
B4M36SMU
Inductive Logic Programming

Learning from Entailment

Monday 24th April, 2017

ILP Settings

I last time – learning from interpretations
I o |= γ ∀o ∈ O+

I o 6|= γ ∀o ∈ O−

I this lab – learning from entailment
I T ` o ∀o ∈ O+

I T 0 o ∀o ∈ O−

θ-Subsumption

γ1 ≤θ γ2, read as γ1 θ-subsumes γ2, if and only if there exists a
substitution θ such that γ1θ ⊆ γ2. Then, γ1 is a generalization of
γ2 and γ2 is a specialization of γ1 under θ-subsumption.

Which ≤θ relations hold within following pairs:

I γ1 = p(X ,X)
γ2 = p(Y ,Z)

I γ1 = p(X , a)
γ2 = p(b,Y)

I γ1 = ¬p(W ,X) ∨ ¬p(X ,Y) ∨ ¬p(Y ,Z)
γ2 = ¬p(T ,T)

θ-Subsumption and `

Which relations, γ1 ≤θ γ2 and γ1 ` γ2, hold within following pairs:

I γ1 = apple(X) ⇐= fruit(X), round(X)
γ2 = apple(X) ⇐= fruit(X), round(X), red(X)

I γ1 = p(succ(X)) ⇐= p(X)
γ2 = p(succ(succ(X)) ⇐= p(X)

Reduced Clause

Two clauses γ1 and γ2 are logically equivalent, γ1 ∼ γ2, if
γ1 ≤θ γ2 and γ2 ≤θ γ1.

A clause γ is reduced if there is no γ′ ∼ γ such that |γ′| < |γ|.

Compute reduced clauses for following examples:

I ¬p(X ,Y ,W) ∨ ¬m(Y ,Z ,Q) ∨ ¬p(X ,U,Q) ∨ ¬m(U,V ,W)

I ¬p(X ,Y) ∨ ¬m(Z ,Y) ∨ ¬m(Y ,Y) ∨ ¬r(Z ,Y)

Least General Generalization

LGG (γ1, γ2) = γ
γ ≤θ γ1
γ ≤θ γ2
and for any γ′ s.t. γ′ ≤θ γ1, γ′ ≤θ γ2 holds that
γ′ ≤θ γ

LGG (γ1, γ2) =
∨

l1∈γ1,l2∈γ2
LGG (l1, l2)

LGG (p(t1, t2, . . .), p(t ′1, t
′
2, . . .)) = p(LGG (t1, t

′
1), LGG (t2, t

′
2), . . .)

LGG (f (t1, . . .), f
′(t ′1, . . .)) =

{
X f 6= f ′

f (LGG (t1, t
′
1), . . .) otherwise

LGG (f (. . .),X) = X ′

LGG (X ,Y) = X ′

where p is a predicate, f is a functor, t is a term, c is a constant and X
is a variable.

Compute LGG

I γ1 = goal(X) ⇐= path(A,B), path(B,X), gold(an(A), f (2),X)
γ2 = goal(a) ⇐= path(a,B), gold(poss(B,C), f (2), a)

I γ1 = ¬e(A,B) ∨ ¬e(B,A)
γ2 = ¬e(A,B) ∨ ¬e(B,C) ∨ ¬e(C ,A)

Assignment 3

Submission

I brute system

I deadline: 11 May 2017, 23:59

I source codes – Python implementation (3.5) – and a PDF
report (in one archive)

I 12 points can be obtained

I mandatory and optional part (see next slide)

Task and Scoring – mandatory part (6 points)

I implement LGG algorithm into lggAgent.py

I the reduction step does not have to be implemented

Assignment 3, cont’d
Task and Scoring – optional part (6 points)

I use learned clause to classify observations in the form of
interpretations – implement classifier.py (2 points)

I a) construct your own set of clauses and their lgg such that
the final lgg is a reduced clause (1 point)

I b) construct your own set of clauses and their lgg such that
the final lgg is not a reduced clause (1 point)

I c) find reduced clause of the clause from b) (1 point)

I provide mapping for variable-tuple in a) and b), e.g. by
subscripts or tables

I For a) and b), use starting set of clause with at least two
clauses. If at least one of these sets has more than three
clauses, then you will obtain another 1 point.

I write all of the clauses from a-c to your PDF report

I do not use examples from the textbook or labs

I do not use clauses which have trivial lgg, e.g. empty clause

Literature

I Luc de Raedt: Logical and Relational Learning
http://www.springer.com/us/book/9783540200406

http://www.springer.com/us/book/9783540200406

