Multivariate Analysis of Variance

Jiří Kléma

Department of Computer Science,
Czech Technical University in Prague

http://cw.felk.cvut.cz/wiki/courses/b4m36san/start

Agenda

- Bivariate statistical tests and their multivariate generalizations,
- relationship between continuous variables and a categorical variable
- categorical variable $=$ treatment, factor,
- lots of methods, we will proceed from the most simple to most general,
- Review t-test for two groups
- single continuous variable, binary factor/treatment,
- non-parametric alternative,
- multiple comparisons problem for more groups,
- Explain ANOVA
- posthoc tests to find out which groups contributed most,
- Generalize towards MANOVA
- two-way modification, non-parametric

Bivariate statistical models and tests

- assess strength of relationship between a pair of variables
- independent (causal) and dependent (effect) variable,
- rejection of null hypothesis does not imply causal relationship,
- all of them can be generalized towards multivariate statistics.

		dependent variable	
		categorical	continuous
independent variable	categorical	contingency table chi-square test	analysis of variance
	continuous	LDA logistic regression	correlation regression

Independence test for two categorical variables

- categorical variable
- takes one of a limited (and fixed) number of possible values,
- contingency table
- table showing observed (multivariate) joint frequency distribution,
- for the moment concern two-way contingency tables only,
- a pair of variables with r and c categories captured in a $r \times c$ table,
- its elements represent frequency counts for the individual events,
- an example: two binary variables $X_{1}=$ gender and $X_{2}=$ disease

	X_{21}	\ldots	$X_{2 c}$	Σ
X_{11}	N_{11}		$N_{1 c}$	$N_{1 \bullet}$
\ldots				
$X_{1 r}$	$N_{r 1}$		$N_{r c}$	$N_{r \bullet}$
Σ	$N_{\bullet 1}$		N_{\bullet}	N

	healthy	diseased	total
women	216	72	288
men	279	342	621
total	495	414	909

Independence test for two categorical variables

- independence assumption
- H_{0} : two categorical variables are independent,
- H_{a} : they have an association or relationship (of an unknown structure),
- the frequency distribution does not change with the table rows,
- compare the observed frequencies with the expected ones
- the expectations are derived from the marginal frequencies under the independence assumption, MLE approach is taken,
$-E_{i j}=N \bar{p}_{i \bullet} \bar{p}_{\bullet j}=N \frac{N_{i} \bullet \frac{N_{\bullet} j}{N}}{N}=\frac{N_{i} \bullet N_{\bullet} j}{N}$.

$O_{i j}$	healthy	diseased	total
women	216	72	288
men	279	342	621
total	495	414	909

$E_{i j}$	healthy	diseased	total
women	157	131	288
men	338	283	621
total	495	414	909

Independence test for two categorical variables

- let us measure the discrepancy between the observed counts and the estimated expected counts under the null,
- Pearson's χ^{2} is one of the options

$$
X^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}
$$

- a cumulative test statistic,
- it asymptotically approaches a χ^{2} distribution
- with $(r-1)(c-1)$ degrees of freedom,
- assumptions
- non-parametric test, robust wrt distribution of the data,
- one observation per subject, sufficient sample size $\left(E_{i j} \geq 5\right)$.

Independence test for two categorical variables

- for the gender and disease relationship

$$
X^{2}=\frac{(216-157)^{2}}{157}+\frac{(72-131)^{2}}{131}+\frac{(279-338)^{2}}{338}+\frac{(342-283)^{2}}{283}=71.3
$$

- choose a significance level $\alpha=0.01$ (type I error control),
- compare with the table value $\chi_{\alpha=0.01, d f=1}^{2}=6.635$,
- since $X^{2}>\chi_{d f=1}^{2}$ reject H_{0},
- the exact p-value: $p=1-F_{\chi^{2}(1)}(71.3)=1.09 e-17$.

Chi-square density function

Independence test for two categorical variables

- clarification why the Pearson's test statistic follows χ^{2} distribution,
- for simplicity, concern a simple goodness of fit test with only 2 categories
- N trials, X observations in cat $1, N-X$ observations in cat 2 ,
$-p_{1}=p=\frac{X}{N}, p_{2}=1-p=\frac{N-X}{N}$
- $H_{0}: p=p_{0}$ (compare to a statistical model, a single number only here),
- X follows binomial distribution

$$
\operatorname{Pr}(X=k)=\binom{N}{k} p^{k}(1-p)^{N-k}
$$

- the probability of getting exactly k successes in N trials, each trial successful with probability p,
- for large N s can be approximated by $\mathrm{N}(N p, N p(1-p))$,
- we can standardize X as $z=\frac{X-N p}{\sqrt{N p(1-p)}}$.

Independence test for two categorical variables

- compare binomial distribution and its approximation with normal distribution
- left: small $\mathrm{N}, \mathrm{p} \ll 0.5$, significant approximation error,
- right: disease variable from our smoking example, 495 healthy and 414 diseased individuals, $\mathrm{N}=909, \mathrm{p}=0.54$, negligible approximation error.

Independence test for two categorical variables

- χ_{k}^{2} - chi-square distribution with k degrees of freedom is the distribution of a sum of the squares of k independent standard normal random variables,
- a simple goodness of fit test with 2 categories can simply test whether

$$
z^{2}=\frac{(X-N p)^{2}}{N p(1-p)} \text { approximately } \sim \chi_{1}^{2}
$$

- it can be shown that it is identical with Pearson's statistic

$$
\begin{aligned}
\sum_{i=1}^{2} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} & =\frac{(X-N p)^{2}}{N p}+\frac{[(N-X)-(N-N p)]^{2}}{N(1-p)} \\
& =\frac{(X-N p)^{2}}{N p}+\frac{(X-N p)^{2}}{N(1-p)} \\
& =(X-N p)^{2}\left(\frac{1}{N p}+\frac{1}{N(1-p)}\right)
\end{aligned}
$$

Independence test for two categorical variables

- it further holds that

$$
\frac{1}{N p}+\frac{1}{N(1-p)}=\frac{N p+N(1-p)}{N p N(1-p)}=\frac{1}{N p(1-p)}
$$

- and consequently

$$
\sum_{i=1}^{2} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=\frac{(X-N p)^{2}}{N p(1-p)} \text { approximately } \sim \chi_{1}^{2}
$$

- the dependence between the two cells is compensated by diving by E_{i} instead of $E_{i}\left(1-p_{i}\right)$,
- this generalizes to multinomial distributions (larger contingency tables)
- the Pearson statistics has a distribution that asymptotically follows χ_{k-1}^{2},
- likelihood-ratio statistics $G=2 \sum_{i j} O_{i j} \ln \frac{O_{i j}}{E_{i j}}$ is actually preferred.

Review t-test for two groups

- a test in which the test statistic follows a Student's t-distribution...
- under the null hypothesis,
- consider a two sample t-test, $H_{0}: \mu_{1}=\mu_{2}, H_{a}: \mu_{1} \neq \mu_{2}$
- the two populations should follow a normal distribution,
- variances of the two populations assumed equal \rightarrow Student's t-tests,
- variances can differ \rightarrow Welch's test (see below),

$$
t_{o b s}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \sim t_{d f}
$$

- \bar{X}_{i}, s_{i}^{2} and $n_{i} \ldots$ sample means, variances and sizes,
$-d f \leq n_{1}+n_{2}-2$, the exact formula complicated,
- reject H_{0} if $\left|t_{o b s}\right| \geq t_{d f, 1-\alpha / 2}$.

t-distribution

Statlect: The Digital Textbook

Statlect: The Digital Textbook

T-test for multiple groups

- Concern a categorical variable with many levels \rightarrow multiple groups,
- conduct a two-sample t-test for a difference in means for each pair of groups
- the number of comparisons grows quadratically with the number of groups/levels,
- for $\alpha=0.05$ for each comparison
- there is a 5\% chance that each comparison will falsely be called significant,
- the overall probability of Type I error is elevated above 5%,
- we falsely reject at least one of the partial null hypothesis with probability

$$
1-(1-\alpha)^{\binom{g}{2}}
$$

- e.g., for 4 levels it makes $0.26 \gg \alpha$,
- multiple comparisons must be corrected.

Multiple comparisons

- multiple comparisons must be corrected.
- the most simple is the Bonferroni correction,
- test each hypothesis at level $\alpha_{\text {indiv }}=\alpha_{\text {overall }} / m$, * m stands for the number of individual pair tests, * follows from Boferroni inequality for independent tests

$$
\begin{aligned}
& \alpha_{\text {overall }}=1-(1-\alpha)^{m} \leq m \alpha_{\text {indiv }} \\
& * \text { e.g., } 0.26=1-0.95^{6}<0.05 * 6=0.3
\end{aligned}
$$

- however, this adjustment may be too conservative.

Analysis of variance (ANOVA)

- compares means for multiple (usually $g \geq 3$) independent populations
- parametric and unpaired, one-way,
- relationship between a categorical factor F and a continuous outcome Y,
- extends a two sample t-test to multiple groups,

Subject	F	Y
1	f_{1}	y_{1}
2	f_{2}	y_{2}
\ldots		
N	f_{N}	y_{N}

		1	\ldots	g
Subject	1	y_{11}	\ldots	$y_{g 1}$
	2	y_{12}	\ldots	$y_{g 2}$
	\ldots	\ldots	\ldots	\ldots
	n_{i}	$y_{1 n_{1}}$	\ldots	$y_{g n_{g}}$

- $y_{i j} \ldots$ observation for subject j in group i,
- $n_{i} \ldots$ number of subjects in group i,
- $N=n_{1}+n_{2}+\ldots+n_{g} \ldots$ total sample size.

Analysis of variance (ANOVA)

- assumptions
- the subjects are independently sampled
* employ repeated measures ANOVA otherwise,
- the data are normally distributed in each group
* $E\left(Y_{i .}\right)=\mu_{i}$, e.g., no group sub-populations with different means,
* residuals of the model below show the normal distribution

$$
y_{i j}=\mu+\alpha_{i}+\epsilon_{i j}=\mu_{i}+\epsilon_{i j}
$$

* employ non-parametric Kruskal-Wallis test otherwise,
- the data are homoscedastic
* the variability in the data does not depend on group membership,
* there is a common variance $\operatorname{var}\left(Y_{i j}\right)=\sigma^{2}$,
- multiple comparisons problem for more groups,
- the hypotheses of interest
$-H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{g}$,
- $H_{a}: \mu_{i} \neq \mu_{j}$ for at least one $i \neq j$.

Analysis of variance (ANOVA)

- method
- partition $S S_{\text {total }}$, the total variation in a response variable,
- distinguish within groups variability $S S_{\text {error }}$,
- and between groups variability $S S_{\text {treat }}$,

$$
\begin{aligned}
S S_{\text {total }} & =\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{. .}\right)^{2}= \\
& =\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(\left(y_{i j}-\bar{y}_{i .}\right)+\left(\bar{y}_{i .}-\bar{y}_{. .}\right)\right)^{2}= \\
& =\underbrace{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i .}\right)^{2}}_{S_{\text {error }}}+\underbrace{\sum_{i=1}^{g} n_{i}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2}}_{S S_{\text {treat }}}
\end{aligned}
$$

* $\bar{y}_{i .}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} y_{i j} \ldots$ group i sample mean,
$* \bar{y}_{. .}=\frac{1}{N} \sum_{i=1}^{g} \sum_{j=1}^{n_{i}} y_{i j} \ldots$ grand mean .

Analysis of variance (ANOVA)

- method
- in a similar manner, partition the number of degrees of freedom that stand behind the observed sums of the squared deviations

$$
D F_{\text {total }}=N-1=D F_{\text {error }}+D F_{\text {treat }}=(N-g)+(g-1)=N-1
$$

- decide whether group averages differ more than based on random variability observed in the dependent variable under the null hypothesis,
- employ mean square variability, both within groups and between groups

$$
M S_{\text {error }}=\frac{S S_{\text {error }}}{D F_{\text {error }}}=\frac{S S_{\text {error }}}{N-g} \quad M S_{\text {treat }}=\frac{S S_{\text {treat }}}{D F_{\text {treat }}}=\frac{S S_{\text {treat }}}{g-1}
$$

Analysis of variance (ANOVA)

- method
- compare the variance between the groups and within the groups,

$$
F_{\text {obs }}=\frac{M S_{\text {treat }}}{M S_{\text {error }}} \sim F_{g-1, N-g}
$$

- if $F_{o b s}$ is small (close to 1), then variability between groups is negligible compared to variation within groups and the grouping does not explain much variation in the data,
- if $F_{o b s}$ is large, then variability between groups is large compared to variation within groups and the grouping explains a lot of the variation in the data
- decision rule based on $F_{o b s}$
- reject H_{0} if $F_{o b s} \geq F_{\alpha, g-1, N-g}$,
- fail to reject H_{0} if $F_{o b s}<F_{\alpha, g-1, N-g}$.

F-distribution

- F-distribution is any distribution obtained by taking the quotient of two χ^{2} distributions divided by their respective degrees of freedom,
- consequently, any F-distribution has two parameters corresponding to the degrees of freedom for the two χ^{2} distributions
- given $X_{1} \sim \chi_{d f_{1}}^{2}$ and $X_{2} \sim \chi_{d f_{2}}^{2}$

$$
\frac{X_{1} / d f_{1}}{X_{2} / d f_{2}} \sim F_{d f_{1}, d f_{2}}
$$

- F-distribution in R
- find the value of $F_{\alpha, g-1, N-g}$:
qf (alpha, df1, df2, lower.tail = F),
- find the ANOVA p-value when knowing $F_{\text {obs }}$:
$\mathrm{pf}($ Fobs, $\mathrm{df} 1, \mathrm{df} 2$, lower.tail = F).

F-distribution

Statlect: The Digital Textbook

Post-hoc ANOVA tests

- after performing ANOVA (and rejecting the null hypothesis)
- we only assume that there is some difference in group means,
- a post-hoc test identifies which particular groups stand behind the test outcome,
- Tukey's HSD (honest significant difference) test
- a t-test that controls for family-wise arror rate (FWER),
- compares all pairs of group means,
- identifies all pairs whose difference is larger than expected standard error,
- observed test statistics related to the studentized range distribution,

$$
q_{o b s}=\frac{\bar{y}_{i .}-\bar{y}_{j .}}{\sqrt{\frac{M S_{\text {error }}}{n^{*}}}} \sim q_{g, N-g}
$$

$-n^{*} \ldots$ number of observations per group (their harmonic mean if not equal),

- always positive, sort the means before its application.

ANOVA extensions/alternatives

- up to now we talked about ANOVA that
- is parametric,
- deals with independent measurements,
- is one-way (with a single factor),
- concerns a single target variable only,
- other options
- non-parametric analysis (Wilcoxon test \rightarrow Kruskal-Wallis analysis),
- compares all possible group means (repeated measures ANOVA, Friedman test if non-parametric too),
- main effects ANOVA and factorial ANOVA,
- multivariate ANOVA (MANOVA).

Multivariate analysis of variance (MANOVA)

- p variables measured on each subject, objects categorized into g disjoint groups.
- $y_{i j k} \ldots$ an observation for variable k from subject j in group i,
- $\mathbf{y}_{\mathrm{ij}} \ldots$ a vector of dependent variables for subject i in group i,
- assumptions
- the subjects are independently sampled,
- the data are multivariate normally distributed in each group,
- the data from all groups have common covariance matrix Σ,
- the data from group i has common mean vector μ_{i} of length p,
- the hypotheses of interest
$-H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{\mathrm{g}}$,
$-H_{a}: \mu_{\mathrm{ik}} \neq \mu_{\mathrm{jk}}$ for at least one $i \neq j$ and at least one variable k.

Analysis of variance (ANOVA)

- method
- the analogy of $S S_{\text {total }}$ in ANOVA is a $p \times p$ cross products matrix \mathbf{T},
- similarly to ANOVA, it can be decomposed into the Error Sum of Squares and Cross Products E, and the Hypothesis Sum of Squares and Cross Products \mathbf{H}.

$$
\begin{aligned}
\mathbf{T} & =\sum_{\mathbf{i}=1}^{\mathrm{g}} \sum_{\mathbf{j}=1}^{\mathbf{n}_{\mathbf{i}}}\left(\mathbf{y}_{\mathrm{ij}}-\overline{\mathbf{y}}_{. .}\right)\left(\mathbf{y}_{\mathbf{i j}}-\overline{\mathbf{y}}_{. .}\right)^{\prime}= \\
& =\sum_{\mathrm{i}=1}^{\mathrm{g}} \sum_{\mathbf{j}=1}^{\mathbf{n}_{\mathbf{i}}}\left\{\left(\mathbf{y}_{\mathbf{i j}}-\overline{\mathbf{y}}_{\mathbf{i}}\right)+\left(\overline{\mathbf{y}}_{\mathbf{i}}-\overline{\mathbf{y}}_{. .}\right)\right\}\left\{\left(\mathbf{y}_{\mathbf{i j}}-\overline{\mathbf{y}}_{\mathbf{i}}\right)+\left(\overline{\mathbf{y}}_{\mathbf{i}}-\overline{\mathbf{y}}_{. .}\right)\right\}^{\prime}= \\
& =\underbrace{\sum_{\mathbf{i}=1}^{\mathrm{g}} \sum_{\mathbf{j}=1}^{\mathbf{n}_{\mathbf{i}}}\left(\mathbf{y}_{\mathbf{i j}}-\overline{\mathbf{y}}_{\mathbf{i} .}\right)\left(\mathbf{y}_{\mathbf{i j}}-\overline{\mathbf{y}}_{\mathbf{i} .}\right)^{\prime}}_{\mathbf{E}}+\underbrace{\sum_{\mathbf{i}=1}^{\mathrm{g}} \mathbf{n}_{\mathbf{i}}\left(\overline{\mathbf{y}}_{\mathbf{i} .}-\overline{\mathbf{y}}_{. .}\right)\left(\overline{\mathbf{y}}_{\mathbf{i} .}-\overline{\mathbf{y}}_{. .}\right)^{\prime}}_{\mathbf{H}}
\end{aligned}
$$

* $\overline{\mathbf{y}}_{i .}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} \mathbf{y}_{i j} \ldots$ sample mean vector for group i,
$* \overline{\mathbf{y}}_{. .}=\frac{1}{N} \sum_{i=1}^{g} \sum_{j=1}^{n_{i}} \mathbf{y}_{i j} \ldots$ grand mean vector of length p.

Multivariate analysis of variance (MANOVA)

- explanation of the elements of \mathbf{T}, \mathbf{E} and \mathbf{H}
- the element $\mathbf{t}_{k, l}$ is

$$
\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j k}-\bar{y}_{. . k}\right)\left(y_{i j l}-\bar{y}_{. l}\right)
$$

- for $k=l$ it is the total sum of squares for variable k, and measures the total variation in the k th variable, for $k \neq l$, this measures the dependence between variables k and l across all of the observations,
- the element $\mathbf{e}_{k, l}$ is

$$
\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j k}-\bar{y}_{i . k}\right)\left(y_{i j l}-\bar{y}_{i . l}\right)
$$

- for $k=l$ it is the error sum of squares for variable k, and measures the within treatment variation for the k th variable, for $k \neq l$ it measures the dependence between variables k and l after taking into account the treatment,

Multivariate analysis of variance (MANOVA)

- explanation of the elements of \mathbf{T}, \mathbf{E} and \mathbf{H}
- the element $\mathbf{h}_{k, l}$ is

$$
\sum_{i=1}^{g} n_{i}\left(\bar{y}_{i . k}-\bar{y}_{. . k}\right)\left(\bar{y}_{i . l}-\bar{y}_{. . l}\right)
$$

- for $k=l$ it is the treatment sum of squares for variable k, and measures the between treatment variation for the k th variable, for $k \neq l$, this measures dependence of variables k and l across treatments.
- consequently, if the hypothesis sum of squares and cross products \mathbf{H} is large relative to the error sum of squares and cross products matrix \mathbf{E} we wish to reject H_{0}.

Multivariate analysis of variance (MANOVA)

- Wilk's lambda test statistics for MANOVA (several other statistics exist too)
- the determinant of the error matrix \mathbf{E} is divided by the determinant of the total matrix $\mathbf{T}=\mathbf{H}+\mathbf{E}$, we will reject the null hypothesis if Wilk's lambda is small/close to zero as then \mathbf{H} is large relative to \mathbf{E} too.

$$
\Lambda^{*}=\frac{|\mathbf{E}|}{|\mathbf{H}+\mathbf{E}|}
$$

- can also be computed using the eigenvalues $\hat{\lambda}$ of $\mathbf{E}^{-\mathbf{1}} \mathbf{B}(s=\min (p, g-1))$

$$
\Lambda^{*}=\prod_{i=1}^{s} \frac{1}{1+\hat{\lambda}_{i}}
$$

- the distribution of Λ^{*} is not tractable, we can only have approximations,
- e.g., Bartlett's approximation can be used if N is large

$$
-\left(N-1-\frac{p+g}{2}\right) \ln \lambda^{*}>\chi_{p(g-1), \alpha}^{2}
$$

The main references

:: Resources (slides, scripts, tasks) and reading

- STAT 505 course on Applied Multivariate Statistical Analysis, PennState University, https://onlinecourses.science.psu.edu/stat505/.
- G. James, D. Witten, T. Hastie and R. Tibshirani: An Introduction to Statistical Learning with Applications in R. Springer, 2014.
- A. C. Rencher, W. F. Christensen: Methods of Multivariate Analysis. 3rd Edition, Wiley, 2012.
- T. Hastie, R. Tibshirani and J. Friedman: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2009.

