
1

Symbolic Machine Learning

Filip Železný and Jǐŕı Kléma

Contents

1 A General Framework 4

1.1 Percepts and Actions . 4

1.2 Nonsequential Cases . 6

1.3 Batch Learning . 6

1.4 Rewards and Goals . 8

1.5 Environment States . 9

1.6 Agent Hypotheses . 11

1.7 Nonsequential and Batch Cases with States and Hypotheses . . . 12

1.8 Prior Knowledge . 14

1.9 Hypothesis Representations . 15

1.10 Learning Scenarios . 15

2 On-line Concept Learning 16

2.1 Generalizing Agent . 18

2.2 Separating agent . 21

2.3 Version Space Agent . 23

2.4 The Mistake Bound Learning Model 24

2

3 Batch Concept Learning 25

3.1 Batch Learning with the Generalizing Agent 26

3.2 Batch Learning with On-line Agents 27

3.3 Consistent Agent . 28

3.4 The PAC Learning Model . 29

3

1 A General Framework

1.1 Percepts and Actions

Agent Environment

Percepts

Actions

Figure 1: The basic situation under study.

• Discrete time
k = 1, 2, . . .

• Percepts
∀k : xk ∈ X

• Actions
∀k : yk ∈ Y

X and Y are finite.

A history is a sequence of alternating percepts and actions, i.e,

x1, y1, x2, y2, . . . , xk, yk

and is denoted as xy≤k. Similarly, xy<k = x1, y1, x2, y2, . . . , xk−1, yk−1. There
is a probability distribution µ on histories

µ(xy≤k) = µ(x1)µ(y1|x1)µ(x2|x1, y1) . . . µ(xk|xy<k)µ(yk|xk, xy<k) (1)

After the initial ‘kick-off’ x1 from the environment distributed according to
µ(x1), any percept xk generated by the environment at time k depends on the
entire preceding history xy<k according to

µ(xk|xy<k) (2)

Actions yk are determined by agent’s decision policy which also depends on
the history as well as the current percept and are distributed according to

4

µ(yk|xk, xy<k). We will assume that the policy is deterministic. Thus we iden-
tify the policy with function π : (X × Y)∗ ×X → Y , so

yk = π(xy<k, xk) (3)

This means that µ(yk|xy<k, xk) = 1 for yk = π(xy<k, xk) and 0 otherwise.

The following diagram illustrates the influences between the introduced vari-
ables.

y1

x1

y2

x2

y3

x3

Figure 2: Influence diagram for actions yk and percepts xk for 1 ≤ k ≤ 3 with
full lines indicating deterministic influences (via π) and dashed lines showing
probabilistic influences (via µ).

While we have yet to define what goals the agent should achieve through in-
teraction with the environment, obviously some histories will be “better” than
others in terms of the goal achievement. To maximize the probability (1) of
good histories, the agent cannot influence the conditional probability (2), which
is inherent to the environment, but it can follow a good policy (3). However,
the effect of actions proposed by the policy depends on (2) which is generally
not known to the agent. So the agent needs to recognize the environment by
experimenting with it. This is formally reflected by (3) where action yk depends
not only on the current percept xk but also on the history xy<k. So the agent
will generally make different decisions yk 6= yk′ for k > k′ even if xk = xk′

because the experience xy<k at time k is larger than experience xy<k′ at time
k′. This is our first reflection of learning.

How does the agent know how well it is doing? This information comes from
the environment through a specially distinguished part of the percepts, called
rewards. The remaining part of each percept contains observations. Formally,
X = O ×R, ok ∈ O, rk ∈ R ⊂ <, so

xk = (ok, rk) (4)

5

Since X is assumed finite, it follows that rewards have their finite minimum and
maximum.

The probability of xk in (2) can be written in terms of the marginals µO and
µR

µ(xk|xy<k) = µ(ok, rk|xy<k) =

µO(ok|rk, xy<k)µR(rk|xy<k) = µR(rk|ok, xy<k)µO(ok|xy<k)

which also makes it clear that ok and rk are in general not mutually independent,
even if conditioned on xy<k.

1.2 Nonsequential Cases

Scenarios where current percepts depend on the history of previous percepts and
actions are called sequential. The framework described so far is maximally gen-
eral in that dependence is assumed on the entire history from k = 1 on. On the
other extreme are nonsequential scenarios. Here, observations are independent
of the history as well as the current reward, i.e.

µO(ok|rk, xy<k) = µO(ok) (5)

and thus o1, o2, . . . are mutually independent random variables sampled from
the same distribution µO (they are “i.i.d.”).

Rewards in the nonsequential case are assumed to depend only the immediately
preceding observation and the action taken on it, i.e.

µR(rk|ok, xy<k) = µR(rk|ok−1, yk−1) (6)

however, since yk−1 is functionally determined by the history xy<k−1 and per-
cept xk−1 = (ok−1, rk−1) through (3), we may rewrite (6) as

µR(rk|ok−1, rk−1, xy<k−1) (7)

which makes it clear that reward rk depends on previous rewards, and thus
rewards r1, r2, . . . are not i.i.d.. This is natural since if they were, it would
mean the agent never improves its performance.

1.3 Batch Learning

We will also consider a specific yet important nonsequential case called batch
learning consisting of two phases switching right after time K

6

y1

o1

r1

y2

o2

r2

y3

o3

r3

Figure 3: Influence diagram for actions yk, observations ok, and rewards rk for
1 ≤ k ≤ 3 with full lines indicating deterministic influences (via π) and dashed
lines showing probabilistic influences (via µ) in the nonsequential case.

• the learning (training, exploration) phase at k = 1, 2, . . .K

• the action (testing, exploitation) phase taking place in k = K+1,K+2, . . .

In the action phase, the agent no longer changes its decision making, i.e.

if k, k′ > K and xk = xk′ then yk = yk′ (8)

and ignores rewards. So the action proposed by the policy depends only on
the current observation and the history only up to time K. So for k > K, (3)
changes here into

yk = π(xy≤K , ok) (9)

and (6, 7) change into

µR(rk|ok−1, yk−1) = µR(rk|ok−1, xy≤K) (10)

because due to (9), yk−1 is determined by ok−1 and xy≤K . The observation
ok−1 does not depend on rewards due to (5). So reward rk does not depend on
previous rewards rk′ , k > k′ > K. Another way to say this is that rewards in
the action phase are conditionally independent of each other, given the learning
phase history:

µR(rk, rk′ |xy<K) = µR(rk|xy<K)µR(rk′ |xy<K) (11)

The following figure illustrates the batch-learning situation.

7

xy≤K = o1, r1, y1, o2, r2, y2, . . . , oK , rK , yK

yK+1

oK+1

rK+1

yK+2

oK+2

rK+2

yK+3

oK+3

rK+3

Figure 4: Influence diagram for actions yk, observations ok, and rewards rk in the
action phase (k > K) of batch learning with full lines indicating deterministic
influences (via π) and dashed lines showing probabilistic influences (via µ). The
top row indicates the influence of the learning phase on the agent’s decisions in
the action phase.

We can further express the distribution of rk (∀k > K) without conditioning on
the observations, which are i.i.d. by (5)

µR(rk|xy≤K) =
∑

ok−1∈O
µO(ok−1)µR(rk|ok−1, xy≤K) (12)

So rewards in the action phase are i.i.d. according to the above distribution
conditioned only on the history of the learning phase.

1.4 Rewards and Goals

It has been obvious that the agent’s goal is to maximize rewards. Here we
formalize this goal. Since rewards come at each point of the history, we want
the agent to maximize their sum up to a finite time horizon m ∈ N

r1 + r2 + . . .+ rm

or, more generally, maximize the discounted sum

∞∑
k=1

rkγk

where ∀k : γk ≥ 0 and
∑∞
i=1 γi <∞, so the above sum converges.

8

But since rewards are probabilistic, the agent should choose a sequence y≤m of
actions leading to a high expected cumulative reward∑

r≤m

µR(r≤m|y≤m)(r1 + r2 + . . .+ rm)

or, in the discounted case

lim
m→∞

∑
r≤m

µR(r≤m|y≤m)

m∑
k=1

rkγk

where the first sum in both cases goes over all possible reward sequences r≤m
(since R and m are finite, there is a finite number of them).

However, for the specific case of batch learning, we establish a more appropriate
learning goal. First, we do not care about maximizing rewards in the learning
phase as the purpose of this phase is to probe the environment even at the price
of possibly poor rewards. Second, in the action phase after time K, the rewards
rk, k > K are sampled independently from the same distribution (12) so we can
simply maximize their expectation with respect to this distribution∑

rk∈R
µR(rk|xy≤K)rk (13)

It is again obvious from the formula that the expected reward only depends on
the learning phase history xy≤K , after which the agent no longer changes its
action policy. Note also that the batch learning scenario allowed us to define an
objective (13) without the need to choose the parameters m or γk (k = 1, 2, . . .)
needed in the sequential scenario.

1.5 Environment States

With the exception of the non-sequential scenario, our framework has been very
general in that percepts xk generally depend on entire histories xy<k. In the real
world, many histories may be equivalent, i.e. leading to the same probabilities
of xk conditioned on action yk−1. This can be formalized through the notion of
environment state sk ∈ S at time k.

For generality, let us first assume that the state is probabilistically established by
the preceding state, the last percept, and the last action through the following
state update distribution

S(sk|sk−1, xk−1, yk−1) (14)

and that this state generates the current percept

µ(xk|sk) (15)

9

This modification does not lessen the generality of the framework if we allow
S to be infinite as then there could simply exist a distinct state for each possi-
ble history (there is an infinite number of possible histories for unbounded k).
Indeed, if one instantiates the distribution (14) to the functional dependence

sk = sk−1 ‖ (xk−1, yk−1) (16)

where ‖ denotes concatenation, sk will simply collect the entire history and its
occurrence in (15) would be just a different name for xy<k in (2). However, we
will make the important assumption that the number of possible states is finite

|S| <∞ (17)

which will significantly simplify the framework. In practical tasks, there will be
far fewer states than possible histories.

We can afford further simplifying assumptions under which the state-based
framework will still encompass the learning scenarios we are going to elabo-
rate. First, we will assume that the influence between environment states and
the emitted percepts are single-directional. In particular, the percepts depend
on states by (15) but not vice versa, so we remove xk−1 from (14)

S(sk|sk−1, xk−1, yk−1) = S(sk|sk−1, yk−1) (18)

As a consequence, the state cannot collect the history of percepts as in (16) but
it can still collect the history of actions

sk = sk−1 ‖ yk−1 (19)

If the state evolves according to (19) then the percept in (15) depends on all his-
torical states sk−1, sk−2, . . . , s1 as well as all historical actions yk−1, yk−2, . . . y1

embedded in them, and not on any other factors. So instead of assuming the
specific update rule (19), we may equivalently assume that the state evolves in
any other way but the state-percept dependencies are preserved, so that percepts
are sampled according to

µ(xk|sk, sk−1, sk−2, . . . , s1, yk−1, yk−2, . . . , y1) (20)

Our simplification plan is to remove some of the dependencies above. We will
do it differently for the two components of the percept, i.e. the observations

µo(ok|rk, sk, sk−1, sk−2, . . . , s1, yk−1, yk−2, . . . , y1) (21)

and the rewards

µr(rk|ok, sk, sk−1, sk−2, . . . , s1, yk−1, yk−2, . . . , y1) (22)

In particular, the observation will depend only on the current state and the last
agent’s action

µo(ok|sk, yk−1) (23)

and the reward will depend on the last state and the action taken immediately
on it

µr(rk|sk−1, yk−1) (24)

10

1.6 Agent Hypotheses

A reasoning similar to the previous section applies to the agent, whose actions
generally depend on the entire history as in (3). Again, many histories can lead
to the same mapping from percepts to actions, for example because the agent
has built the same hypothesis about the environment throughout the different
histories. So analogically to the environmental states, we introduce the notion
of agent’s hypothesis hk ∈ H. Since we work with deterministic agents, we
will assume that the hypothesis is updated given the current percept through a
functional prescription

hk = H(hk−1, xk) (25)

and instead of (3), we will assume that actions depend on the (updated) state
rather than the history, and the current observation

yk = π(hk, ok) (26)

Unlike in (3), explicit dependence on xk is no longer needed in (26) as the
latter can always be stored as part of hk in (25). However, we do keep the
ok component of xk as an argument of π because this will allow us to describe
conveniently cases where the agent’s hypothesis is kept constant and the actions
depends only on their immediately preceding observation. This will in particular
include the batch-learning case discussed below in the present context of state-
based descriptions.

Again, we will postulate that
|H| <∞ (27)

The formalization using enviroment states and agent hypotheses results in the
agent and environment structures depicted in Fig. 5. The diagram of variable
influences is shown in Fig. 6.

The agent hypothesis hk has a very natural interpretation as it corresponds to
the agent’s model of the environment at time k, whereas π is the the interpreter
of the model.1 For example, hk may encode a set of logical rules, and π may
be a logical prover deriving actions as logical consequences of the rules. Since
the hypothesis description has to fit in a finitely bounded memory, there can be
only a finite number of different hypotheses. Therefore, the assumption in (27)
is well justified.

The history of percepts and actions (in combination with the current percept)
is obviously informative for updating the hypothesis so it seems the hypothesis
update in (25) should also include previous percepts xk−1, xk−2, . . . and actions

1We might as well call hk a model rather than a hypothesis but that would cause terminology
clash in cases where the hk is expressed in the formalism of logic, where the word model is
already established and has a different meaning.

11

Agent

h

H

π

k − 1

Environment

s

S

µ

k − 1

k − 1

x

y

Figure 5: The state-based scheme of agent-environment interaction. Full and
dashed lines denote functional and probabilistic influences, respectively. The
k − 1 nodes denote a one-step time lag. The highlighted dependence is only
relevant for the reward part r of the percept x generated by µ; if the diagram
only captured observations o and actions y, it would not contain this dependence
and thus would be symmetric.

yk−1, yk−2, . . . as arguments. However, this is not necessary as the update func-
tion H in (25) can always be made to store any finite number of percepts and
previous hypotheses in the memory, i.e. as part hk, because they are inputs to
the update step (25). But also any historical action yk′ , k

′ < k can be retrieved
by first retrieving hk′ from the memory and then using (25). This is possible
because π is deterministic and can be simulated by H.

1.7 Nonsequential and Batch Cases with States and Hy-
potheses

Just like in the framework using entire histories, also with the formulation based
on states and hypotheses the situation simplifies a lot in the nonsequential case.
Here, the environment has no memory at all so the conditioning factors in (18)
and states are updated by i.i.d. sampling from the marginal distribution

S(sk) (28)

Furthermore, observations ok no longer depend on agent’s last action as in (23)
so they are sampled from

µo(ok|sk) (29)

Since sk’s are i.i.d., the ok’s are also i.i.d.

Rewards, given by (24), are however still generally non-i.i.d. as they depend on
the agent’s actions, which in turn depend on the evolving agent’s hypothesis.

12

h1

y1

x1

s1

h2

y2

x2

s2

h3

y3

x3

s3

Figure 6: Influence diagram for states hk, actions yk and percepts xk for 1 ≤
k ≤ 3 with full lines indicating deterministic influences (via π and H) and
dashed lines showing probabilistic influences (via µ and S). The highlighted
dependencies are only needed for generating the reward part rk of the percepts
xk.

Fig. 7 shows the complete set of influences in the nonsequential case.

A further simplification comes in the special batch-learning scenario of the non-
sequential case. While in the learning phase of the latter, the agent uses the
update rule (25), in the action phase it no longer updates the hypothesis, so

hk = hK ,∀k ≥ K (30)

This is illustrated in Fig. 8. Special attention is needed regarding the variables
at timeK. Reward rK (part of percept xK) is the last training reward, according
to which the last update is conducted towards the final hK . Observation oK
(another part of percept xK) is, however, the first testing observation.

For k > K, yk−1 is fully determined by ok−1 and hK through (26) in which
hk−1 = hK . So we can rewrite (24) into

µr(rk|sk−1, ok−1, hK) (31)

and further express

µr(rk|hK) =
∑

sk−1∈O

∑
ok−1∈O

µr(rk|hK , sk−1, ok−1)µo(ok−1|sk−1)S(sk−1) (32)

where µo and S, i.e. (29) and (28), are independent of k. So in the testing phase,
rewards rk are i.i.d. according to the distribution µr(rk|hK) depending only on

13

h1

y1

o1

r1

s1

h2

y2

o2

r2

s2

h3

y3

o3

r3

s3

Figure 7: Influence diagram for hypothesis hk, actions yk, observations ok, and
rewards rk for 1 ≤ k ≤ 3 with full lines corresponding to deterministic influences
(via π and H) and dashed lines showing probabilistic influences (via µ and S)
in the nonsequential case.

the learned hypothesis hK . This is analogical to the state-free formulation 12.
Similarly to 13, an agent operating in the batch-learning scenario with states
will be assessed by the expected reward in the testing phase∑

rk∈R
µR(rk|hK)rk (33)

and should find a hypothesis hK maximizing this quantity.

1.8 Prior Knowledge

• Implicit: the setting of H (“hard bias”) and H (“soft bias”)

• Explicit: the setting of h1 (“background knowledge”)

14

hK

yK+1

oK+1

rK+1

sK+1

yK+2

oK+2

rK+2

sK+2

yK+2

oK+2

rK+2

sK+2

Figure 8: Influence diagram for actions yk, observations ok, states sk, and re-
wards rk in the action phase (k > K) of batch learning with full lines indicating
deterministic influences (via π) and dashed lines showing probabilistic influ-
ences (via µ). The top row indicates the influence of the agent’s last hypothesis
learned in the learning phase on the action phase. The dependence of rK+1 on
sK and yK is not shown.

1.9 Hypothesis Representations

See Fig. 9.

1.10 Learning Scenarios

1. on-line concept learning

2. batch concept learning

3. query-based and active learning

4. reinforcement learning

5. universal learning

15

H = look-up tables
π = find max value

H = propositional-logic theories
π = propositional resolution

H = relational-logic theories
π = first-order resolution

H = graphical probability models
π = probabilistic inference

H = graphical relational models
π = statistical-relational inference

H = Turing machine tape
π = Turing machine

Figure 9: Hypothesis representations and their corresponding policy classes
(interpreters) considered in this course. Arrow directions indicate increasing
expressiveness.

2 On-line Concept Learning

We implement the on-line concept learning scenario as a specific case of the gen-
eral sequential learning framework. The central assumption of concept learning
is that the current observation uniquely determines the current state through
function

c : O → S (34)

16

so for (23) it holds
µo(ok|sk, yk−1) = 0 if sk 6= c(ok) (35)

In other words, the observations are partitioned into classes co-inciding with
states, and function c, which is unknown to the agent, classifies the observations
into these classes.

In the concept learning scenario we will work with two classes only, i.e.

S = { 0, 1 } (36)

Then function c can be conveniently identified with the subset of observations

c = { o ∈ O | c(o) = 1 } (37)

and write o ∈ c or c(o) = 1 interchangeably. This subset view earns c the name
concept. In the later text, whenever we speak of a concept c, c will represent
the set given by (37).

In the concept learning scenario, we want the agent to learn the unknown concept
c by guessing the state sk at each time k and providing the guess through yk =
π(hk, ok). The environment will punish the agent by a negative reward for each
incorrect guess, and this will make the agent adapt its policy through changing
hk. Ideally, these changes should eventually lead to a hypothesis according to
which the polocy makes only correct guesses. To implement this scenario, we
first make sure that the range of actions coincides with the range of states

Y = S (38)

The rewards should be functionally determined only by the actual state and the
guess made. So we prescribe it by function L : S × Y → R so that (24) takes
the specific form (incrementing the time index inconsequentially for shorter
notation)

µr(rk+1|sk, yk) =

{
1 if rk+1 = −L(sk, yk)

0 otherwise
(39)

The first reward r1 is immaterial and is still sampled from the marginal µR(r1).

Function L is called loss. The loss should evidently be zero if sk = yk and in
other cases it quantifies how serious a mistake is made by the wrong guess. Since
our goal is just that the agent identifies the concept, we consider all mistakes
equally bad and set the loss as

L(sk, yk) =

{
0 if sk = yk

1 otherwise
(40)

17

Given (36), and assuming a fixed policy π, also any hypothesis h ∈ H can be
formally identified with the set

h = { o ∈ O | π(h, o) = 1 }

so that
H = {h | h ∈ H } (41)

Again, whenever we speak of a hypothesis h (possibly with the time index, hk),
then h (hk) will automatically mean the set given by (41).

The fact that the agent’s hypothesis exactly matches the unknown concept for
any observation ok can now be simply expressed as

c = h (42)

Note that it would not be correct to write h = c even if h = c.

Whether or not the agent at some time k learns a hypothesis hk = c depends
on the agent’s update rule (25), and also on whether its hypothesis class2 H
contains such a hk at all. To formalize this latter condition, we will assume that
the environmental concepts c cannot be arbitrary but rather belong to a concept
class C. An important property of the particular concept learning scenarios will
be whether or not

C ⊆ H (43)

2.1 Generalizing Agent

Here we design an agent that learns an unknown conjunction by starting with
the most specific hypothesis (a conjunction of all literals, i.e. all propositional
variables as well as their negations) and then deleting all literals inconsistent
with the received observations. So the initial hypothesis is gradually generalized
towards the correct one. The main thing we will need to prove is that such
deletions indeed lead to the correct hypothesis.

Observations are n-tuples of binary (truth) values

O = { 0, 1 }n (44)

The agent has the hypothesis class

H = Φ×O (45)

2We take the liberty to call hypothesis class both H, i.e. the set of hypothesis representa-
tions, and H, i.e. the family of sets generated by the representations together with the fixed
policy. The word class in the terms hypothesis class and concept class should not be confused
with the classes of observations, which are states.

18

where

Φ =

∧
i∈I

pi
∧
j∈J
¬pj

∣∣∣∣∣∣ I, J ⊆ [1 : n]

 (46)

and n ∈ N . So
hk = (φk, o

′
k) (47)

consists of a conjunctive formula φk containing at most 2n literals, and o′k ∈
O. The latter has the purpose of memorizing the last observation (example)
provided by the environment and will be used only for updating hypotheses.

The formula φk is used to determine decisions through the agent’s decision
policy (26) yk = π(hk, ok) = π((φk, o

′
k), ok). Whenever the policy does not

depend directly on the memorized example o′k, which will be the typical case,
we will afford the shorter notation π(φk, ok). The policy is set to

yk = π(φk, ok) =

{
1 if ok |= φk

0 otherwise
(48)

where ok |= φk means φk is true given the truth-value assignments oi to variables
pi, 1 ≤ i ≤ n. More precisely, we say that positive (negative, respectively) literal
pi (¬pj) is consistent with observation ok if oik = 1 (oik = 0). Finally, ok |= φk
holds if and only if all literals of conjunction φk are consistent with ok.

The update rule (25), which we expand by (4) and (47) to

(φk, o
′
k) = H

((
φk−1, o

′
k−1

)
, (ok, rk)

)
(49)

is set to

o′k =ok (50)

φk =

{
φk−1 if rk = 0

delete(φk−1, o
′
k−1) otherwise

(51)

where

delete

∧
i∈I

pi
∧
j∈J
¬pj , (o1, o2, . . . , on)

 = (52)

∧
i ∈ I
oi = 1

pi
∧
i ∈ I
oj = 0

¬pj (53)

So the delete function keeps exactly those literals from φk−1 which are consis-
tent with o′k−1.

19

We assume that (43) holds. In particular, there exists a target conjunction
φ∗ ∈ Φ such that h∗ = (φ∗, o) exactly simulating the unknown concept c, i.e.

sk = c(ok) = π(φ∗k, ok) (54)

Lemma 2.1 sk = 1 if and only if all literals of φ∗ are consistent with ok.

The above lemma follows directly from (48) and (54).

Lemma 2.2 Whenever delete(φk−1, o
′
k−1) is called, sk−1 6= yk−1, and if sk−1 =

0, then all literals of φk−1 are consistent with o′k−1.

To see why Lemma 2.2 is true, note that according to (51), rk 6= 0 when delete

is called. Due to (39) and (40), this means that sk−1 6= yk−1. So if sk−1 = 0
then yk−1 = 1, but then due to (48), o′k−1 |= φk−1 and so all literals of φk−1 are
indeed consistent with o′k−1.

Lemma 2.3 delete(φk−1, o
′
k−1) never removes a literal l ∈ φk−1 which is also

in φ∗.

Assume for contradiction that it removes a literal l ∈ φ∗. First assume sk−1 =
0. By Lemma 2.2, all literals of φk−1 are consistent with o′k−1. But because
delete(φk−1, o

′
k−1) keeps all literals of φk−1 consistent with o′k−1, it does not

delete l, which is a contradiction. Now consider sk−1 = 1. Then by Lemma 2.1
all literals of φ∗ including l must be consistent with o′k−1. Again, since delete

keeps all consistent literals, it does not delete l, which is a contradiction.

The starting hypothesis of the designed agent is set to contain all possible literals

φ1 = p1 ∧ ¬p1 ∧ p2 ∧ ¬p2 ∧ . . . pn ∧ ¬pn (55)

Thus φ1 ⊇ φ∗, where the inclusion is with respect to the sets of literals in φ1

and φ∗. Furthermore, due to Lemma 2.3, we have

φk ⊇ φ∗, k ∈ N (56)

Given the above, the agent makes mistakes only on ‘positive examples’, and
the mistakes are corrected by removing at least one inconsistent literal, as the
following lemma formalizes.

Lemma 2.4 Assuming (55), whenever delete(φk−1, o
′
k−1) is called, sk−1 = 1,

and the function deletes at least one literal from φk−1.

20

Due to Lemma 2.2, sk−1 6= yk−1. If sk−1 = 0 and yk−1 = 1 then by the same
lemma, all literals of φk−1 are consistent with o′k−1. According to Lemma 2.1,
there would then be a literal in φ∗ inconsistent with o′k−1. But due to (56), this
inconsistent literal would also be contained in φk−1, which is a contradiction. So
we know that sk−1 = 1 and yk−1 = 0. According to (48), this means that φk−1

contains a literal inconsistent with o′k−1. Since delete, by definition, keeps
exactly all consistent literals, the inconsistent literal is removed.

Theorem 2.5 The agent makes at most 2n mistakes, i.e. the cumulative re-
ward is

m∑
k=1

rk ≥ −2n (57)

for an arbitrary horizon m ∈ N .

Since the first agent’s conjunction has 2n literals by (55) and upon each mistake,
at least one literal is removed from from the conjunction by Lemma 2.4, the
maximum number of mistakes is 2n.

While the agent’s strategy has been designed to learn conjunctions, it can be
also made to learn disjunctions due to the equality

¬ (p1 ∨ p2 ∨ . . . ∨ pn) = ¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn (58)

So the only required change is that the agent replaces observations ok with
ok = (1− o1

k, 1− o2
k, . . . , 1− onk) and its actions yk with 1− yk.

Other logical classes can also be reduced to conjunction and disjunction learning.
Consider e.g. s-CNF (s <∞). These are conjunctions of s-clauses. An s-clause
is a disjunction of at most s-literals. There is a finite number of s-clauses so
the agent can simply establish one new propositional variable for each possible
s-clause a learn a conjunction with these new variables. This reduction would
even be efficient if s is a small constant. Indeed, if n is the number of original
variables, then the number of possible clauses is

(
n
s

)
which grows polynomially

with n. A similar reduction can be used to learn s-DNF.

2.2 Separating agent

Here we will build an agent with a strategy completely different from the gen-
eralization agent. In particular, agent’s hypothesis h will define a hyperplane in
the O = { 0, 1 }n space (44) so h will be exactly those observations lying above
the hyperplane.

21

We will first assume that the concept to be learned corresponds to a disjunction,
so

C = { cφ | φ ∈ Φ } (59)

where for s ≤ n

Φ = { pi1 ∨ pi2 ∨ . . . ∨ pis | 1 ≤ i1, i2, . . . is ≤ n } (60)

and

cφ(o) =

{
1 if o |= φ

0 otherwise
(61)

Although (60) considers only monotone disjuctions, i.e. without negated literals,
it can be easily generalized to general disjunctions by introducing 2s (instead
of s) propositional variables p′i = pi, p

′
2i = ¬pi.

H = [0, 1, 2, . . . , q]n ×O (62)

where q ∈ N , O is again memory for the last observation, and

hk = (wk, o
′
k) (63)

where wk = (w1
k, w

2
k, . . . w

n
k)

Decision policy

yk = π(wk, ok) =

{
1 if wk · ok > n/2

0 otherwise
(64)

Assume again that C ⊆ H. This can be achieved with a sufficiently large q as
disjunctions are linearly separable.

w1 = (1, 1, . . . 1) (65)

Hypothesis update

(wk, o
′
k) = H

((
wk−1, o

′
k−1

)
, (ok, rk)

)
(66)

o′k =ok (67)

wk =

wk−1 if rk = 0

update(2, wk−1, o
′
k−1) if wk−1 · o′k−1 ≤ n/2

update(0, wk−1, o
′
k−1) if wk−1 · o′k−1 > n/2

(68)

where the function update is defined such that for wk = update(θ, w, o)

wik =

{
θ · wi if oi = 1

wi otherwise
(69)

22

Theorem 2.6 The agent makes at most 2 + 2s lg n mistakes, , i.e. the cumu-
lative reward is

m∑
k=1

rk ≥ −2− 2s lg n (70)

for any horizon m ∈ N .

(proof omitted)

ref to perceptrons

Just like the generalizing agent designed to learn conjunctions could easily be
modified to learn disjunctions, s-CNF, and s-DNF, also the separating agent
can be altered to learn conjunctions as well as the latter two classes by means
of the same reduction principles.

So the two agents can in principle learn the same concept classes. The difference
is in the mistake bound. The latter agent performs better when the number of
variables n is larger than the number of relevant variables s.

2.3 Version Space Agent

How well can we do with arbitrary concept classes? Immediate mistake bound
for any concept class C

|C| − 1 (71)

Can be improved to lg |C| using the version space strategy.

Assume a set Φ of versions. These may be conjunctions, disjuctions, or other
representations. The only assumption is that each version φ ∈ Φ provides a
decision φ(o) for any observation o ∈ O. So this function works similarly to a
decision policy π, however, the plan for the version-space agent is to construct
π that uses multiple versions for a single decision.

The hypothesis class is
H = 2Φ ×O (72)

so
hk = (V, o) (73)

where V is a set (‘space’) of versions, and o again stores the last observation.
The plan is that V maintains all versions from Φ consistent with the observations
and rewards received so far.

23

Decisions are determined by voting of all versions in the current version space

yk = π(Vk, ok) =

{
1 if | { φ ∈ Vk | φ(ok) = 1 } | > |Vk|/2
0 otherwise

(74)

The initial version space contains all versions from Φ

V1 = Φ (75)

Update step

o′k =ok (76)

Vk = { φ ∈ Vk−1 | φ(ok−1) = sk−1 } (77)

where sk−1 is determined as sk−1 = |yk−1 − rk−1| (check that this is true) and
yk−1 = π(Vk−1, o

′
k−1).

Assume that Φ is rich enough so that it contains φ ∈ Φ so that φ(o) = c(o) for
all o ∈ O (check that this implies 43). Then the following holds.

Theorem 2.7 The agent makes at most lg |Φ| mistakes, i.e. the cumulative
reward is

m∑
k=1

rk ≥ − lg |Φ| (78)

for any horizon m ∈ N .

To see why the theorem holds note that the agent decides by the majority of
current versions. So if a mistake is made, at least half of the versions are deleted.
In the worst case, the last remaining version is correct.

The logaritmic bound is good but the computational demands for storing the
version space can be prohibitive.

2.4 The Mistake Bound Learning Model

The linear mistake bounds we obtained for the generalizing and separating
agents indicate that these agents are indeed able to learn well the conjunc-
tive and disjunctive concepts but also other kinds of concepts (namely, s-DNF
and s-CNF) that can be reduced to the latter. We will now generalize the notion
of ‘good on-line learning.’ We say that an agent learns concept class C on-line

24

if it makes at most p(n) of mistakes in the on-line scenario with any concept
from C, where p is a polynomial and n is the size of observations. With our
setting (44), the size of observations is the number n of binary values making
up the observations.

By Theorem 2.7, The version space algorithm has a mistake bound lg |Φ| as long
as Φ contains a version coinciding with the concept. So if Φ contains a version
for any concept from C and |Φ| is at most exponential in n it necessarily learns
C on-line, because the mistake bound lg |Φ| would then be polynomial. But note
that |Φ| may be super-exponential. The extreme example of the latter is the
space Φ so rich that it has a φ ∈ Φ for any possible mapping φ : O → S. There
are 2n different possible observations o ∈ O = { 0, 1 }n, each of which is classified
in one of the two states S = { 0, 1 }. Then |Φ| = 22n is super-exponential.

Furthermore, we refine the definition into a stricter form. An agent that learns
concept class C on-line is said to learn it efficiently if it spends at most polyno-
mial time (in observation size) between the receipt of a percept and the gener-
ation of the next action.

What about a lower bound on mistakes? We say that a set of observations
O′ ⊆ O is shattered by hypothesis class H if

{O′ ∩ h | h ∈ H } = 2O
′

(79)

which means that the set of observations can be partitioned in all possible ways
into two classes by the hypotheses from H.

The Vapnik-Chervonenkis Dimension (or VC-dimension) of H, written VC(H),
is the cardinality of the largest set O′ ⊆ O that ca be shattered by H. The
definition extends formally also to H corresponding to H by (41), so we will
also write VC(H).

Theorem 2.8 No upper bound on the number of mistakes made by an agent in
the concept-learning scenario using hypothesis space H is smaller than VC(H).

This is because for any sequence of agent’s decisions y1, y2, . . . , yVC(H) there
exists a h ∈ H according to which all these decisions are wrong.

3 Batch Concept Learning

The batch concept learning situation is defined by the assumptions of batch
learning (Section 1.7) combined with the concept-learning requisities which are
the same as in on-line concept learning (Section 2). In particular, the latter

25

include the assumption of a target concept determining states from observations
(34), the binary range of observations (44) and states (36), and the unit loss
function (40) determining rewards (39).

Since rewards are negative losses by (39), the expected reward (33) to be max-
imized is in [−1; 0]. Its negative value, for a given hypothesis and k > K, is
called the error of the hypothesis

err(hK) = −
∑
rk∈R

µR(rk|hK)rk (80)

and corresponds to the proportion of misclassified observations in the testing
phase, i.e. those observations ok (k ≥ K)3 for which yk 6= sk. Given (40) and
(80), the error can be expressed as the probability of making a mistake, i.e.
receiving a -1 reward at an arbitrary time k > K

err(hK) = µR(−1|hK) (81)

A natural question of interest is how the algorithms we designed for on-line
concept learning in the sequential scenario would perform in terms of the error
(81). Evidently, the bounds on the number of mistakes we established in Theo-
rems 2.5, 2.6, and 2.7 do not translate to any bound on err(hK) as there is no
guarantee that the mistakes will happen in the learning phase (k ≤ K) where
the agent still can fix its hypothesis.

But unlike in the on-line learning case, the batch case inherits the non-sequential
assumptions (28) and (29), meaning that states and observations are sampled
i.i.d. according to distributions that do not change with k. They prevent the
environment from ‘adversarial’ behavior, for example, one where the training
phase would only contain ‘easy’ examples and the ‘hard’ ones would be kept for
the testing phase. As we will see, in this scenario we can indeed bound err(hK)
for particular learning agents, although we will be able to do it only with certain
probability smaller than 1.

3.1 Batch Learning with the Generalizing Agent

Assume the generalizing agent as described in Section 2.1 working in the learning
phase (k ≤ K) of the batch scenario just as it worked in the on-line scenario.

Denote Pr(l) the probability that a literal l (i.e., pi or ¬pi for 1 ≤ i ≤ n) is
inconsistent with observation ok. Since observations are now i.i.d., this prob-
ability does not depend on k. We already know that a hypothesis hk using
conjunction φk with only consistent literals has zero error. So the probability

3Make sure to understand why the inquality is non-strict here.

26

of guessing the wrong class is the probability that some of the literals in φk are
inconsistent. Thus we have the bound

err(hk) ≤
∑
l∈φk

Pr(l) (82)

We have no more than 2n literals in φk so if Pr(l) ≤ ε/2n for each of them then
err(hk) ≤ ε. Call a literal bad if Pr(l) > ε/2n. Prob that a bad literal l survives
k observations is

(1− Pr(l))k <
(

1− ε

2n

)k
(83)

It is important to realize that (83) would not be correct if the observations
o1, o2, . . . ok were not i.i.d. The above equation thus rests fully on the extra
assumptions of the nonsequential scenario (of which batch learning is a special
case), which we did not adopt for on-line learning.

There are at most 2n bad literals so the probability that some of them has
survived k steps is at most

2n
(

1− ε

2n

)k
(84)

To work with this upper bound easily, we make use of the inequality 1−x ≤ e−x
which holds for x ∈ [0; 1], to obtain

2n
(

1− ε

2n

)k
≤ 2ne−k

ε
2n (85)

We now summarize the above inferences into a theorem.

Theorem 3.1 Hypothesis hk+1 of the generalizing agent in the learning phase
(k < K) has err(hk+1) ≤ ε with probability at least 1− 2ne−k

ε
2n

Note that the k + 1 index is due to the fact that k observations are used to
learn hk+1 (ok and rktm+1 are used to create hk+1). So at the end of learning,
err(hK) < ε with probability at least 1− 2ne−(K−1) ε

2n .

3.2 Batch Learning with On-line Agents

We define a standard on-line agent as one that changes its hypothesis if an
only if a mistake has been made by the previous hypothesis. This includes the
generalizing and separating agents as follows from the update rules (50) and
(68). On the other hand, the version-space agent is not standard as by (77) it
updates its hypothesis at every step k. For all of the agents designed, we will
also assume that their hypothesis spaces include a hypothesis perfectly matching
the unknown concept, i.e. (43) holds.

27

The next lemma will enable us to accommodate any on-line learning agent for
the batch learning scenario with a probabilistic bound on the error of the learned
hypothesis.

Lemma 3.2 If a standard on-line agent retains a hypothesis hk for q steps
(hk = hk+1 = . . . hk+q), then err(hk) ≤ ε with probability at least 1− e−qε.

To see why the lemma is correct, we again realize that the probability that the
standard agent keeps a bad hypothesis (err(hk) > ε) on receiving an observation
is exactly the probability 1−err(hk) that the bad hypothesis produces a correct
decision for that observation. Since err(hk) > ε, the probability is at most 1− ε.
The probability of keeping the hypothesis over q i.i.d. observations is thus at
most (1 − ε)q, and we already know that (1 − ε)q ≤ e−qε. Otherwise, i.e. with
probability at least 1− e−qε, the hypothesis was not bad, i.e err(hk) ≤ ε.

So the rule is: wait until hk = hk+1 = . . . hk+q happens and then keep hk
with the probabilistic error bound. The question is how to guarantee that the
event indeed happens within the learning phase, i.e. k + q ≤ K. If we have
a mistake bound M for the agent, we know that the standard agent makes at
most M hypothesis changes. In this case we set the learning phase long enough,
in particular K = Mq, to guarantee that one of the hypothesis in the learning
phase survives at least q observations.

3.3 Consistent Agent

Here we design a general agent working with an arbitrary hypothesis space.
This is analogical to the version space agent we studied in the on-line setting.

We first adapt the version space agent from on-line learning to batch learning.
In the learning phase, the agent works just as in the on-line setting. When the
phase ends, i.e. k = K, the agent updates the version space for the last time
according to (76) and then selects an arbitrary version φK from the version
space VK . All other versions are deleted from VK , so VK = { φK }, and φK thus
dictates the decision policy for k ≥ K

π(VK , ok) = φK(ok) (86)

which is because of the majority vote given by (74).

For short notation, we formally extend the error function to versions, so err(φK)
is the error achieved by the above policy. We call a version φ bad if err(φ) > ε.
The probability that a bad version φ survives k observations is at most (1−ε)k ≤
e−εk. The probability that some bad version from the initial version space (75)

28

survives is at most |Φ|e−εk. So that probability that no bad version survives
and thus err(φK) > ε whichever φK the agent has picked from the last version
space, is at least 1− |Φ|e−εk.

Maintaining the version set is difficult but an equivalent behavior without the
version spaces is achieved as follows. All observationss ok seen up to k = K − 1
are stored in memory along with the true classes sk. The latter are obtained by
always making the decision yk = 0 in the training phase so that sk = −rk+1.
Then the agent finds any hypothesis hK ∈ H consistent with the collected set,
i.e. π(hK , ok) = sk for all k < K. Analogically, to the reasoning above, we have
that

Lemma 3.3 The probability that the consistent agent’s hypothesis hk has error
err(hk) ≤ ε is at least 1− |H|e−εk.

This defines the consistent agent. Of course, finding such a hypothesis may be
computationally hard.

3.4 The PAC Learning Model

Agent probably approximately learns concept class C (in the batch setting) if
at the end of the training phase it produces hK such that err(hK) ≤ ε with
probability at least 1− δ, and K ≤ p(n, 1/δ, 1/ε), where p is a polynomial.

“probably approximately learns” = “PAC-learns” (C for correctly)

It PAC-learns the class efficiently if it spends at most polynomial (in the same
variables) time between the receipt of a percept and the generation of the next
action in the training phase.

Theorem 3.4 The generalizing agent efficiently PAC-learns conjunctions.

δ = 1− 2ne−k
ε
2n

1−δ
2n = e−k

ε
2n

ln 1−δ
2n = −k ε

2n

ln 2n
1−δ = k ε

2n

ln 2n
1−δ = k ε

2n

29

k = 2n
ε ln 2n

1−δ ≤ p(n, 1/ε, 1/δ)

Theorem 3.5 Any standard agent learning (efficiently) a concept class C on-
line, has a counterpart which PAC-learns (efficiently) C.

The agent makes at most u < p(n) updates, i.e. max number of mistakes.

Its batch counterpart works as follows.

Set q = 1
ε ln(1

1−δ)

If before u updates have been made, each hypothesis survived for less than q
steps, then the last one (which makes no mistakes) is found in at most uq steps,
and is kept as hK . Both u and q are polynomial.

If some of them survived for at least q steps, than according to lemma (3.2), its
error is less than ε with probability at least 1−e−qε = δ. This hypothesis found
with less than uq (poly) steps, will be kept as hK . qed

So a negative batch (PAC) result also means a negative on-line result.

Theorem 3.6 If C ⊆ H and |H| is at most exponential in n then the consistent
agent using H PAC-learns C.

By Lemma (3.3), probability δ that err(h) > ε is at most |H|e−εk.

δ ≤ |H|e−εk

δ
|H| ≤ e

−εk

1
ε ln |H|δ > k

Since |H| is at most exponential in n, ln |H| is at most polynomial in it, so
k < p(1/ε, 1/δ, n). qed

Also, s-CNF and s-DNF learnable by poly reduction to conjunctions.

Negative:

separating agent does not pac learn nested functions (which are lin separable),
although it pac learns disjuctions and conjunctions

30

DNF’s are super exponential 23n and cannot be shown be learnable by the
above.

s-term DNF’s cannot be PAC learned efficiently if NP 6= P with an agent using
s-term DNF as the hypo space, but can be learned with s-CNF. (note that
consistent hK is a necessary condition)

31

