that the agent’s hypothesis exactly matches the unknown concept for
any observation o can now be simply expressed as

h=c (42)
Note that it would not be correct to write h = ¢ even if h = c.

Whether or not the agent at some time k learns a hypothesis h;, = ¢ depends
on the agent’s update rule , and also on whether its hypothesis clasﬂ H
contains such a h; at all. To formalize this latter condition, we will assume that
the environmental concepts ¢ cannot be arbitrary but rather belong to a concept
class C'. An important property of the particular concept learning scenarios will
be whether or not

ccH (43)

Table [2| summarizes the main pieces of notation we use in concept learning.

2.1 Generalizing Agent

Here we design an agent that learns an unknown conjunction by starting with
the most specific hypothesis (a conjunction of all literals, i.e. all propositional

2Defining both a loss function, and a reward as the negative loss seems redundant. Indeed,
we could combine and into a single equation without defining the loss at all. We do
keep the latter, however, as it is a central established notion of decision theory.

3We take the liberty to call hypothesis class both H, i.e. the set of hypothesis representa-
tions, and H, i.e. the family of sets generated by the representations together with the fixed
policy. The word class in the terms hypothesis class and concept class should not be confused
with the classes of observations, which are states.

19

symbol meaning

h agent’s hypothesis (e.g. a rule)

7(h, 0) the agent’s policy interpreting hypothesis h to produce a binary
' decision from observation o

H set of possible agent’s hypotheses (hypothesis class)
(o) unknown concept mapping observations to binary states
C set of possible concepts (concept class)

set of all observations o mapped to 1 by w(h,0) or c(o) (respec-
h, ¢ tively). Also called a hypothesis and a concept (respectively), just
like the corresponding h and c.

H. C set of all h’s and all ¢’s (respectively) following from different
- choises of h € H and c € C.

Table 2: Summary of notation for concept learning

variables as well as their negations) and then deleting all literals inconsistent
with the received observations. So the initial hypothesis is gradually generalized
towards the correct one.

Recall the example in Table[2]and let the propositions “Protein 1 is present” and
“Protein 1 is active” be represented by logical symbols p; and p2, respectively.
The analogical assertions for Protein 2 will be represented by symbols p3 and
ps. The strategy of the generalizing agent is to start with the initial hypothesis
that apoptosis is induced if and only if

p1 A —p1r Ap2 A P2 A ps A —p3 A pg A —py (44)

This is the most specific hypothesis as it conjoins all possible conditions (lit-
erals). At the same time, this conjunction can of course never be true as it is
self-contradictory. However, the agent’s strategy is to successively remove from
it all the literals that are inconsistent with the coming observations. Eventually,
it should achieve the correct conjunction

P1 A P2 (45)

We will now design such an agent precisely. The main thing we will need to
prove is that the successive deletions indeed lead to the correct hypothesis.

Observations are n-tuples of binary (truth) values

0={01}" (46)

20

The agent has the hypothesis class

H=®dx0 (47)
where
o= Api /\ »i | L.JC[1:n] (48)
i€l jeJ
and n € N. So
hi. = (¢, 0) (49)

consists of a conjunctive formula ¢, containing at most 2n literals, and o}, €
O. The latter has the purpose of memorizing the last observation (example)
provided by the environment and will be used only for updating hypotheses.

The formula ¢j is used to determine decisions through the agent’s decision
policy yr = m(hi,o0r) = 7((dk,0),0r). Whenever the policy does not
depend directly on the memorized example o}, which will be the typical case,
we will afford the shorter notation (¢, or). The policy is set to

1if0k':¢k

. (50)
0 otherwise

yr = m(Px, o) = {

where oy, = ¢, means ¢y, is true given the truth-value assignments o; to variables
pi, 1 <1 < n. More precisely, we say that positive (negative, respectively) literal
pi (—p;) is consistent with observation oy if of =1 (of = 0). Finally, ox | ¢
holds if and only if all literals of conjunction ¢, are consistent with oy.

The update rule (25]), which we expand by and to

(k5 0%) = H ((dr—1,0k_1) » (0k,7%)) (51)
is set to
0, =0y, (52)
b0 = {‘z”“ v | (5)
delete(¢pr—1,0},_) otherwise
where

delete /\pi /\ —p;, (0',0%,...,0") | = (54)

i€l jeJ
N o N\ » (55)
el i_e[

o' =1 o’ =0

21

So the delete function keeps exactly those literals from ¢, _1 which are consistent
with o} _;.

We assume that (43) holds. In particular, there exists a target conjunction
¢* € ® such that h* = (¢*, 0) exactly simulating the unknown concept c, i.e.

sk = c(ox) = 7(Pk, 0k) (56)

Lemma 2.1. si =1 if and only if all literals of ¢* are consistent with oy.

The above lemma follows directly from and .

Lemma 2.2. Whenever delete(¢i_1,0)._,) is called, sp—1 # yr—1, and if sp_1 =
0, then all literals of ¢i—1 are consistent with o _,.

Proof. To see why Lemma is true, note that according to , rr 7 0 when
delete is called. Due to and , this means that sy_1 # yx—_1. So if
sg—1 = 0 then y;_; = 1, but then due to , 0} = ¢r—1 and so all literals
of ¢p_1 are indeed consistent with o}, _;. O

Lemma 2.3. delete(¢y_1, 02_1) never removes a literal | € ¢r_1 which is also

in ¢*.

Proof. Assume for contradiction that it removes a literal [€ ¢*. First assume
sx—1 = 0. By Lemma all literals of ¢p_1 are consistent with oj,_,. But
because delete(¢y—_1, 0}, _;) keeps all literals of ¢_1 consistent with o}, it does
not delete [, which is a contradiction. Now consider s;_; = 1. Then by Lemma
all literals of ¢* including ! must be consistent with o}, _,. Again, since delete
keeps all consistent literals, it does not delete I, which is a contradiction. O

The starting hypothesis of the designed agent is set to contain all possible literals

G1=p1ADPLAP2ADP2A...Dy APy (57)

Thus ¢1 2 ¢*, where the inclusion is with respect to the sets of literals in ¢
and ¢*. Furthermore, due to Lemma [2.3] we have

¢ 29", Vke N (58)

Given the above, the agent makes mistakes only on ‘positive examples’, and
the mistakes are corrected by removing at least one inconsistent literal, as the
following lemma formalizes.

Lemma 2.4. Assuming , whenever delete(¢r_1,0}_4) is called, sp_1 =1,
and the function deletes at least one literal from ¢g_1.

22

Proof. Due to Lemma Sk—1 7# Yr—1- If sx_1 =0 and yx_1 = 1 then by the
same lemma, all literals of ¢;_1 are consistent with o}, ;. According to Lemma
there would then be a literal in ¢* inconsistent with o},_;. But due to ,
this inconsistent literal would also be contained in ¢ _1, which is a contradiction.
So we know that sp_1 = 1 and y,_1; = 0. According to , this means that
¢r—1 contains a literal inconsistent with o}_;. Since delete, by definition, keeps
exactly all consistent literals, the inconsistent literal is removed. O

Theorem 2.5. The agent makes at most 2n mistakes, i.e. the cumulative
reward is

Zrk > —2n (59)
k=1

for an arbitrary horizon m € N.

Proof. Since the first agent’s conjunction has 2n literals by and upon each
mistake, at least one literal is removed from from the conjunction by Lemma
the maximum number of mistakes is 2n. O

While the agent’s strategy has been designed to learn conjunctions, it can be
also made to learn disjunctions due to the equality

“(p1VpaV...Vpy)=-p1 A-paA... AP, (60)

So the only required change is that the agent replaces observations o with
o =(1-— 0,1€7 1-— oi, ..., 1 —0}) and its actions y; with 1 — y.

Other logical classes can also be reduced to conjunction and disjunction learning.
Consider e.g. s-CNF (s < 0o0). These are conjunctions of s-clauses. An s-clause
is a disjunction of at most s-literals. There is a finite number of s-clauses so
the agent can simply establish one new propositional variable for each possible
s-clause a learn a conjunction with these new variables. This reduction would
even be efficient if s is a small constant. Indeed, if n is the number of original
variables, then the number of possible clauses is (Z) which grows exponentially
with s and polynomially with n. A similar reduction can be used to learn
s-DNF.

2.2 The Subsumption Relation

It is instructive to view the generalization process as a path in the subsumption
lattice of conjunctions shown for two propositional symbols in Fig. A lattice
is a partially ordered set where each two elements have their unique least upper

23

bound and the greatest lower bound. The subsumption order is given by the
subset relation

1 C @2 (61)

This means that conjunction ¢; precedes conjunction ¢ if the latter contains
all literals of the former.

Recall from logic that a formula ¢ entails another formula ¢4 if any model of
¢1 is also a model of ¢o. We denote this as

o1 F d2 (62)

It is obvious that ¢ C ¢o implies ¢o F ¢1 if ¢1 and ¢o are conjunctions. How-
ever, the inverse implication does not hold. For example (observe Fig. , we
have both p; A =p1 F pa A =p2 and pa A =po - p1 A —pp simply because both of
the formulas are non-satisfiable and thus neither has a model. However, they do
not share any literal so the subset relation does not hold either way. Neverthe-
less, for satisfiable conjunctions (i.e., conjunctions other than ‘contradictions’)

@1, 02, ¢1 C @2 is equivalent to ¢o - ¢1.

While so far, we considered subsumption only conjunctions, the literal subset
relation is obviously defined as well for disjunctions, i.e. clauses. However,
the relationship to logical entailment becomes inverted. More precisely, for two
clauses ¢1, ¢2, ¢1 C ¢o implies ¢1 - ¢o. Just like in the case of conjunctions,
we cannot claim equivalence between the two latter relations. For example p; V
—p1 F p2V—ps. Again, the problem is with the atoms included both as a positive
and a negative literals. While in conjunctions they produced contradictions,
their presence in clauses make the latter tautologies, i.e. formulas true in any
interpretation. But analogically to conjunctions, ¢1 C ¢9 is equivalent to ¢o -
¢1 if @1, P2 are not tautologies.

Contradictory conjunctions and tautological clauses have one property in com-
mon. They contain a positive literal as well as the negation of the same literal.
Clauses, which have this property, are called S('fZ(]C—T’(is’()l’l)lj’ll‘(jﬁ

2.3 Separating agent

Here we will build an agent with a strategy completely different from the gen-
eralization agent. In particular, agent’s hypothesis h will define a hyperplane in
the O = {0,1}" space so h will be exactly those observations lying above
the hyperplane.

4As the adjective self-resolving originates from the resolution principle, which is applied
on clauses and not on conjunctions, it is usually not associated with conjunctions.

24

P —P1 b2)
PPt e e P1p2 “p1p2 “p1opa-” papa

pP17pP1p2 P17P1 P2 Pi1p27p2 “P1p27P2

P17P1P2P2

Figure 10: Subsumption lattice for conjunctions. The conjunction symbols A
are omitted for brevity. The curved arrows show how the agent generalizes its
initial conjunction in two steps following the successive observations (1,0) and
(1,1) carrying the respective truth values for p; and ps. All conjunctions below
the dashed line are non-satisfiable.

We will first assume that the concept to be learned corresponds to a disjunction,
SO

C={csloed} (63)
where for s <n
<I>:{pi1\/pi2\/...\/pis\1§i1,i2,...i8§n} (64)

and

co(0) = {1 oo (65)

0 otherwise

Although considers only monotone disjunctions, i.e. without negated liter-
als, it can be easily generalized to general disjunctions by introducing 2s (instead
of s) propositional variables p = p;, ph;, = —p;.

A hypothesis of the separating agent is an n-tuple of integer coefficients bounded
by some constant ¢ € N and a memory for the last observation, i.e.

hi = (wg, 0},) (66)
where wy, = (w},, wi, ... w}). So the hypothesis space is

H=100,1,2,...,q]" x O (67)

25

The agent’s decision policy is given by a threshold function applied on the dot
product of the agents coefficent tuple with the observation tuple

1if wy - o > n/2

. (68)
0 otherwise

yr = m(wg, o) = {

Assume again that C C H. This can be achieved with a sufficiently large ¢ as
disjunctions are linearly separable.

The initial n-tuple of coefficients is

wy = (1,1,...1) (69)

And the hypotheses are updated by the following rule
(wk, O;c) =H ((wk—la 0;71>) <0k7 rk)) (70)
where
0}, =0, (71)
Wk —1 if T = 0
wy, = < update(2, wy_1,05_;) if wg_1-0}_; <n/2 (72)
update(0, wy—1,0},_4) if wg_1-0},_; > n/2
and where the function update is defined such that for wy = update(d, w, o)

) wtif ot =1
wz:{ﬁwlo (73)

w' otherwise

Theorem 2.6. The agent makes at most 2 4+ 2slgn mistakes, , i.e. the cumu-
lative reward is

Zrk > —-2—2slgn (74)
k=1
for any horizon m € N.

(proof omitted)

Just like the generalizing agent designed to learn conjunctions could easily be
modified to learn disjunctions, s-CNF, and s-DNF, also the separating agent
can be altered to learn conjunctions as well as the latter two classes by means
of the same reduction principles.

So the two agents can in principle learn the same concept classes. The difference

is in the mistake bound. The latter agent performs better when the number of
variables n is larger than the number of relevant variables s.

26

2.4 Version Space Agent

How well can we do with arbitrary concept classes? Immediate mistake bound
for any concept class C

Cl -1 (75)

Can be improved to 1g |C| using the version space strategy.

Assume a set ® of versions. These may be conjunctions, disjuctions, or other
representations. The only assumption is that each version ¢ € ® provides
a decision ¢(0) for any observation o € O. So this function works similarly
to a decision policy 7, however, the version-space agent uses a policy 7 that
aggregates multiple versions for a single decision.

The hypothesis class is
H=2*x0 (76)

hi = (V. 0) (77)

where V' is a set (‘space’) of versions, and o again stores the last observation.
The plan is that V' maintains all versions from ® consistent with the observations
and rewards received so far.

Decisions are determined by voting of all versions in the current version space

1if Vi =1 Vil|/2
0 otherwise
The initial version space contains all versions from &
Vi=9 (79)

and in the hypothesis update step, the agent deletes from its version set all
versions inconsistent with the last observation, i.e.

0}, =0y, (80)
Vi={¢€Vi1]|d(ok—1) =5k-1} (81)

where s;_1 is determined as sx—1 = |yr—1 — rr—1| (check that this is true) and
Yr—1 = m(Vi—1,0},_1)-

Assume that @ is rich enough so that it contains ¢ € ® so that ¢(0) = c(o0) for
all 0 € O (check that this implies [43)). Then the following holds.

27

Theorem 2.7. The agent makes at most 1g|®| mistakes, i.e. the cumulative

reward is
m

> i > —1g|®| (82)
k=1
for any horizon m € N.

Proof. To see why the theorem holds note that the agent decides by the majority
of current versions. So if a mistake is made, at least half of the versions are
deleted. In the worst case, the last remaining version is correct. O

The logaritmic bound is good but the computational demands for storing the
version space can be prohibitive.

2.5 The Mistake Bound Learning Model

The linear mistake bounds we obtained for the generalizing and separating
agents indicate that these agents are indeed able to learn well the conjunc-
tive and disjunctive concepts but also other kinds of concepts (namely, s-DNF
and s-CNF) that can be reduced to the latter. We will now generalize the notion
of ‘good on-line learning.” We say that an agent learns concept class C' on-line
if it makes at most p(n) of mistakes in the on-line scenario with any concept
from C, where p is a polynomial and n is the size of observations. With our
setting , the size of observations is the number n of binary values making
up the observations.

By Theorem the version space algorithm has a mistake bound lg |®| as long
as ® contains a version coinciding with the concept. So if ® contains a version
for any concept from C and |®| is at most exponential in n it necessarily learns
C on-line, because the mistake bound lg |®| would then be polynomial. But note
that |®| may be super-exponential. The extreme example of the latter is the
space @ so rich that it has a ¢ € ® for any possible mapping ¢ : O — S. There
are 2" different possible observations o € O = { 0,1 }", each of which is classified
in one of the two states S = {0,1}. Then |®| = 22" is super-exponential.

Furthermore, we refine the definition into a stricter form. An agent that learns
concept class C on-line is said to learn it efficiently if it spends at most polyno-
mial time (in observation size) between the receipt of a percept and the gener-
ation of the next action.

What about a lower bound on mistakes? We say that a set of observations
O’ C O is shattered by hypothesis class H if

{O'Nh|heH} =27 (83)

28

which means that the set of observations can be partitioned in all possible ways
into two classes by the hypotheses from H.

The Vapnik-Chervonenkis Dimension (or VC-dimension) of H, written VC(H),
is the cardinality of the largest set O’ C O that can be shattered by H. The
definition extends formally also to H corresponding to H by , so we will
also write VC(H).

Theorem 2.8. No upper bound on the number of mistakes made by an agent in
the concept-learning scenario using hypothesis space H is smaller than VC(H).

Proof. This is because for any sequence of agent’s decisions y1, 2, - ., Yvc(m)
there exists a h € H according to which all these decisions are wrong. O

3 Batch Concept Learning

The batch concept learning situation is defined by the assumptions of batch
learning (Section combined with the concept-learning requisities which are
the same as in on-line concept learning (Section . In particular, the latter
include the assumption of a target concept determining states from observations
, the binary range of observations and states , and the unit loss
function determining rewards .

Since rewards are negative losses by , the expected reward to be max-
imized is in [—1;0]. Its negative value, for a given hypothesis and k& > K, is
called the error of the hypothesis

err(hg) = — Z wr (kb)Tk (84)

rL€R

and corresponds to the proportion of misclassified observations in the testing
phase, i.e. those observations oy (k > K)E| for which yp # sx. Given and
, the error can be expressed as the probability of making a mistake, i.e.
receiving a -1 reward at an arbitrary time k > K

err(hg) = pr(—1lhk) (85)

A natural question of interest is how the algorithms we designed for on-line
concept learning in the sequential scenario would perform in terms of the error
(85). Evidently, the bounds on the number of mistakes we established in Theo-
rems and do not translate to any bound on err(hy) as there is no
guarantee that the mistakes will happen in the learning phase (k < K) where
the agent still can fix its hypothesis.

5Make sure to understand why the inquality is non-strict here.

29

But unlike in the on-line learning case, the batch case inherits the non-sequential
assumptions and 7 meaning that states and observations are sampled
i.i.d. according to distributions that do not change with k. They prevent the
environment from ‘adversarial’ behavior, for example, one where the training
phase would only contain ‘easy’ examples and the ‘hard’ ones would be kept for
the testing phase. As we will see, in this scenario we can indeed bound err(hg)
for particular learning agents, although we will be able to do it only with certain
probability smaller than 1.

3.1 Batch Learning with the Generalizing Agent

Assume the generalizing agent as described in Section[2.I]working in the learning
phase (k < K) of the batch scenario just as it worked in the on-line scenario.

Denote by Pr(l) the probability that a literal { (i.e., p; or —p; for 1 < ¢ <
n) is inconsistent with observation og. Since observations are now i.i.d., this
probability does not depend on k. We already know that a hypothesis hj using
conjunction ¢, with only consistent literals has zero error. So the probability
of guessing the wrong class is the probability that some of the literals in ¢, are
inconsistent. Thus we have the bound

err(hg) < Y Pr(l) (86)

ledk

We have no more than 2n literals in ¢, so if Pr(l) < €/2n for each of them then
err(hg) < e. Call a literal bad if Pr(I) > ¢/2n. The probability that a bad literal
[survives k observations is

€

(1 - Pr(l)* < (1 - —)k (87)

2n

It is important to realize that would not be correct if the observations
01,02, ...0 were not i.i.d. The above equation thus rests fully on the extra
assumptions of the nonsequential scenario (of which batch learning is a special
case), which we did not adopt for on-line learning.

There are at most 2n bad literals so the probability that some of them has
survived k steps is at most
ek
2n (1-) 88
n o (88)

To work with this upper bound easily, we make use of the inequality 1 —x < e~
which holds for « € [0;1], to obtain

xT

k) €
2n (1 - %) < 2ne Fan (89)

We now summarize the above inferences into a theorem.

30

Theorem 3.1. Hypothesis hi11 of the generalizing agent in the learning phase
(k < K) has err(hyy1) < € with probability at least 1 — 2ne %%

Note that the k£ + 1 index is due to the fact that k observations are used to
learn hyy1 (o and i1 are used to create hiy1). So at the end of learning,
err(hg) < e with probability at least 1 — 2ne~(K—1275,

3.2 Batch Learning with General On-line Agents

We define a standard on-line agent as one that changes its hypothesis if and
only if a mistake has been made by the previous hypothesis. This includes the
generalizing and separating agents as follows from the update rules (52)) and
. On the other hand, the version-space agent is not standard as b it
updates its hypothesis whenever its current version space contains an inconsis-
tent version, even if the most recent decision determined by the majority vote
of versions was correct. For all of the agents designed, we will also assume that
their hypothesis spaces include a hypothesis perfectly matching the unknown

concept, i.e. holds.

The next lemma will enable us to accommodate any on-line learning agent for
the batch learning scenario with a probabilistic bound on the error of the learned
hypothesis.

Lemma 3.2. If a standard on-line agent retains a hypothesis hy for q steps
(hie = hig41 = ... hiyq), then err(hy) < € with probability at least 1 — e~ €.

Proof. To see why the lemma is correct, we again realize that the probability
that the standard agent keeps a bad hypothesis (err(hg) > €) on receiving an
observation is exactly the probability 1 — err(hy) that the bad hypothesis pro-
duces a correct decision for that observation. Since err(hg) > €, the probability
is at most 1 — e. The probability of keeping the hypothesis over ¢ i.i.d. ob-
servations is thus at most (1 — €)9, and we already know that (1 — €)? < e™%.
Otherwise, i.e. with probability at least 1 — e~ 9¢, the hypothesis was not bad,
i.e err(hy) <e. O

So the rule is: wait until Ay = hgy1 = ...hg4e happens and then keep hy
with the probabilistic error bound. The question is how to guarantee that the
event indeed happens within the learning phase, i.e. k+ q < K. If we have
a mistake bound M for the agent, we know that the standard agent makes at
most M hypothesis changes. In this case we set the learning phase long enough,
in particular K = Mgq, to guarantee that one of the hypothesis in the learning
phase survives at least g observations.

31

3.3 Consistent Agent

Here we design a general agent working with an arbitrary hypothesis space.
This is analogical to the version space agent we studied in the on-line setting.

We first adapt the version space agent from on-line learning to batch learning.
In the learning phase, the agent works just as in the on-line setting. When the
phase ends, i.e. k = K, the agent updates the version space for the last time
according to and then selects an arbitrary version ¢x from the version
space V. All other versions are deleted from Vi, so Vk = { ¢k }, and ¢ thus
dictates the decision policy for k > K

(Vi o) = ¢x (ok) (90)

which is because of the majority vote given by (78).

For short notation, we formally extend the error function to versions, so err(¢g)
is the error achieved by the above policy. We call a version ¢ bad if err(¢) > e.
The probability that a bad version ¢ survives k observations is at most (1—¢)* <
e~*. The probability that some bad version from the initial version space
survives is at most |®|e~“*. So that probability that no bad version survives
and thus err(¢x) > € whichever ¢k the agent has picked from the last version
space, is at least 1 — |®|e~¢.

Maintaining the version set is difficult but an equivalent behavior without the
version spaces is achieved as follows. All observations oy seen up to k = K — 1
are stored in memory along with the true classes s;. The latter are obtained by
always making the decision y; = 0 in the training phase so that sy = —rg41.
Then the agent finds any hypothesis hx € H consistent with the collected set,
i.e. w(hg,or) = s for all k < K. Analogically, to the reasoning above, we have
that

Lemma 3.3. The probability that the consistent agent’s hypothesis hx has error
err(hg) < € is at least 1 — |H|e=<E=1),

This defines the consistent agent. Of course, finding such a hypothesis may be
computationally hard.

3.4 The PAC Learning Model

Agent probably approximately learns concept class C (in the batch setting) if
at the end of the training phase it produces hy such that err(hg) < € with
probability at least 1 — J, and K < p(n,1/d,1/€), where p is a polynomial.

32

“probably approximately learns” = “PAC-learns” (C for correctly)

It PAC-learns the class efficiently if it spends at most polynomial (in the same
variables) time between the receipt of a percept and the generation of the next
action in the training phase.

Theorem 3.4. The generalizing agent efficiently PAC-learns conjunctions.

Proof. Efficiency is obvious: at most 2n unit steps (going over literals) for each
of n observations. From Theorem the probability that err(hi41) > € is at
most 2ne 2w . It remains to determine how many observations k are needed to
make the probability smaller than a given § and see if the result is polynomial.

5> 2ne

So the required k is indeed polynomial in n, 1/¢ and 1/4. O

Theorem 3.5. Any standard agent learning (efficiently) a concept class C' on-
line, has a counterpart which (efficiently) PAC-learns C.

Proof. The agent makes at most u < p(n) updates, i.e. max number of mistakes.
Its batch counterpart works as follows.

_1 1
If before v updates have been made, each hypothesis survived for less than ¢
steps, then the last one (which makes no mistakes) is found in at most ug steps,
and is kept as hx. Both u and ¢ are polynomial.
If some of them survived for at least ¢ steps, than according to lemma (3.2), its

error is less than € with probability at least 1 —e~9¢ = §. This hypothesis found
with less than ug (poly) steps, will be kept as hg. O

So a negative batch (PAC) result also means a negative on-line result.

Theorem 3.6. IfC C H and |H]| is at most exponential in n then the consistent
agent using H PAC-learns C.

33

Proof. By Lemma (3.3)), probability § that err(h) > € is at most |H|e ™.
§ < |Hle=k

6 —ek
i = ¢

ln%>k‘

=

Since |H| is at most exponential in n, In|H]| is at most polynomial in it, so
kE<p(l/e1/d,n). O

Also, s-CNF and s-DNF learnable by poly reduction to conjunctions.

4 Learning First-Order Logic Concepts

We now revisit the agent-scientist from Section [2] although the agent will now
be in a slightly different situation. In particular, it will investigate chemical
compounds, that is, structures such as

and learn to predict for each compound whether it is toxic or safe. The impor-
tant distinction from the story captured in Table [2]is that there is now no ob-
vious way to encode structure such as the above through tuples o = (o', 0%,...)
of truth values. Here, observations are graphs and we need a language more
expressive than propositional logic to describe such graphs, and also to form
hypotheses about them. To this end, we will use the language of first-order

predicate logic.

First, we will simplify the situation by abstracting from the parts not important
for studying the learning principles. In particular, we will ignore the types
of chemical elements in the vertices and also the bond types (single, double).
We will simply assume that observations are oriente(ﬂ graphs, that is, directed

6Q0rientation of edges may e.g. correspond to charge distribution along the bonds; we
assume oriented edges as their representation is simpler in logic than that of oriented edges.

34

Table 3: Graphical observations from which the agent should learn to classify
new observations as negative or positive.

graphs in which no two vertices are connected in both directions. We will assign
unique numbers to vertices so that the latter can be addressed later. This is
exemplified in Table

Encoding the graphs shown in Table [3| through the language of predicate logic
is straightforward. For each graph, we will simply list all of its edges as ground
facts of the binary predicate edge. So, for example, the second negative obser-
vation will be represented as

09 = { edge(21, 22), edge(22, 23), edge(23, 21), edge(23, 24) } (91)
and the second positive observed compound will be encoded as
o5 = { edge(51, 52), edge(52, 53) } (92)

Note that this representation is perfectly analogical to the one used in Sec-
tion In the latter, the observations were truth values assigned to
propositional symbols. In and we implicitly assign truth values to all
possible ground facts of edge/2 by including exactly those ground facts which
hold true, i.e. listing all edges actually in the graph. In both cases, the truth
value assignment is called an interpretation. In the present first-order context,
interpretations such as those shown above, which assign truth values directly to
ground atoms of the logical language, are called Herbrand interpretations.

Naturally, for more complex problems, the vocabulary of predicates would in-

clude more predicates than just edge/2, and an interpretation would define the
truth values of all ground facts of all the predicates.

35

Figure 11: Each negative and no positive observation from Table [3| contains one
of these two kinds of triangles.

Returning to the example in Table [3] we would like to design an agent able to
learn what patterns are common for only the positive observations (safe com-
pounds) so that such patterns can be used for classifying compounds observed
in the future. As we are also intelligent agents, we observe that none of the
safe compounds (and each of the toxic ones) contains a triangle. As edges are
directed, a triangle may take one of the two forms shown in Fig.

Any other oriented triangle is isomorphic to one of the two shown in the figure.
The following formula ~; in predicate logic expresses that a graph does not
contain the first (left) kind of triangle

v =Va,y, z : ~edge(z,y) V —edge(y, z) V —edge(z, x) (93)

In the logical representation of graphs, this means that e.g. the negative inter-
pretation o2 above will not be a model of this formula. Indeed oy = v, since
there exists a substitution 6, namely

0={z—21,y—22,2— 23} (94)

making all the literals in 76 false with respect to o2, since all of edge(21,22),
edge(22,23), and edge(23,21) are in 0p. Analogically, o3 [~ 71, so the third
negative example is also ‘eliminated’ by ~;. However, the formula does not
eliminate 07 — indeed 01 |= 71. This observation does not contain the first kind
of triangle shown in Fig. However, it contains the second one, which is in
turn eliminated by the formula

Yo = Va,y, z : —medge(z,y) V —edge(z,) V —edge(z, x) (95)

As before, we can check easily that o; (= 72 using either the substitution 6 =
{z— 14,y — 11,z — 13} or the substitution § = { z — 12,y +— 14,z — 13 }.

In summary, the conjunction
YA Y2 (96)

eliminates all negative observations. On the other hand, both v; and 7, are
true in all the positive observations (there is no substitution to z,y, z making
all literals of 47 or 7, false in them), so indeed the above conjunction perfectly
discriminates between the positive and negative observations.

36

Note that in a substitution, different variables can map to the same term. So
e.g. 1 would also be false in interpretations which we did not intend such as

o' = { edge(1,1),edge(1,2),edge(2,1) } (97)
as with the substitution
f={z—1ly—1,2—2} (98)

all literals v16 = —edge(1,1) V —edge(1,2) V —edge(2, 1) are false with respect
to o/. Similarly, one can check easily that 7o is false e.g. in interpretation
0" = { edge(1,2),edge(2,1) }. This would be a problem if o’ or o’ were positive
observations, since they would be eliminated incorrectly by 1 A 2. There is
an apparent reason why o' or o” should be classified as positive (safe): these
observations do not contain a proper triangle. However, note that neither o' or
0" represent an oriented graph as they contain mutually inverse edges and thus
they cannot come as observations at all.

4.1 Generalizing Agent

In the illustrative example above, the formulas v; and =, were first-order logic
clauses, that is, universally quantified disjunctions of first-order logic literals.
Thus is a first-order logic CNF. We will design an agent able to learn such
CNEF’s in the on-line scenario.

We will keep the basic concept-learning assumptions, i.e. observations uniquely
map to binary states . Note that these assumptions fit well the illus-
trative example above. Also, a reward will punish an incorrect prediction with

a unit loss as dictated by and (40).

Our new agent will be similar to the generalizing agent from Section It
will also learn conjunctions following the generalization strategy, except that
first-order clauses will be conjoined rather than propositional literals.

Observations will no longer be tuples of truth values as in . They will take
the form of (Herbrand) interpretations of maximum cardinality opax. In the
illustrative graph example above, on.x would be the number of edges in the
largest observed graph.

As will become clear later, to guarantee on-line learnability of first-order CNF’s,
we need to restrict the expressiveness of our language to so called range-restricted
st-clauses, rather than general first-order clauses. An st-clause contains at most
s literals and each of them contains at most ¢ occurrences of predicate, variable
and function symbols. A clause is range-restricted if any variable occurring
in a positive literal of it, also occurs in a negative literal of it. So clauses 1

37

and 7, from the previous section are examples of range-restricted 3, 3-clauses.
The range restriction here follows simply from the fact that the clauses have no
positive literals at all.

In Sec. [2.1]we considered the vocabulary of n propositional symbols p1, pa, . . ., pn
out of which the agent constructed conjunctions. With the present first-order
logic language, the language vocabulary will be more complex. In particular, P
and F' are finite sets of predicate and function symbols (respectively) and we
denote by

P={"7, - } (99)

the set of all range-restricted st-clauses made out using only predicate symbols
in P and function symbols in F'. Note that constants are a special case of
functions, namely functions of arity 0.

The hypothesis class of the agent will have the same structure as in , con-
sisting of the current conjunction and memory for the last observation seen.
However, unlike , we have

‘I’={/\%

el

[} (100)

So @ collects all possible conjunctions of clauses from T'.

In the propositional-logic setting, the size of the learning task was simply n,
the number of propositional symbols (see Sec. . Analogically to n, we
now consider opax. But besides op,,x, the size of the task is also given by the
complexity of the representation vocabulary, that is, the values |P| and |F'|. So
when we speak of a quantity polynomial in the size of the problem in the context
of the present agent, it has to be polynomial in all of the three variables.

The agent’s decision policy is as defined in .

Similarly to the propositional generalizing agent, the agent’s first hypothesized
CNF is the most specific one. Now this means it is a conjunction of all clauses

from T".
¢ = /\ v (101)
yell

The hypothesis update function as in (51H53]), except the delete function is dif-
ferent:

delete (/\ Vi, o) = /\ Vi (102)
el iel

o=

38

so it keeps exactly all clauses consistent with o.

Does this agent learn conjunctions of range restricted st-clauses on-line accord-
ing to Section 2.5 Since the agent follows the same strategy as the generaliz-
ing agent for propositional conjunctions (Section , i.e., deleting inconsistent
clauses from the curent conjunction, starting with the maximal conjunction,
Lemma |2.4] applies. That is to say, the agent makes errors only on positive
observations. Also, using Theorem (in which we replace the number 2n of
literals to the number |T'| of clauses in the conjunction), we get that the agent
makes at most |I'| mistakes. Now the question is whether |I'| is polynomial in
the size of the problem, i.e, in |P|,|F|, s, and .

To determine |I'|, we first examine the number of different atoms and literals,
and then the number |T'| of different st-clauses.

Each atom has exactly 1 predicate symbol chosen out of |P| symbols, at at
most t — 1 other symbols in arguments. Each can be chosen out of |F| function
symbols or it can be a variable. An st-clause can have at most st variables. So
there are at most |P|(|F|+ st)!~! different atoms, and 2| P|(|F|+ st)!~? literals.
A clause combines at most s literals, so the number of all st-clauses can be
estimated as

Z; <2P(|F|Z.+ S > < Z; [2|P|(|F| + st)']" = p(|P|,|F|) (103)

and so is polynomial in the size of the learning task. The number |T'| of all range-
restricted st-clauses is at most the above number and so is also polynomial. So
indeed, the agent learns conjunctions of range-restricted st-clauses on-line.

Does it also learn efficiently, i.e. does it spend at most polynomial time at each
hypothesis update step? That depends on whether the relation o = v tested
for each clause v = ; in the current conjunction in , can be determined
efficiently.

We recall from elementary first-order logic that o = v does not hold if and only
if there is a ground instance[] 6 of v such that

1. atoms of all negative literals of v are in o, and

2. no positive literal of 8 is in o

Consider for example a clause v = —edge(x, y) V —edge(y, z) V path(z, z), which

“that is, a clause obtained from ~ by substituting each of its variables to some ground
term. A ground term does not contain variables. The substitution 6 for which v is ground,
is called a grounding substitution.

39

can be rewritten as
edge(z, y) A edge(y, z) — path(z, 2) (104)

Note that we did not write the quantification Vz,y, z in the prefix of 7. In
first-order clauses, all variables are universally quantified, and therefore the
quantifier part need not be marked explicitly. We will not indicate quantifiers
in clauses further in the text, assuming their implicit universal quantification.

Interpretation o = { edge(a, b), edge(b, ¢) } is not a model of v (o £ v). Indeed
the following ground instance 76 of v

edge(a,b) A edge(b, ¢) — path(a, c) (105)

where 8 = { 2 — a,y — b, z — c } has both the atoms corresponding to its neg-
ative literals, i.e. edge(a, b) and edge(b, ¢), in o but the positive literal path(a, c)
is not in 0. However, the interpretation

o = { edge(a,b), edge(b, ¢), path(a, c) } (106)

is a model of 7.

So to determine o |= 7, the agent first finds all substitutions 6 satisfying condi-
tion |1} and then checks if each of them satisfies condition

The first stage can be arranged as a tree search. The agent starts with the set
A ={aj,as,...} of atoms corresponding to 7’s negative literals. At level i of
the tree, atom a; is unified with some element of o in multiple possible ways cor-
responding to branches leading to level i + 1. The unification grounds a subset
of variables present in A. When all variables in A have been grounded, the cor-
responding search node is a successful leaf representing a grounding substitution

6.

We illustrate this with the clause (104) and interpretation . The +’s neg-
ative literals A = { edge(z,y),edge(y, z) } are unified with o as shown in Fig.
In this example, only one grounding substitution exists and is found. We
observe that the search tree has, in general, at most s levels and branching fac-
tor at most omax, so it has at most o}, vertices. The atom in each vertex has
at most ¢ arguments so the tree can be searched in at most tog . time units,

which is polynomial in oy ax-

The second stage is easy due to range-restriction. In particular, any substitution
0 resulting from the tree search, which makes all negative literals ground, also
makes all positive literals ground. Thus checking for each ground positive literal
whether or not it is in o (i.e. verifying condition [2)) can be done in in at most
SOmax unit steps, which is therefore polynomial.

So the agent efficiently learns conjunctions of range-restricted st-clauses on-line.

40

[edge(,y), edgely,) |

edge(z,y) — edge(a,b) edge(z,y) — edge(b, c)

’ edge(a, b),edge(b, z) ‘ ’edge(b, c),edge(c, 2) ‘
no unification possible

edge(b, z) +— edge(b, c)

’ edge(a, b), edge(b, c) ‘

successful leaf

Figure 12: By searching this tree, the substitution {z — a,y— b,z +— ¢} is
found unifying all the negative literals of (104) with elements of (106)).

Due to Theorem [3.5] the agent also efficiently PAC-learn this hypothesis class.

4.2 Generalization of Clauses

So far, observations o € O the agent received from the environment were ground
data encoded through logical interpretations. The latter were simply truth-
assignment to propositional variables (which can be perceived as data features),
or, in the first-order case, sets of observed ground facts. Now we consider a
more interesting situation where observations are akin more to knowledge than
data. Informally, the difference is that knowledge captures patterns from which
multiple ground data can be inferred.

A natural way to encode pieces of knowledge in logic is through formulas. In
the previous section it was convenient to adhere to clauses as a specific type
of formulas, to represent learned knowledge. To represent observations through
formulas, we will again stick to clauses.

To exemplify the situation through a simple example, consider that the envi-
ronment tells the agent two principles through two positive observations (s; =
S9 = 1)
01 = male(z) A female(y) A parent(z,y) — daughter(y, x) (107)
02 = female(x) A parent(ann, z) — daughter(z, ann) (108)
Both observations represent a rule that is true in the natural real-world interpre-

tation. But neither of them reflects the entire truth — the rules are not general
enough. The agent’s goal is to find a joint generalization of the observations,

41

which in this case would be
~ = female(x) A parent(y, x) — daughter(z, y) (109)

The fact that «y is indeed more general than both o1, 05 are a logical consequence
of v, i.e. they are entailed by -, which we write as

vF o (110)
. (111)

Obviously, there are multiple clauses v satisfying (L10f111). Another option
would be e.g.
v = parent(y, x) — daughter(z,y)

which in the real-world is an over-generalization. To prevent it, the agent should
make sure that the hypothesized clause v does not entail negative observations.
The environment could e.g. provide the negative example (s3 = 0),

o3 = parent(jack, john) — daughter(john, jack) (112)

It is indeed entailed by ~/, indicating the latter is an over-generalization.

There is however another way to prevent over-generalization. Recall that in
Sections and we devised agents that did not need negative observations
as they made the smallest possible generalization steps starting from the most
specific hypothesis. If the smallest possible generalization had already been
over-general, it simply meant that the target concept had no exact match in
the agent’s hypothesis space, i.e. was not true. Here we will also design an
agent making the smallest possible generalization steps.

To build the agent, we would like to adopt a policy based on entailment between
clauses such as used in ((110§111)), which would thus be 7(vy,0) = 1 if and only
if v F 0. Unfortunately, - is undecidable for general clauses -, o.

Recall that in Section [2:2] we discussed syntactic subsumption between proposi-
tional clauses as an ‘approximation’ of the entailment relation. Syntactic sub-
sumption is also defined for first-order clauses, is decidable, but is more involved
than in the propositional case.

In the first-order case, clause 77 is said to 0-subsume clause o if there is a
substitution 6 such that 10 C 5 where C is with respect to the sets of literals
on either side. This is denoted as

71 So V2
For example, v Cy 01 with 6 = {z — y,y — z } as indeed

{ —~female(y), ~parent(x, y), daughter(z, y) }
c
{ —male(z), ~female(y), —parent(x, y), daughter(z, y) }

42

Similarly, v Cp 0o with § = { y — ann }.

Two clauses 1, vz are said to be subsume-equivalent, denoted v, ~¢ v2 if 1 Cq
Yo and v Cg v1. Clause vy strictly subsumes clause 7y, written as v Cg v if
71 Co 2 but v2 Lo 71

Lemma 4.1. The relations Cg, =29, Cg are transitive, i.e. if y1 Co 72 and
Yo Co v3, then v1 Cy v3 (and analogically for the other two relations).

As in the propositional setting, subsumption implies entailment, that is to say
v1 Cg 2 implies 1 F 72, as discussed in Section But again, the reverse im-
plication holds only if v and =9 are not self-resolving. An important difference
from the propositinal setting is that a first-order self-resolving clause need not
be a tautology. For instance, consider the non-tautological clause

~1 = natural(z) — natural(s(z))

which can be interpreted to express that a successor of a natural number is also
a natural number. Evidently, v; logically entails

~2 = natural(z) — natural(s(s(z)))

That is, 71 F 72, however, 71 Cy 2 does not hold.

Note that in the above example, none of 01, 02,y are self-resolving so the decid-
able relation Cy is indeed equivalent to - for any pair of these clauses.

Clause 3 is a generalization of clauses v; and vy if v3 Cp 1 and v3 Co o.

Clause v3 is a least general generalization of clauses 1 and 79 if it is their
generalization and there is no other generalization v, of the same clauses such
that v3 Cg 4.

There may be multiple least general generalizations of one pair of clauses, but
such generalizations are mutually subsume-equivalent. For example p(x) and
p(z) V p(y) are both least general generalizations of p(a) and p(b), and indeed

p(z) =6 p(x) V p(y).

We shall now discuss how to compute a least general generalization of two
clauses. The core of the procedure is the anti-unification procedure which can
be seen as a complement to the unification procedure known from the first-order
logic resolution algorithm. Before exposing the algorithm, we need to establish
a few notions.

Two atoms are compatible if they have the same predicate symbol and arity.

Two literals are compatible if they have the same sign, predicate symbol, and
arity.

43

Algorithm 1 Anti-unification of two compatible atoms

Require: Atoms a,b compatible with each other

1: i=0;0:=0;0:=0 > a counter and two substitutions

2: wv1,v2,...: variables not appearing in a or b

3: while a # b do

4: Let p be the leftmost position where a and b differ and s and t be the terms at this

position in a and b, respectively.

5: if for some j (1 <j <1i), v;0 = s and vjo =t then > variable already assigned

6: put v; to position p in both a and b > replace the terms with that variable

7 else

8: =141

9: put v; to position p in both a and b > replace the terms with a new variable
10: 0:=0U{vi—s},o:=cU{v;—t} > store assignment of v;
11: end if

12: end while
13: return a

i a 0 b o
0 p(z,f(a,b,g(b,a)),h(a)) 0 p(y,f(b,a,g(a,a)),s(a)) 0
L p(v1,f(a, b, g(b,2)), h(a)) {v1 = 2} p(v1,f(b,a,g(a,a)),s(a)) {v1 =y}
2 p(vlvf(v2vb’ g(b,a)),h(a)) {Ul =, p(ylvf(v%avg(a7a))75(a)) {vl =Y,
vy > a} vz > b}
3 p(vlvf(v27v3vg(bva))7h(a)) {Ul =, p(vlvf(v27v37g(a7a))vs(a)) {vl =Y,
Uy > a, vg > b,
v3 > b} vz > a}
4 p(Ulvf(v27U37g(U37a))v h(a)) {Ul — T, p(vlvf(v27v3vg(v37 a))v s(a)) {Ul =Y,
Vg > a, vg > b,
v3 = b} v3 > 3}
5 p(Ul,f(’Uz,Ug,g(’Ug,a)), U4) {Ul =, p(vl,f(112,v3,g(v3, a))7 U4) {Ul =Y,
vg > a, vg > b,
v3 — b, v3 > a
vy — h(a))} vg = s(a)}

Table 4: An example of the anti-unification steps as conducted by Alg.

Let a be an atom of arity n. The position [i] in a is the i-th argument place in
a. The position [i1,i9,...k,[] is the [-th argument place in the term occurring
at position [i1,1i2,...k] in a. For example, the variable z occurs at positions
[1] and [2,2,1] in atom a = p(z,f(c,g(z,d))). By putting variable y to position
[2,2] of a, we change a into p(x,f(c,y)).

Position w is left of position v if u precedes v in the lexical order, e.g. [1,3,5] is
left of [1,4].

The anti-unification of two compatible atoms is an atom produced by Algorithm
[[] An example of the steps conducted by the Algorithm is shown in Tab. [

Now we shall see how to use the anti-unification algorithm defined for atoms to

get a least general generalization defined for clauses. We first define the selection
set, which picks all pairs of compatible literals from two input clauses.

44

The selection set Sel(vy1,v2) of two clauses 71,2 is thus defined as

Sel(y1,72) = { (I, m) | L € y1,m € 72,1 is compatible with m }

In the next theorem, clauses are converted into atoms using the selection set and
using \/ formally as a predicate symbol so that the anti-unification procedure
can be applied on such atoms. The resulting atom is then converted back to a
clause.

Theorem 4.2. Let 1,72 be clauses and let \/ (a1, as, . .., ay) be the anti-unification
of atoms \/(l1,l2,...,1l,) and \/(m1,ma,...,m,) where

{(lr,m1), (I2,m2), ... (In,mn)} = Sel(y1,72)
Then a1 V ag V...V ay, denoted lgg(y1,7v2), is a least general generalization of

Y1 and s

(Proof omitted)

Consider an example using o1, 02 from the beginning of this section. Here, the
selection set is

Sel(01,02) = {(—female(y), ~female(z)),
(—parent(z, y), —parent(ann, x)),
(daughter(y, =), daughter(x, ann))}

The anti-unification of
\/ (—female(y), —parent(z, y), daughter(y, =))

and
\/ (—female(z), —parent(ann,), daughter(z, ann)

is
\/ (—female(vy), ~parent(vy, v1), daughter(vy, va))

So the Igg(o1,09) is
—female(vy) V —parent(vq, v1) V daughter(vy, va)
which can be transcribed into an equivalent but nicer form

female(z) A parent(y, x) — daughter(z, y)

The exemplified process can be visualized in a matrix form as in Table

We state some basic properties of Igg without a proof.

45

| ~female(z) —parent(ann,z) daughter(z,ann) 0 o |

—male(z)

—female(y) —female(v;) y x| n
—parent(x,y) —parent(vy, v1) x ann | vg
daughter(y, x) daughter(vy, ve)

Table 5: Visualizing the Igg algorithm in a matrix form. The coordinates of the
non-empty matrix entries correspond to the selections of compatible literals and
the entries represent the anti-unified literals. The table to the right stores the
substitutions established by successive anti-unifications of literals.

Lemma 4.3. Let v1,72,73 be clauses. Ten

1. If y1 Co 2, then lgg(y1,72) o 1
2. (commutativity) lgg(v1,v2) ~o l1gg(y2,71)

3. (associativity) |gg(lgg(v1,72), v3) = lgg(71, lgg(12,73))

Property [1] means simply that the least general generalization of a clause with
a more general clause is just the more general clause or its equivalent.

Due to the commutative and associtative properties, an Igg of a finite set of
clauses can be obtained by a repeated application of Igg to arbitrary clause-
pairs from the set, always replacing the chosen pair with its Igg, until the set
has only one element. Since the order of such Igg applications is irrelevant, we
can design an agent for learning from clauses which does not need to collect all
clausal observations before jointly generalizing them. In other words, we can
design an on-line learning agent for clausal observations, and need not resort to
the batch-learning setting.

The difference from the generalizing agent in Section is not only that the
current agent’s observations o € O are first-order logic clauses, rather than
first-order logic interpretations. Also the hypothesis space of the current agent
differs from the former one.

The current agent’s hypothesis consists of a clause used for decisions and, as
usually, a memory for the last-seen observation. So it is a pair (v, 0) and the
hypothesis space is

H=TxO0O

The agent from Section used a conjunction of clauses ¢ whereas the
present agent decides by a single clause from I" only. On the other hand, the
set from which the former agent could form conjunctions was constrained
to range-restricted st-clauses, whereas the present agent works with an uncon-
strained set I' of all clauses that can be constructed with given respective sets

46

of predicate and function symbols, without assuming any bounds on the size of
these sets or on the size or structure of the clauses in I'.

The agent’s decision policy makes a positive decision for an observation sub-
sumed by its hypothesized clause v,

Lif v Cg o (113)
0 otherwise

yr = (v, 0) = {

So e.g. if (109) is the hypothesized clause 7, then observations (107) and (L08])
are decided positively, whereas o3 (112)) or another negative observation such as

04 = male(x) A female(y) — daughter(y, x)

would be decided negatively since v Zg 03, ¥ Zg 04.

The agent starts with the initial clause that just copies the first positive ob-
servation. For simplicity and without loss of generality we assume that the
first observation o; is positive (otherwise we would just let the agent discard
observations until the first positive one comes). So

M=o (114)

The hypothesis update rule is similar to those used by the generalizing agents
considered in Sections and prescribed by . However, the for-
mer two agents generalized by deleting literals or clauses (respectively) from
their hypothesized conjunction. The present agent will instead generalize the
hypothesized clause using the Igg operator. So

(75 00) = H (-1, 0%—1) s (0K, 7)) (115)
is set to
0}, =0k (116)
1 ifr,=0
R . (117)
lgg(Yk—1,0}_) otherwise

For the current agent, we can show that the hypothesized clause is changed
only after a making a wrong decision on a positive observation. In other words,
the agent—just like both of the generalizing agents we have seen so far—never
makes mistakes on negative observations.

To show this, we need to reiterate the basic assumption , which in the
present context means that there is a clause v* € I' exactly matching the concept
¢, i.e. ¢(0) =1 (o is a positive observation) if and only if

7" Coo (118)

47

Naturally, v* is unknown to the agent. We carry on this assumption without
mentioning it explicitly in the rest of the section.

Now we realize a fact analogical to Lemma [2.3]

Lemma 4.4. Assuming , the clause v produced by lgg(yx—1,0}_,) in
satisfies for all k = 1,2, ...

7 Co Yk (119)

The lemma says that the agent never ‘over-generalizes’ by skipping over the tar-
get clause in terms of generality. This can be shown by mathematical induction.

Proof. In the inductive step, we assume that for ;1 in (116]) it holds v* Cy
Yk—1, and will show that this implies v* Cp vi.

First consider that si_; = 0. From we know that 7, # 0, so yr_1 # Sk_1
(in plain words, since lgg was called, the previous decision must have been
wrong), which means y;_; = 1. By , this in turn implies that v,_1 Cy
0j,_;. By Lemma (Item [1)) we have that v = Igg(Vk—1,0,_1) ~o Ye—-1,
in other words 7, and 7,_1 are subsume-equivalent. But then the assumption
7" Co Ye—1 implies v* So Y.

Next consider that sy_; = 1. Considering , this implies v* Cg 0}, _;. Recall
that for induction we assumed v* Cy y_1. Assume now for contradiction that
v Zo v = lgg(Vk—1,0},_,). But then Igg would not be a least general gener-
alization, as follows from the definition of the latter on page [43| by identifying
Vk—1,0%_1,Vk, " (in this order) with ~1,72,73,74 in the definition. But that
contradicts Theorem [£:2] So we have again that v* Cy .

We have proven the inductive step and it remains to prove the base case, i.e.
that v* Cy 1. But this follows immediately from (114]), the fact that o; is
assumed to be positive, and ([118]). O

Now we are ready to show a lemma analogical to Lemma [2:4] In particular the
current agent makes wrong decisions only for positive observations, and each
such error leads to a new hypothesis that is strictly more general than (i.e.,
strictly subsumes) the previous one.

Lemma 4.5. Assuming ,ifre #£0, then sg—1 =1 and v Co Ye—1-

Proof. To see that si_1 = 1, assume for contradiction that sy_1 =0 (i.e., 0x—1
was a negative observation). If r, # 0 (i.e. yx—1 was a wrong decision) then
Sk—1 # yk—1 = 1. Then by (113)), vx—1 Cp 0k—1. From Lemma (Equation

48

119), we also have v* Cpy vx—1. Due to transitivity of subsumption (Lemma
4.1)), this means v* Cy og_1. But then according to (118]), ox_1 was a positive
observation, which is a contradiction.

Since sp_1 = 1 and r, # 0, we have y,_1 = 0, so by , Ye—1 Lo Ok—1-
Because v, = lgg(yk—1,0k—1) is a generalization of both of its arguments, vy, Cq
Ye—1 and v Cg og—1. Given that yx_1 Zg op—1 and v, Cy 01, it cannot be
that yx_1 ~¢ 7,. So the subsumption v Cy yr—1 must be strict, i.e. v, Cq
V-1 0

Lemma |4.4] established that the agent makes a strict generalization upon each
mistake yet it never over-generalizes. It was exactly this reasoning that made
us able to prove a mistake bound (Theorem for the agent in Section
which also applied to the agent in For these agents, the maximum number
of generalization steps, and correspondingly the mistake bound, was 2n and
|T|, respectively. These numbers were finite. Unfortunately, we cannot apply
the same reasoning for the current agent, as the number of strict generalization
steps from the initial clause towards the more general target clause does not
have such a general finite bound. Indeed, consider for example the following
infinite series of clause&ﬂ forn=23,...

Tn = \/ p(:L‘i7:L‘j)

1<, <n,i#]

So e.g.

v2 = p(z1,22) V p(z2, 21)
73 = p(z1,22) V p(w2,21) V p(21,23) V p(23,21) V P(T2,23) V p(T3, 72)

and so on. We leave it to the reader to verify that v Cy v3 Co

Now let the target clause v* be v* = 7,. For any finite number M € N, the envi-
ronment can present a sequence 01 = Yar+3, 02 = YM+2,03 = YM+1y---OM41 =
v3 of M + 1 positive observations to the agent, causing it to generalize after
each observation, therefore making M + 1 mistakes. Thus no finite number M
is a mistake bound for the current agent.

The example above follows from the fact that we do not bound the maximum
size of clauses included in the lattice. The simple lattice we encountered earlier
(Fig. could also contain infinite paths if we alleviated the size bound 2n
on the conjunctive elements in it. An intricacy distinguishing the subsumption
lattice of size-unbounded first-order clauses from the latter lattice is that the
infinite path v Cp 3 Cp ..., which grows in size (number of literals in 7,), in

8Example adopted from Nienhuys-Cheng, de Wolf: Foundation of Inductive Logic Pro-
gramming, Springer 1998

49

fact connects two small elements in the lattice. More precisely

p(z1,22) = v2 Co ¥3 Co ... Co P21, 1)

Again, we leave it to the reader to verify that indeed ~y, Cp p(x1,21) for any
n > 2. So, speaking informally, the clause subsumption lattice is not just
infinitely large but also infinitely dense.

Finally we will explore how the clausal formalism allows to build an agent that
does not start learning from ‘scratch’, i.e. zero initial knowledge, but rather
possesses some prior (‘background’) knowledge that just needs to be extended
for making correct decisions. We motivate this situation through the following
example where the environment provides two positive observations
01 = female(z) A father(y, x) — daughter(z, y) (120)
09 = female(z) A mother(y, z) — daughter(x, y) (121)

Because father(y, z) and mother(y,) are not mutually compatible, the present
agent would generalize o1, 05 using lgg into

female(z) — daughter(x, y)

which is clearly unsatisfactory. Consider, however, that the agent has back-
ground knowledge in the form of a set of clauses (i.e., a clausal theory) B:

father(x,y) — parent(z,y) (122)

mother(z,y) — parent(z,y) (123)

Knowing B, the agent should be able to generalize 01, 05 into (109)).

To formalize this idea, note that if v Cp o then the formula v10 — 5 is a
tautology, i.e.
I ’)/19 — Y2 (124)

For example p(z) Cp p(a) V q(y) so F p(a) = (Vy : p(a) V q(y)). We shall
account for background knowledge B by making (124)) relative to it, i.e.

So here v16 — 75 is a tautological consequence of (is entailed by) B rather than
being a tautology.

This leads us to the following definition. We say that clause v, theta-subsumes
clause 7o relative to clause set B, written 7 gf 7o if there is a substitution
6 such that holds. Clauses 71,72 are subsume-equivalent relative to B if
Y1 gf v and ¥y g‘; ~1; we denote this as v, zf Y.

Furthermore, we define relative least general generalization (with respect to B)

just as least general generalization (page , except that we replace the relation
Cy with gf in the definition.

50

Unfortunately, a relative least general generalization of two clauses with respect
to an arbitrary clause set B generally does not exist. However, it can be shown
to exist for the special case that B is finite and all clauses in it are just ground
facts. This is summarized by the following theorem.

Theorem 4.6. Let v1,7v2 be clauses and B a finite set of ground facts. Then
rlgg g (v1,72) is a relative least general generalization of v1, 72 with respect to B,
where

rlggp(v1,72) = lgg(v1 Vien —l, 72 Vien)

(Proof omitted)

Note that this theorem excludes, for example, the clauses (122} 123)) we used as
background knowledge in the motivating example as they are not ground facts.
Instead, we shall exemplify the theorem with simpler background knowledge
describing ground family relationships for persons we identify for brevity with
constants a, b, ¢, using predicates m/1,f/1, p/1 with the informal meaning male,
female, and parent of (respectively).

B = { m(a), p(a, b)’ f(b)v p(b, C)’ f(c) } (126)

The agent should again learn the definition of the daughter relation. Equipped
with background knowledge B, it receives the first positive observation of the
daughter relation expressed through predicate d/2

op = d(b,a) (127)

and thus forms its first hypothesized clause v; = 0; = d(b,a). Once the second
positive observation
02 =d(c, b) (128)

has been received, the agent should update its hypothesis with o = rlgg 5(v1, 02).
According to Theorem [£.6] this can be computed as the Igg of the clauses

d(b,a) V ~m(a) V =p(a, b) V —=f(b) V =p(b, c) V —f(c) (129)
d(c,b) vV —m(a) V —=p(a,b) vV ~f(b) V —p(b,c) vV —f(c) (130)

The Igg computation is shown in Table[6]in the same way as was done in Table
Table [7] shows the two substitutions created in the process. The resulting
clause is

Yo = d(v1,vq) <—m(a) A p(a,b) Ap(ve,v1) A f(b)A
f(v1) A p(vs,va) Ap(b,c) Af(vy) Af(c)

While this is a correct relative least general generalization, it is evidently re-
dundant. Informally, the ground facts appearing in the body of the clause (the

o1

d(c,b) ~ —-m(a) -p(a,b) —f(b) —p(bc) —f(c)
d(b,a) d(Ul,UQ)
—m(a) -m(a)
—|p(a, b) —\p(a, b) —\p(’Ug, Ul)
—f(b) —f(b) ~f(v1)
—p(b,¢) —p(vs, v4) —p(b,¢)
~f(c) —f(vs) —f(c)

Table 6: Computation of the Igg of clauses (129}|130) visualized as in Table

0 o ‘ new variable
b C U1
a b Vo
b a V3
C b Vg

Table 7: Assignment of new variables to terms in clause (129) (0 column) and
terms in clause (130) (o column) to new variables during the lgg computation
as shown in Table [6l

conjunctive part to the right of «) can be deleted as they are true due to B.
Also, the body literals whose all variables do not appear in the head of the clause
(to the left of +) are redundant. Speaking precisely, 72 is subsume-equivalent
(relative to B) to the clause

v = d(vy,v2) < pve,v1) Af(vy) (131)

which indeed represents the desired learned hypothesis. In formal notation,
v2 ~F +4. To prove this equivalence relation, we need to prove y2 CF ~4 and

Vs Qg Y2-
The latter relation, which by definition (page transcribes into
B (730 — 72)

is evident, because 74 C o, implying 75 F 72. So 40 — 2 is a tautology for
6 = {}, meaning it is true in any model, not just in any model of B.

To demonstrate y2 CF +4, i.e.
B F (720 = 73)
we set 0 = { v3 — v1,v4 — v1 }. Then

20 = d(v1,v2) + m(a) Ap(a,b) A p(ve,v1) Af(b) Af(v1) A p(b,c) Af(c)

92

In any model of B, all of the ground literals of 7,26 are true so by deleting them,
we get a clause logically equivalent to v26. But such a clause is exactly 74 so
Y20 — 4 becomes v, — 4 which is satisfied trivially.

The conversion of 7, into 74 as shown above is an example of clause reduction.

We say that a clause v is reduced if for no clause v/, 7' C v, v ~g . A reduced
clause v’ is a reduction of a clause v if 7' = ~.

Similarly, a clause v is reduced with respect to B if for no clause v/, v/ C 7,

5 %5” ~. A clause v/ which is reduced with respect to B is a reduction of v with

respect to B if o' =8 .

5 Learning Probabilistic Graphical Models

See the slide set on the CourseWare pagel

6 Reinforcement Learning

See the slide set on the CourseWare page.

93

http://cw.fel.cvut.cz/wiki/_media/courses/b4m36smu/gpm_easy_show.pdf
http://cw.fel.cvut.cz/wiki/_media/courses/b4m36smu/smu_rl.pdf

