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pOutline

� motivation, task definition,

� linear approaches such as PCA

− and its non-linearization: kernel PCA,

� distance preserving approaches

− multidimensional scaling,

− Isomap,

− locally linear embedding,

− tSNE,

� self-organizing maps

− a vector quantization approach,

− their relation to k-means clustering,
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pTask definition

� Input: X = {xi}mi=1 ⊂ X of dimension D (typically RD),

� assumed: X at least approximately lies on a manifold with d < D,

� output:

− a transformed space T of dimension L,

− dimensionality reduction mapping F : X → T ,

− reconstruction mapping f : T →M ⊂ X ,

� such that:

− L < D, L is as small as possible, at best L = d (the intrinsic dimension),

− the manifold approximately contains all the sample points

{xi}mi=1 ⊂∼ M
def
= f (T ),

− or alternatively, the reconstruction error of the sample is small

Ed(X)
def
=

m∑
i=1

d(xi, f(F(xi)).
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pManifold learning

:: Manifold

� a topological space that on a small enough scale resembles the Euclidean space,

� globally typically nonlinear,

:: Learning

� identify a manifold dimension (it is embedded in a space of a higher dimension),

� project the problem (objects) into the low dimensional space – nonlinear dimension reduction,

� linear analogy: PCA or factor analysis.

Cayton: Algorithms for Manifold Learning.
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pExample of a manifold and its mapping

� A spiral of radius R and step s

− 1D non-linear manifold in R3,

− no noise, the given f (t) guarantees zero reconstruction error.

Carreira-Perpinan: A Review of Dimension Reduction Techniques
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pIntrinsic dimension

� the number of variables that satisfactorilly describe the phenomenon/data,

� when estimated from data, it is a vague number, it depends on

− the minimum approximation quality criterion or alternatively,

− smoothness of the manifold,

� it does not have to be a natural number (can be e.g., 1.4, consider fractals).
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pMotivation

� Visualize the data and understand them (typically project into 2 or 3-D),

� compress the data to minimize storage and retrieval cost,

� identify hidden causes/latent variables that govern the process under study,

� learn in the lower-dimensional space

− possibly obtain better results with fewer training samples in shorter time,

− a lot of work has already been done during the projection.

Swiss roll 2D non-linear projection 2D linear projection
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pThe challenges of high-dimensional spaces

� The curse of dimensionality

− in the absence of simplifying assumptions, the sample size needed to estimate a function

with D variables to a given degree of accuracy grows exponentially with D,

� the geometry of high-dimensional spaces

− the empty space phenomenon,

− guess what is the ratio of the volumes of unit hypersphere and unit hypercube . . .
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pA brief review of PCA

� PCA could be seen as fitting a (hyper)ellipsoid to the data

− the new axes have the direction of the highest variance,

− they match the axes of the encapsulating/confidence ellipsoid.

� What happens in terms of covariances and redundancy?

− left image: σ2Y > σ2XY > σ2X ,

− right image: σ2P1 � σ2P2, σ
2
P1P2

= 0,

− in general, PCA diagonalizes the covariance matrix,

− in other words, PCA removes linear relationship (redundancy) between variables.
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pA brief review of PCA

� For X with zero centered variables
m∑
i=1

xi = 0

� the covariance matrix can be computed as follows

CX =
1

m

m∑
i=1

xixi
T =

1

m
XTX

� by definition, PCA constructs a space transformation matrix PD×D, such that

XP = T and CT is a diagonal matrix

� as P is not known, CT cannot be calculated and diagonalized directly,

� instead, CT can be expressed in terms of CX and P

CT =
1

m
TTT =

1

m
(XP)T (XP) =

=
1

m
PT (XTX)P = PTCXP
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pA brief review of PCA

� any real symmetric matrix is diagonalized by a column matrix of its eigenvectors E,

� CX is real and symmetric, it follows that

CX = EDET

� the only trick is to select P to be a matrix where each column pi is an eigenvector of CX

P = E

� we also know that any orthogonal matrix has the same inverse and transpose,

� the above-selected P is necessarily orthogonal

PTP = I⇒ P−1 = PT

� then, it is easy to show that P diagonalizes CT

CT = PTCXP = PT (EDET )P =

= (PTP)D(PTP) = (P−1P)D(P−1P) = D

� PCA is solved by finding the eigenvectors of CX.
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pA brief review of PCA

� what happens when D is large?

− consider images, the color of each pixel is a feature, megapixel resolution,

− large CX, unfeasible computation of its eigenvectors,

� provided that m is reasonable (m� D), we can employ the following trick,

� instead of the original eigenvector decomposition

1

m
XTXuk = λkuk

� we will consider

1

m
XXTvk = γkvk

� and multiply both sides by XT

1

m
XTXXTvk = γkX

Tvk

� it is obvious that the substitution XTvk = uk and γk = λk matches the original eigenvector

decomposition formula,

� PCA can be solved by decomposition of the m×m scalar-product matrix.
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pkernel PCA – the idea behind

� Introduce an intermediate feature space U
− X → U → T , U linearizes the original manifold.

http://www.research.rutgers.edu
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pWhy krenel in the method name?

� feature space transformation can capture non-linearity,

� a domain independent dimensionality reduction, only the transformation tuned for the domain

− explicit transformation

∗ get the object coordinates in the new feature space,

∗ traditional PCA in the new space,

∗ illustrative, but impractical,

− implicit transformation

∗ via similarity resp. kernel function K : X × X → R,

∗ purely a function of object pairs, no object coordinates in the new space,

∗ very natural for clustering, similarity/distance its essential part anyway,

∗ kernel trick analogy (SVM classification),

· an implicit high-dimensional space, classes potentially easily separable,

∗ very natural in clustering too, see kernel k-means later,

∗ kernel PCA – kernel matrix → diagonalize → a low-dimensional feature space.
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pkernel PCA

� We choose a (non-linear) feature space transformation

φ : X → U

� the transformation is implicit, we only know the kernel function

∀xi,xj ∈ X : K(xi,xj) := 〈φ(xi), φ(xj)〉 = φ(xi)
Tφ(xj)

� as with the PCA, we will assume the covariance matrix, now in the transformed space

CU =
1

m

m∑
i=1

φ(xi)φ(xi)
T

� note that the data are assumed to be centered
m∑
i=1

φ(xi) = 0

� similarly to PCA, we will find CU eigenvectors v to decorrelate variables in T

CUv = λv→ 1

m

m∑
i=1

φ(xi)φ(xi)
Tv = λv
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pkernel PCA

� φ(xi) are not available, we need to replace them by K,

� for λ ≥ 0, v’s are in the span of φ(xi),

� they can be written as linear combination of the object images

v =

m∑
i=1

αiφ(xi)

� we will substitute for v into the eigenvector formula (the last in the previous slide)

λ

m∑
j=1

αjφ(xj) =
1

m

m∑
i=1

φ(xi)φ(xi)
T

m∑
j=1

αjφ(xj)

� and use the trick to introduce the dot product, we will multiply by φ(xk)
T

λ

m∑
j=1

αjφ(xk)
Tφ(xj) =

1

m

m∑
j=1

αj

m∑
i=1

(φ(xk)
Tφ(xi))(φ(xi)

Tφ(xj))

� the kernel function replaces all the occurrences of φ, when iterating ∀ k = 1 . . .m we obtain

λKα =
1

m
K2α

� to diagonalize CT, we solve the eigenvalue problem for the kernel matrix

mλα = Kα
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pkernel PCA

� the last issue is to extract the principal components, the final object images,

� i.e., the projections of φ(xi) onto the eigenvectors in U

tik = vk
Tφ(xi) =

m∑
j=1

αjφ(xj)
Tφ(xi) =

m∑
j=1

αjK(xi,xj)

� note that both the intermediate factors vk and φ(xi) remain implicit!

Bishop: Pattern Recognition and Machine Learning, modified
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pRemarks on kernel PCA

� kernel PCA works for non-linear manifolds

− effectively compresses them,

� its complexity does not grow with the dimensionality of U

− one can work with a large number of components too, i.e., increase the dimension (L > D),

− in PCA L ≤ D

− it can pay-off in subsequent classification,

� kernel matrix K grows quadratically with the number of data points m

− for large data sets with small dimensionality (m� D) more expensive than PCA,

− one may need to (properly) subsample the data,

� from the optimization point of view cannot get trapped in local minima,

� unlike PCA cannot reconstruct objects from their principal components

− f is not available.
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pMultidimensional scaling (MDS)

� The main idea

− points close together in X should be mapped close together in T ,

� minimizes the stress function

stress(T, f ) =

√∑m
i,j=1(f (δij)− dij)2∑m

i,j=1 d
2
ij

− δij = dX (xi,xj), dij = dT (ti, tj) – typically Euclidean,

− f is a proximity transformation function (e.g., identity, monotonic → metric, ordinal),

� whole class of methods that differ in

− the method for calculation of proximities δ,

− the parametrization of stress function,

− the method that minimizes the stress function (e.g., gradient descent, Newton).
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pGeodesic distance

� What does Euclidean distance say about a non-linear manifold?

� We shall better preserve geodesic distance between points

− a minimum of the length of a path joining both points that is contained in the manifold,

− these paths are called geodesics,

� as a result, we unfold the manifold.

Carreira-Perpinan: A Review of Dimension Reduction Techniques
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pIsomap [Tenenbaum et al., 1998]

� Classical MDS with geodesic distance

(A) Euclidean vs geodesic distance to express intrinsic similarity in the input space,

(B) the neighborhood graph G (K = 5, m = 1000) and its shortest path (red) as an approxi-

mation to the true geodesic path,

(C) 2D embedding, which best preserves the shortest path distances in G, the straight lines in

the embedding (blue) represent simpler and cleaner approximations to the true geodesic

paths than do the corresponding graph paths.

Tenenbaum et al.: A Global Geometric Framework for Nonlinear Dimensionality Reduction
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pIsomap [Tenenbaum et al., 1998]

� The Isomap algorithm

− determine the nearest neighbors

∗ all points in a fixed radius or K-nearest neighbors,

− construct a neighborhood graph

∗ each point gets connected to its neighbors,

∗ edge length equals the Euclidean distance between the points,

− compute the shortest paths between all pairs of points

∗ Floyd’s or Dijkstra’s algorithm (O(m3) resp. O(Km2 log(m))),

∗ could be time consuming and result in a large non-sparse matrix,

∗ use quantization to compress the graph,

− construct a lower dimensional embedding

∗ use classical MDS.
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pIsomap [Tenenbaum et al., 1998]

� Isomap has provable convergence guarantees,

� given the infinite (sufficient) input data, the method perfectly recovers the original distances

− impractical concerning the next property,

− otherwise, the geodesic distance can overestimate the true distance,

� cubic complexity in the number of objects can be too much

− selection of M reference vectors can reduce the time to O(M 3),

− we have to guarantee that the manifold is uniformly sampled,

� finding a proper value of K is not easy

− too small/large K: insufficient graph/improper connections originate.

Swiss roll ideal projection Isomap outcome
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pLocally Linear Embedding (LLE) [Roweis, Saul, 2000]

� Remember: manifold is a topological space that is locally Euclidean

− we can locally fit (linear) models using Euclidean distance,

− when compiled they create a global model.

Roweis, Saul: Nonlinear Dimensionality Reduction by LLE.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � B4M36SAN



pLocally Linear Embedding (LLE) [Roweis, Saul, 2000]

� The LLE algorithm

− each data point and its neighbors lie close to a locally linear patch of the manifold,

− each point can be written as a linear combination of its neighbors,

− m local models, the weights chosen to minimize the reconstruction error

x̂i =
∑

j∈N (xi)

wijxj such that
m∑
i=1

||xi − x̂i||2 is minimized and
∑

j∈N (xi)

wij = 1

− the same weights should reconstruct the point in L dimensions

∗ the weights characterize the intrinsic geometric properties of each neighborhood,

− global embedding fits the positions ti in the low-dimensional space

∗ we minimize the embedding cost function, the weights are fixed

t̂i =
∑

j∈N (xi)

wijtj such that
m∑
i=1

||ti − t̂i||2 is minimized.
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pLocally Linear Embedding (LLE) [Roweis, Saul, 2000]

� The ultimate case of piecewise linear modelling

− approximation of the manifold by a combination of linear models,

− in here, we have a linear model for each object,

� a special case of kernel PCA constructing a data-dependent kernel matrix

− for some problems it is difficult to find a kernel for kernel PCA,

� advantages

− efficient for large datasets, optimization does not involve local minima,

− single parameter to tune (K),

− invariant to scaling, rotation and translation,

� disadvantages

− improper for representing future data,

− can be unstable in sparse areas of the input space,

− tends to collapse a lot of instances near the origin of T .
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pt-Distributed Stochastic Neighbor Embedding (t-SNE)

� distance preserving visualization technique [van der Maaten, 2008] (like e.g., MDS),

� puts emphasis on preserving small pairwise distances between objects,

� large distances allowed to be modelled as being larger,

� as a result, two essential characteristics

− the local data structures retained,

− ability to reveal global structure such as the presence of clusters at several scales.

PCA tSNE

van der Maaten: Visualizing Data Using t-SNE, GoogletechTalks
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pt-Distributed Stochastic Neighbor Embedding (t-SNE)

� The key ideas are in the design of the stress function driving gradient descent search

− convert Euclidean distances in both spaces into joint probabilities,

− pij in the original space X and qij in the reduced space T ,

− minimize their Kullback-Leibler divergence

S = KL(P ||Q) =
∑
i

∑
j 6=i

pij log
pij
qij

.

� The first “trick” lies in asymmetry of KL divergence

− large pij modeled by small qij → big penalty!

− small pij modeled by large qij → small penalty!

− tends to preserve large pij’s and thus small distances in the original space.
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pt-Distributed Stochastic Neighbor Embedding (t-SNE)

� The other “tricks” consist in definition of pij and qij

− the empirical probability that an object j is a neighbor of an object i

pj|i =
exp(−||xi − xj||2/2σi)∑
k 6=i(−||xi − xk||2/2σi)

− i.e., it is normally distributed wrt their distance (and decreases quickly with it),

− σi is the kernel bandwidth,

− σi is locally adjusted so that a fixed number of objects falls in mode of the Gaussian,

− the symmetric joint probability

pij =
pj|i + pi|j

2m
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pt-Distributed Stochastic Neighbor Embedding (t-SNE)

� In the reduced space T we permit higher probabilities for larger distances,

− the normal distribution used in pij turns into the heavy-tailed t-distribution in qij

qij =
(1 + ||ti − tj||2)−1∑
k 6=l(1 + ||tk − tl||2)−1

− in KL divergence, pij and qij shall agree as much as possible, but they may map to different

distances in both the spaces,

− as a result, a moderate distance in the high-dimensional space can be faithfully modeled

by a much larger distance in the map,

− the reduced map gets insensitive to distant points (they can be placed to many places

without big changes in qij).

Tails in normal and student distributions.
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pt-Distributed Stochastic Neighbor Embedding (t-SNE)

� The overall picture

− the gradient descent gradually minimizes the stress function for the individual objects

∂S

∂ti
∝

∑
j 6=i

(pij − qij)(1 + ||ti − tj||2)−1(ti − tj)

− all the other objects get connected via springs that are either stretched or compressed,

− the resultant summed force tells us where to move the point in every gradient update.
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pSelf-organizing map (SOM)

� unsupervised neural network producing a low dimensional (typically 2D) discretized map

− the map is composed of neurons,

− the neurons are mutually linked by a neighborhood relationship (e.g., make a grid),

− the neurons compete for the right to respond to the individual input objects,

� the map preserves the topology of the input space

− dimension reduction = the map from the position of the corresponding neuron in the input

space to its (discrete) position in the grid.

Borgelt: XSOM visualization

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � B4M36SAN



pSOM learning algorithm

1. Initialize weight vectors of all the neurons w0
i ∈ X (RD), ∀i = 1, . . . , N

� randomly or rather sample evenly from the subspace spanned by the largest principal com-

ponent eigenvectors,

2. resample the instance set X

� A: sample systematically, B: permute the instance set, C: randomly (bootstrap),

3. get the next instance xi ∈ RD from the resample,

4. find the best matching unit (BMU), i.e., the neuron nearest to xi,

5. change the weights of neurons in the neighborhood of BMU (including BMU)

wt+1
i = wt

i + αte
−
d(wti,BMU)

2(σt)2 (xi −wt
i)

� both the neighborhood size σt and the learning rate αt decrease in time,

� d is the distance in terms of the neighborhood relationship (e.g., the grid distance),

6. go to step 3 (or 2 when the sample is finished) until the given number of cycles is reached.
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pSOM learning algorithm – illustration
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pHow to visualize and interpret SOM?

� U-matrix (unified distance matrix)

− visualizes the distances between the neurons,

− dark color between a pair of neurons corresponds to a large distance of their weight vectors,

− light areas are candidate clusters while dark areas are interpreted as cluster separators.

Hollmen: U-matrix Wikipedia articles
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pRelation to k-means

� The same competitive learning principle

− the centroids/neurons compete for the right to respond to the individual input objects,

− k-means employs the winner takes all principle (only the nearest centroid wins),

− in SOM it is the BMU and its neighbors who win (for σ → 0 equal to k-means),

� The same vector quantization approach

− minimize the distance between objects and their representatives,

− k-means concerns the nearest centroid only, SOM deals with the whole neighborhood,

� The main difference lies in

− the most frequent way of using them (clustering versus dimensionality reduction),

− k corresponds to the number of clusters, the number of neurons typically much larger.

� SOM can be seen as constrained k-means.
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pSummary – dimensionality reduction, manifold learning

� Difficult problem namely for the curse of dimensionality

− huge sample sizes needed to guarantee reasonable parameter estimates,

non-empty neighborhoods, etc.,

− the intrinsic dimensionality estimation is not reliable,

� strong assumptions greatly simplify the task,

� the key role of PCA has not been undermined by any non-linear method yet

− they work for well-sampled smooth manifolds, but not necessarily for real data,

− besides the curse of dimensionality, the problems could be caused by insufficiency of ob-

jective functions or numerical problems during their optimization,

� there is a large pool of non-linear reduction methods,

� the key properties are effectivity and efficiency including convergence,

� other issues

− setting hyperparameters?

− implicit/explicit definition of F and f ,

− additivity – can I drop a coordinate from L mapping to obtain L− 1 mapping?
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pRecommended reading, lecture resources

:: Reading

� Jonathon Shlens: A Tutorial on Principal Component Analysis.

− Google research, 2014,

− http://arxiv.org/pdf/1404.1100.pdf,

� Scholkopf, Smola, Müller: Kernel Principal Component Analysis.

− Artificial Neural Networks, 1997,

− http://link.springer.com/chapter/10.1007/BFb0020217,

� Carreira-Perpinan: A Review of Dimension Reduction Techniques.

− Tech. report, University of Sheffield, 1997,

− http://www.pca.narod.ru/DimensionReductionBrifReview.pdf,

� van der Maaten, Hinton: Visualizing High-Dimensional Data Using t-SNE.

− Journal of Machine Learning Research 9(Nov):2579-2605, 2008,

− https://lvdmaaten.github.io/publications/papers/JMLR 2008.pdf.
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