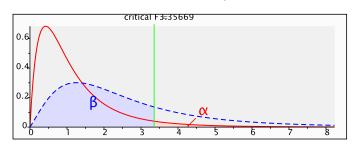
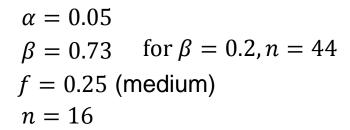
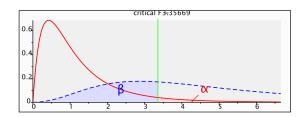


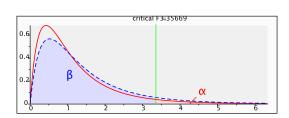
Experiment Evaluation and Power Analysis - PRACTICE

SAN 2017/18


POWER ANALYSIS | DISCOVERY


- To detect X % of problems that affects Y % of users.
- To have a X % chance of detecting ...


$$n = \frac{\ln(1 - X)}{\ln(1 - Y)}$$


POWER ANALYSIS | COMPARING

F test (MANOVA: Repeated measures, within factors)

$$\alpha = 0.05$$
 $\beta = 0.37$ for $\beta = 0.2, n = 22$
 $f = 0.4$ (large)
 $n = 16$

$$lpha = 0.05$$
 $eta = 0.92$ for $eta = 0.2$, $n = 244$
 $f = 0.1$ (small)
 $n = 16$

EXPERIMENT RESULTS

F test (MANOVA: Repeated measures, within factors)

EXPERIMENT RESULTS

F test (MANOVA: Repeated measures, within factors)

EXPERIMENT RESULTS

INSTRUCTIONS FOR 2ND PART

Analyze the data gathered on the 1st practice (see https://goo.gl/DC9hVJ). The report should contain:

- statistical analysis of data reporting
 - H₀/H₁ rejection/acceptance
 - group effect, asymmetric learning effect
 - learning curve across trials
 - compare learning curve of method A and B
 - how to determine number of trials when the method A will become faster than method B
- power analysis of the experiment setup
 - compute and discuss optimal parameters (power, effect size, α , n) for such study
- determine parameters of discovery experiment
 - n, X % chance of discovering problems affecting Y % of users

THANK YOU FOR ATTENTION

