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pAgenda

� Bivariate statistical tests and their multivariate generalizations,

� relationship between continuous variables and a categorical variable

− categorical variable = treatment, factor,

− lots of methods, we will proceed from the most simple to most general,

� Review t-test for two groups

− single continuous variable, binary factor/treatment,

− non-parametric alternative,

− multiple comparisons problem for more groups,

� Explain ANOVA

− posthoc tests to find out which groups contributed most,

� Generalize towards MANOVA

− two-way modification, non-parametric
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pBivariate statistical models and tests

� assess strength of relationship between a pair of variables

− independent (causal) and dependent (effect) variable,

− rejection of null hypothesis does not imply causal relationship,

� all of them can be generalized towards multivariate statistics.

dependent variable
categorical continuous

independent
variable

categorical
contingency table

chi-square test
analysis of variance

continuous
LDA

logistic regression
correlation
regression
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pIndependence test for two categorical variables

� categorical variable

− takes one of a limited (and fixed) number of possible values,

� contingency table

− table showing observed (multivariate) joint frequency distribution,

− for the moment concern two-way contingency tables only,

− a pair of variables with r and c categories captured in a r × c table,

− its elements represent frequency counts for the individual events,

− an example: two binary variables X1 = gender and X2 = disease

X21 . . . X2c Σ

X11 N11 N1c N1•
. . .
X1r Nr1 Nrc Nr•
Σ N•1 N•2 N

healthy diseased total

women 216 72 288
men 279 342 621
total 495 414 909
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pIndependence test for two categorical variables

� independence assumption

− H0: two categorical variables are independent,

− Ha: they have an association or relationship (of an unknown structure),

− the frequency distribution does not change with the table rows,

� compare the observed frequencies with the expected ones

− the expectations are derived from the marginal frequencies under the inde-
pendence assumption, MLE approach is taken,

− Eij = Np̄i•p̄•j = NNi•
N

N•j
N = Ni•N•j

N .

Oij healthy diseased total

women 216 72 288
men 279 342 621
total 495 414 909

Eij healthy diseased total

women 157 131 288
men 338 283 621
total 495 414 909
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pIndependence test for two categorical variables

� let us measure the discrepancy between the observed counts and the estimated
expected counts under the null,

� Pearson’s χ2 is one of the options

X2 =

r∑
i=1

c∑
j=1

(Oij − Eij)
2

Eij

� a cumulative test statistic,

� it asymptotically approaches a χ2 distribution

− with (r − 1)(c− 1) degrees of freedom,

� assumptions

− non-parametric test, robust wrt distribution of the data,

− one observation per subject, sufficient sample size (Eij ≥ 5).
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pIndependence test for two categorical variables

� for the gender and disease relationship

X2 =
(216− 157)2

157
+

(72− 131)2

131
+

(279− 338)2

338
+

(342− 283)2

283
= 71.3

� choose a significance level α = 0.01 (type I error control),

� compare with the table value χ2
α=0.01,df=1=6.635,

� since X2 > χ2
df=1 reject H0,

� the exact p-value: p = 1− Fχ2(1)(71.3) = 1.09e− 17.
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pIndependence test for two categorical variables

� clarification why the Pearson’s test statistic follows χ2 distribution,

� for simplicity, concern a simple goodness of fit test with only 2 categories

− N trials, X observations in cat 1, N −X observations in cat 2,

− p1 = p = X
N , p2 = 1− p = N−X

N

− H0 : p = p0 (compare to a statistical model, a single number only here),

− X follows binomial distribution

Pr(X = k) =

(
N

k

)
pk(1− p)N−k

− the probability of getting exactly k successes in N trials, each trial suc-
cessful with probability p,

− for large Ns can be approximated by N(Np,Np(1− p)),

− we can standardize X as z = X−Np√
Np(1−p)

.
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pIndependence test for two categorical variables

� compare binomial distribution and its approximation with normal distribution

− left: small N, p � 0.5, significant approximation error,

− right: disease variable from our smoking example, 495 healthy and 414
diseased individuals, N=909, p=0.54, negligible approximation error.
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pIndependence test for two categorical variables

� χ2
k – chi-square distribution with k degrees of freedom is the distribution of a

sum of the squares of k independent standard normal random variables,

� a simple goodness of fit test with 2 categories can simply test whether

z2 =
(X −Np)2

Np(1− p)
approximately ∼ χ2

1

� it can be shown that it is identical with Pearson’s statistic

2∑
i=1

(Oi − Ei)
2

Ei
=

(X −Np)2

Np
+

[(N −X)− (N −Np)]2

N(1− p)

=
(X −Np)2

Np
+

(X −Np)2

N(1− p)

= (X −Np)2
(

1

Np
+

1

N(1− p)

)
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pIndependence test for two categorical variables

� it further holds that

1

Np
+

1

N(1− p)
=
Np + N(1− p)

NpN(1− p)
=

1

Np(1− p)

� and consequently

2∑
i=1

(Oi − Ei)
2

Ei
=

(X −Np)2

Np(1− p)
approximately ∼ χ2

1

� the dependence between the two cells is compensated by diving by Ei instead
of Ei(1− pi),

� this generalizes to multinomial distributions (larger contingency tables)

� the Pearson statistics has a distribution that asymptotically follows χ2
k−1,

� likelihood-ratio statistics G = 2
∑

ij Oij ln
Oij
Eij

is actually preferred.
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pReview t-test for two groups

� a test in which the test statistic follows a Student’s t-distribution . . .

− under the null hypothesis,

� consider a two sample t-test, H0 : µ1 = µ2, Ha : µ1 6= µ2

− the two populations should follow a normal distribution,

− variances of the two populations assumed equal → Student’s t-tests,

− variances can differ → Welch’s test (see below),

tobs =
X̄1 − X̄2√

s21
n1

+
s22
n2

∼ tdf

− X̄i, s
2
i and ni. . . sample means, variances and sizes,

− df ≤ n1 + n2 − 2, the exact formula complicated,

− reject H0 if |tobs| ≥ tdf,1−α/2.
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pt-distribution
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pT-test for multiple groups

� Concern a categorical variable with many levels → multiple groups,

� conduct a two-sample t-test for a difference in means for each pair of groups

− the number of comparisons grows quadratically with the number of groups/levels,

� for α = 0.05 for each comparison

− there is a 5% chance that each comparison will falsely be called significant,

− the overall probability of Type I error is elevated above 5%,

− we falsely reject at least one of the partial null hypothesis with probability

1− (1− α)(
g
2)

− e.g., for 4 levels it makes 0.26� α,

� multiple comparisons must be corrected.
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pMultiple comparisons

� multiple comparisons must be corrected.

− the most simple is the Bonferroni correction,

− test each hypothesis at level αindiv = αoverall/m,

∗ m stands for the number of individual pair tests,

∗ follows from Boferroni inequality for independent tests

αoverall = 1− (1− α)m ≤ mαindiv

∗ e.g., 0.26 = 1− 0.956 < 0.05 ∗ 6 = 0.3,

− however, this adjustment may be too conservative.
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pAnalysis of variance (ANOVA)

� compares means for multiple (usually g ≥ 3) independent populations

− parametric and unpaired, one-way,

− relationship between a categorical factor F and a continuous outcome Y ,

− extends a two sample t-test to multiple groups,

Subject F Y

1 f1 y1
2 f2 y2

. . .
N fN yN

1 . . . g

Subject

1 y11 . . . yg1
2 y12 . . . yg2

. . . . . . . . . . . .
ni y1n1 . . . ygng

� yij . . . observation for subject j in group i,

� ni . . . number of subjects in group i,

� N = n1 + n2 + ... + ng . . . total sample size.
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pAnalysis of variance (ANOVA)

� assumptions

− the subjects are independently sampled

∗ employ repeated measures ANOVA otherwise,

− the data are normally distributed in each group

∗ E(Yi.) = µi, e.g., no group sub-populations with different means,

∗ residuals of the model below show the normal distribution
yij = µ + αi + εij = µi + εij
∗ employ non-parametric Kruskal-Wallis test otherwise,

− the data are homoscedastic

∗ the variability in the data does not depend on group membership,

∗ there is a common variance var(Yij) = σ2,

− multiple comparisons problem for more groups,

� the hypotheses of interest

− H0 : µ1 = µ2 = · · · = µg,

− Ha : µi 6= µj for at least one i 6= j.
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pAnalysis of variance (ANOVA)

� method

− partition SStotal, the total variation in a response variable,

− distinguish within groups variability SSerror,

− and between groups variability SStreat,

SStotal =

g∑
i=1

ni∑
j=1

(yij − ȳ..)2 =

=

g∑
i=1

ni∑
j=1

(
(yij − ȳi.) + (ȳi. − ȳ..)

)2
=

=

g∑
i=1

ni∑
j=1

(yij − ȳi.)2︸ ︷︷ ︸
SSerror

+

g∑
i=1

ni(ȳi. − ȳ..)2︸ ︷︷ ︸
SStreat

∗ ȳi. = 1
ni

∑ni
j=1 yij . . . group i sample mean,

∗ ȳ.. = 1
N

∑g
i=1

∑ni
j=1 yij . . . grand mean.
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pAnalysis of variance (ANOVA)

� method

− in a similar manner, partition the number of degrees of freedom that stand
behind the observed sums of the squared deviations

DFtotal = N − 1 = DFerror + DFtreat = (N − g) + (g − 1) = N − 1

− decide whether group averages differ more than based on random variability
observed in the dependent variable under the null hypothesis,

− employ mean square variability, both within groups and between groups

MSerror =
SSerror
DFerror

=
SSerror
N − g

MStreat =
SStreat
DFtreat

=
SStreat
g − 1
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pAnalysis of variance (ANOVA)

� method

− compare the variance between the groups and within the groups,

Fobs =
MStreat
MSerror

∼ Fg−1,N−g

− if Fobs is small (close to 1), then variability between groups is negligible
compared to variation within groups and the grouping does not explain
much variation in the data,

− if Fobs is large, then variability between groups is large compared to varia-
tion within groups and the grouping explains a lot of the variation in the
data

� decision rule based on Fobs

− reject H0 if Fobs ≥ Fα,g−1,N−g,

− fail to reject H0 if Fobs < Fα,g−1,N−g.
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pF-distribution

� F-distribution is any distribution obtained by taking the quotient of two χ2

distributions divided by their respective degrees of freedom,

� consequently, any F-distribution has two parameters corresponding to the de-
grees of freedom for the two χ2 distributions

� given X1 ∼ χ2
df1

and X2 ∼ χ2
df2

X1/df1
X2/df2

∼ Fdf1,df2

� F-distribution in R

− find the value of Fα,g−1,N−g:

qf(alpha, df1, df2, lower.tail = F),

− find the ANOVA p-value when knowing Fobs:

pf(Fobs, df1, df2, lower.tail = F).
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pF-distribution
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pPost-hoc ANOVA tests

� after performing ANOVA (and rejecting the null hypothesis)

− we only assume that there is some difference in group means,

� a post-hoc test identifies which particular groups stand behind the test out-
come,

� Tukey’s HSD (honest significant difference) test

− a t-test that controls for family-wise arror rate (FWER),

− compares all pairs of group means,

− identifies all pairs whose difference is larger than expected standard error,

− observed test statistics related to the studentized range distribution,

qobs =
ȳi. − ȳj.√
MSerror

n∗

∼ qg,N−g

− n∗ . . . number of observations per group (their harmonic mean if not equal),

− always positive, sort the means before its application.
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pANOVA extensions/alternatives

� up to now we talked about ANOVA that

− is parametric,

− deals with independent measurements,

− is one-way (with a single factor),

− concerns a single target variable only,

� other options

− non-parametric analysis (Wilcoxon test → Kruskal-Wallis analysis),

− compares all possible group means (repeated measures ANOVA, Friedman
test if non-parametric too),

− main effects ANOVA and factorial ANOVA,

− multivariate ANOVA (MANOVA).
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pMultivariate analysis of variance (MANOVA)

� p variables measured on each subject, objects categorized into g disjoint
groups.

� yijk . . . an observation for variable k from subject j in group i,

� yij . . . a vector of dependent variables for subject i in group i,

� assumptions

− the subjects are independently sampled,

− the data are multivariate normally distributed in each group,

− the data from all groups have common covariance matrix Σ,

− the data from group i has common mean vector µi of length p,

� the hypotheses of interest

− H0 : µ1 = µ2 = · · · = µg,

− Ha : µik 6= µjk for at least one i 6= j and at least one variable k.
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pAnalysis of variance (ANOVA)

� method

− the analogy of SStotal in ANOVA is a p× p cross products matrix T,

− similarly to ANOVA, it can be decomposed into the Error Sum of Squares
and Cross Products E, and the Hypothesis Sum of Squares and
Cross Products H.

T =

g∑
i=1

ni∑
j=1

(yij − ȳ..)(yij − ȳ..)
′ =

=

g∑
i=1

ni∑
j=1

{(yij − ȳi) + (ȳi − ȳ..)}{(yij − ȳi) + (ȳi − ȳ..)}′ =

=

g∑
i=1

ni∑
j=1

(yij − ȳi.)(yij − ȳi.)
′

︸ ︷︷ ︸
E

+

g∑
i=1

ni(ȳi. − ȳ..)(ȳi. − ȳ..)
′

︸ ︷︷ ︸
H

∗ ȳi. = 1
ni

∑ni
j=1 yij . . . sample mean vector for group i,

∗ ȳ.. = 1
N

∑g
i=1

∑ni
j=1 yij . . . grand mean vector of length p.
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pMultivariate analysis of variance (MANOVA)

� explanation of the elements of T, E and H

− the element tk,l is
g∑
i=1

ni∑
j=1

(yijk − ȳ..k)(yijl − ȳ..l)

− for k = l it is the total sum of squares for variable k, and measures the
total variation in the kth variable, for k 6= l, this measures the dependence
between variables k and l across all of the observations,

− the element ek,l is
g∑
i=1

ni∑
j=1

(yijk − ȳi.k)(yijl − ȳi.l)

− for k = l it is the error sum of squares for variable k, and measures the
within treatment variation for the kth variable, for k 6= l it measures
the dependence between variables k and l after taking into account the
treatment,
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pMultivariate analysis of variance (MANOVA)

� explanation of the elements of T, E and H

− the element hk,l is

g∑
i=1

ni(ȳi.k − ȳ..k)(ȳi.l − ȳ..l)

− for k = l it is the treatment sum of squares for variable k, and measures the
between treatment variation for the kth variable, for k 6= l, this measures
dependence of variables k and l across treatments.

� consequently, if the hypothesis sum of squares and cross products H is large
relative to the error sum of squares and cross products matrix E we wish to
reject H0.
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pMultivariate analysis of variance (MANOVA)

� Wilk’s lambda test statistics for MANOVA (several other statistics exist too)

− the determinant of the error matrix E is divided by the determinant of
the total matrix T = H + E, we will reject the null hypothesis if Wilk’s
lambda is small/close to zero as then H is large relative to E too.

Λ∗ =
|E|

|H + E|
− can also be computed using the eigenvalues λ̂ of E−1B (s = min(p, g−1))

Λ∗ =

s∏
i=1

1

1 + λ̂i

− the distribution of Λ∗ is not tractable, we can only have approximations,

− e.g., Bartlett’s approximation can be used if N is large

−
(
N − 1− p + g

2

)
lnλ∗ > χ2

p(g−1),α
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