
David Šišlák
david.sislak@fel.cvut.cz

Effec%ve	So*ware	

Lecture	11:	Memory	Management	in	JVM	–	Memory	Layout,	Garbage	Collectors	

11th	May	2017	 ESW	–	Lecture	11	 2	

Automa%c	Memory	Management	

»  advantages	over	explicit	memory	management	
•  no	crashes	due	to	errors	–	e.g.	usage	of	de-allocated	objects	
•  no	memory	leaks	

»  components	
•  applica%on	code	

–  allocaKon	
–  read/write	references	

•  garbage	collector	
–  discover	unreachable	objects		
(not	transiently	reachable		
from	roots	–	variables	and		
stack	operands	in	frames,		
staKc	fields,	special	naKve		
references	from	JNI)	

–  reclaim	storage	
	

11th	May	2017	 ESW	–	Lecture	11	 3	

Automa%c	Memory	Management	

»  desired	characteris/cs	
•  safety	–	never	reclaim	space	of	live	objects,	thread	safe	
•  throughput	–	applicaKon	code	performance	

–  allocaKon	performance	–	avoid	fragmentaKon	
–  handles	or	direct	references	
–  expensive	reference	counKng	or	cross-region	reference	tracking	

•  read/write	barriers	–	e.g.	added	compiled	code	
–  later	reads	affected	by	re-ordering	–	breaking	data	locality,	false	sharing	

•  completeness	and	promptness	
–  eventually	all	garbage	
–  promptness	of	reclamaKon	–	how	long	garbage	occupy	memory	

•  pause	%me	–	stop	the	world	(global	safe	point)	
•  space	overhead	

–  addiKonal	cost	per	size/reference	
–  double	heap	for	copying	

•  scalability	and	portability	-	mulKcore,	large	heaps	

11th	May	2017	 ESW	–	Lecture	11	 4	

Genera%onal	Concept	

»  genera%onal	hypothesis	
•  weak	–	most	objects	die	young	

–  there	exist	few	references	from	older	to	younger	objects	
•  strong	–	even	not	newly	created	object	dies	earlier	then	older	

»  segregate	objects	by	age	into	genera%ons	(JAVA	use	2	generaKons)	to	
minimize	pause	%me	
•  young	

–  small	size	
–  frequent	fast	minor		
collecKons	(milliseconds)	

•  tenured	
–  large	size	
–  rare	slow	full	collecKons	
(seconds)	

»  promoKon	of	objects	during	
minor	collecKons	

11th	May	2017	 ESW	–	Lecture	11	 5	

Iden%fy	Reachable	Objects	

»  reference	coun%ng	
•  addiKonal	counter	for	every	object	
•  a	lot	of	atomics	operaKons	to	have	it	thread-safe	

–  slow	down	applicaKon	code	
•  doesn’t	support	cyclic	references	
•  pollute	cache	a	lot	with	addiKonal	memory	operaKons	
•  can	remove	objects	when	counter	is	0	immediately	with	further	

decreasing	counts	on	reference	objects	

11th	May	2017	 ESW	–	Lecture	11	 6	

Iden%fy	Reachable	Objects	

»  reference	tracing	approach	
•  no	slow	down	of		applicaKon	code	
•  find	references	

–  root	in	frames	using	OopMaps		
•  compiled	maps	for	every	possible	global	safepoint	entry	
	
	

–  in	different	object	using	object	type	
•  reference	posiKons	in	klass		VM	structure	

•  marking	traverse	all	objects	from	roots		
–  depth-first	search,	breath-first	search	
–  dominates	collecKon	Kme	due	to	random	access	to	memory	

•  cache	prefetching	to	reduce	cost	
•  use	marks	to	avoid	cycles	

–  in	object	header	–	standard	writes	with	possible	parKal	re-traversal	
–  side	bitmaps	(1	bit	for	64	bits)	–	improving	cache	operaKons,	atomics	

11th	May	2017	 ESW	–	Lecture	11	 7	

Iden%fy	Reachable	Objects	–	Reference	Tracking	

		

11th	May	2017	 ESW	–	Lecture	11	 8	

Collector	Design	Architecture	

»  serial	vs.	parallel	
»  concurrent	vs.	stop	the	worlds	
»  compacKng/sliding	vs.	non-compacKng	vs.	copying	

Serial Parallel CMS Garbage-First

11th	May	2017	 ESW	–	Lecture	11	 9	

Collector	Design	Architecture	

		

-XX:+UseG1GC

G1	

11th	May	2017	 ESW	–	Lecture	11	 10	

Parallel	Collector	

»  JVM	heap	layout	supporKng	adapKve	resizing	(virtual	has	no	physical	pages)	

»  max	heap	size	(virtual	space	allocated)	–Xmx	
•  default	¼	RAM	up	to	32	GB	if	there	is	>=128	GB	RAM	

»  ini%al	heap	size	(really	allocated)	–Xms	
•  default	1/64	RAM	up	to	1	GB	if	there	is	>=128	GB	RAM	

»  young	vs.	tenured	raKo	–XX:NewRaKo=<n>		
•  default	2	–	thus	tenured	is	2x	larger	than	young	

»  survivor	spaces	vs.	eden	raKo	–XX:SurvivorRaKo=<n>	
•  default	8	–	thus	eden	is	8x	larger	than	one	survivor	space	

Te
nu

re
d

al
lo

ca
te

d

lo
w

 a
dd

re
ss

hi
gh

 a
dd

re
ss

11th	May	2017	 ESW	–	Lecture	11	 11	

Parallel	Collector	

»  object	alloca%ons	
•  in	TLAB	inside	eden	-	no	space	in	TLAB	lef,	new	TLAB	allocated	
•  in	eden	directly	for	objects	larger	than	TLAB	
•  tenured	directly	for	objects	larger	than	eden	

»  minor	collec%on	–	parallel	scavenge	
•  triggered	when	no	space	for	new	TLAB/object	in	eden	
•  collecKon	in	young	generaKon	only,	promote	to	survivor	or	tenured		
•  results	into	clean	eden,	swap	of	survivor	spaces	(one	empty)	

»  full	collec%on	–	parallel	mark	compact	
•  triggered	when	there	is	no	space	for	promoKon	or	new	object	in	tenured	
•  collecKon	in	young	and	tenured	generaKons	
•  results	into	completely	clean	young	(eden,	both	survivor	spaces)	

11th	May	2017	 ESW	–	Lecture	11	 12	

Remembered	Set	

»  track	tenured-to-young	references	
»  speed-up	frequent	idenKficaKon	of	reachable	objects	for	minor	collec%on	

•  marking	starts	from	roots	and	references	tenured-to-young	
•  do	not	traverse	objects	out	of	young	generaKon	

–  bit	operaKons	using	generaKon	size	2n	
»  used	for	later	update	of	references	to	relocated	objects	

red	–	tenured-to-young,	blue	–	to	old	(don’t	need	trace	during	minor	collec/on)	

11th	May	2017	 ESW	–	Lecture	11	 13	

Card	Table	Compressed	Remembered	Set	

»  whole	heap	divided	to	512	Bytes	chunks	(8	cache	lines	of	64	Bytes)	
•  each	chunk	has	one	card	table	slot	

»  thread-safe	card	table	is	Byte	based	
•  avoid	expensive	atomic	read-update-write	for	bit	operaKons	
•  standard	byte	writes		

–  dirty	(0)	–	possibly	contain	reference	to	young	(has	false	posiKve)	
–  clean	–	cannot	contain	reference	to	young	(no	false	negaKves)	

•  100	GB	heap	=>	200	MB	card	table	(<0.2%)	
–  one	cache	line	holds	cards	for	32kB	of	heap	

»  write	reference	to	object	imply	assembly	code	write	barrier	
•  no	tracking	for	null	writes	or	reference	writes	in	newly	allocated	
•  track	standard	object	start	address	
•  track	real	element	address	for	na%ve	reference	arrays	
•  imprecise	but	very	fast	without	any	condiKon	

–  cards	for	young,	all	reference	writes	

CARD_TABLE[object address >> 9] = 0;

CARD_TABLE[array slot address >> 9] = 0;

11th	May	2017	 ESW	–	Lecture	11	 14	

Card	Table	Compressed	Remembered	Set	–	Write	Barriers	

write	non-null	reference	in	RAX	to	standard	object	at	R11,	standard	oop,	64-bit:	
	
	
	
	
write	non-null	reference	in	RAX	to	array	at	R10	index	EBP,	standard	oop,	64-bit:	
	

store reference in RAX to the first field in object

compute card offset from obj. start (R11) directly
card table start address to R9
store dirty to card table

Native Object array structure
standard OOP, 64-bit:

mark word

Klass ref.

0x00:

0x10:

0x20:

array length empty padding

object reference on index 0

object reference on index 1

. .
 .

count address of slot in array to R11

store reference in RAX to array slot
compute card offset from slot address (R11)
card table start address to R9
store dirty to card table

11th	May	2017	 ESW	–	Lecture	11	 15	

Card	Table	Compressed	Remembered	Set	–	Write	Barriers	

»  no	op%miza%on	for	mulK	reference	writes	to	the	same	object	(which	is	fast	
due	to	already	cached	part	of	card	table)	
•  object	can	overlap	over	chunk	boundary	

»  false	sharing	in	contended	mulK-thread	writes	(even	worse	on	mulK-CPU)	
•  64B	cache	line	implies	sharing	of	cards	for	32kB	(64*512)	
•  speed-up	with	condi%onal	card	table	updates	(–XX:+UseCondCardMark)	

–  for	highly	contended	reference	writes	up	to	7	Kmes	faster		

if (CARD_TABLE [address >> 9] != 0) CARD_TABLE [address >> 9] = 0;

11th	May	2017	 ESW	–	Lecture	11	 16	

Minor	Collector	–	Parallel	Scavenge	

»  known	also	as	throughput	garbage	collector	
»  currently	default	for	Oracle	JVM	
»  uKlize	more	cores/CPUs	(-XX:ParallelGCThreads=<N>)	

•  default	#HW	threads	for	<=	8	
•  3+5/8	of	#HW	threads	otherwise	(e.g.	13	for	16	threads)	

»  stop-the-world	manner	
»  copying	with	survivor	spaces	(“from”	and	“to”,	swapped)	

•  relocate	reachable	objects	in	young	generaKon	to	“to”	survivor	
–  if	no	space,	relocate	them	to	old	(or	trigger	full	collecKon)	

•  eden	and	from	survivor	space	is	empty	afer	minor	collecKon	
	

»  parallel	processing	of	task	queue	iniKally	filled	with	
•  add	stripes	of	cards	for	scanning	for	old-to-young	references	(only	allocated)	
•  add	JNI	handles	and	VM	internals	
•  add	frames	from	stacks		
•  add	staKc	references	

11th	May	2017	 ESW	–	Lecture	11	 17	

Minor	Collector	–	Scan	Tenured	for	References	to	Young	

	
	
	
	
	
	
	
»  crossing	map		-	Byte	per	512	Bytes	chunk	like	card	table,	for	tenured	only	

•  updated	during	allocaKon/promoKon	of	object	and	full	collecKon	
•  speed-up	search	for	object	start	

N>0	object	start	offset	in	align	posiKons	of	the	last	object	in	the	card		
N<0	object	start	offset	start	–N	cards	back	or	the	there	is	the	next	–N	

»  clean	cards	before	DFS	queuing	of	processing	of	addresses	of	old-to-young	refs	
•  already	forwarded	objects	are	updated	immediately	without	queuing	
•  -XX:PrefetchScanIntervalInBytes=576	(9	cache	lines)	

25 qwords 51 qwords

11th	May	2017	 ESW	–	Lecture	11	 18	

Minor	Collector	–	Process	Address	of	–to-Young	Reference	

»  target	is	already	marked/forwarded	–	mark	word	(forwarding	address	|	0b11)	
•  update	reference	to	forwarding	address	

»  target	not	marked	yet	
•  current	age	<	tenuring	threshold	

–  copy	object	to	“to”	survivor	using	32k	PLAB	(-XX:YoungPLABSize=4096)	
•  older	or	no	space	in	young	

–  copy	object	to	tenuring	using	8k	PLAB	(-XX:OldPLABSize=1024)	
•  mark	previous	object	with	forwarding	address	using	CAS	

–  failed	–	de-allocate	back,	read	other	thread	forwarding	address	
–  success	

•  for	forwarding	in	young	update	age	of	new	object	
•  DFS	queuing	of	processing	of	object’s	addresses	of	old-to-young	refs	

•  update	reference	to	forwarding	address	

Note:	all	reference	changes	update	card	table	if	in	“to”	survivor	
											all	PLAB	or	object	re-allocaKons	are	NUMA	aligned	to	speed-up	collecKon	

11th	May	2017	 ESW	–	Lecture	11	 19	

Full	Collector	–	Parallel	Mark	Compact	

»  default	for	Oracle	JVM	
»  stop-the-world	manner	
»  mulKple	threads	as	parallel	scavenge	
»  tenured	generaKon	logically	divided	into	fixed-size	regions		
»  use	sliding	compac%on	-	clean	eden	and	both	survivors	as	well	

•  doesn’t	need	addiKonal	memory,	but	is	slower	than	copying	
»  parallel	mark	phase	

•  iniKated	with	all	roots	(not	using	card	table)	
•  track	all	reference	not	just	those	targeKng	to	young	
•  info	about	reachable	objects	(locaKon	&	size)	are	propagated	to		

corresponding	region	data	

11th	May	2017	 ESW	–	Lecture	11	 20	

Full	Collector	–	Parallel	Mark	Compact	

»  serial	summary	phase	
•  idenKfy	density	of	regions	(due	to	previous	compacKons,	older	objects	

should	be	on	the	lef,	younger	to	right	side)	
•  find	from	which	region	(starKng	from	the	lef	side)	it	has	sense	to	do	

compacKon	regarding	recovered	from	a	region	
–  dense	prefix	–	lef	regions	which	are	not	collected	

•  calculate	new	locaKon	of	each	live	data	for	each	regions;	most	right	
regions	will	fill	most	le*	ones;	pretend	data	locality	keeping	their	order	

11th	May	2017	 ESW	–	Lecture	11	 21	

Full	Collector	–	Parallel	Mark	Compact	

»  parallel	compac%on/sweeping	phase	
•  divide	regions	with	some	targets	(start	of	objects)	
•  each	thread	first	compact	the	region	itself	and	fill	it	by	designated	right	

regions	
–  all	references	are	updated	based	on	summarized	data	(read	only)	
–  crossing	map	is	updated	to	track	the	last	object	start	in	chunk	

•  no	synchroniza/on	needed,	only	one	thread	operate	per	each	region	
•  update	root	references	and	clean	empty	in	parallel	
•  finally	heap	is	packed	and	large	empty	block	is	at	the	right	end	

11th	May	2017	 ESW	–	Lecture	11	 22	

Full	Collector	–	Parallel	Mark	Compact	

»  support	strong	genera%onal	hypothesis	-	even	not	newly	created	object	
dies	earlier	then	older	
•  the	objects	with	highest	probability	to	survive	are	located	on	the	lef	

side	(because	of	previous	GC	runs)	
•  dense	prefix	completely	avoid	their	costly	copying	
•  50%	of	full	collecKon	work	reclaim	82%	of	garbage	
•  reclaim	of	addiKonal	18%	of	garbage	cost	as	much	as	previous	work	

»  dense	prefix	is	adapKvely	updated	
•  considering	used	to	total	heap	raKo	
•  affects	pause	Kme	of	full	collecKon	

»  afer	full	collecKon	
•  whole	young	is	empty	
•  card	table	is	cleaned	(there	are		

no	references	to	young)	

11th	May	2017	 ESW	–	Lecture	11	 23	

Parallel	Collector	-	Ergonomics	

»  adap%ve	mechanism	resizing	generaKons	(-XX:+UseAdapKveSizePolicy)	
•  max	pause	%me	goal	(-XX:MaxGCPauseMillis=<undef>)	

–  if	not	met	-	shrink	generaKon	size	where	the	pause	Kme	is	longest	and		
at	least	above	the	goal	

•  throughput	goal	(-XX:GCTimeRaKo=99)	–	applied	when	previous	is	met	
–  if	not	met	–	increase	both	generaKons	

•  young	increased	according	to	its	Kme	porKon	in	total	Kme	
•  minimum	footprint	goal	–	applied	if	all	previous	are	met	

–  shrink	heap	size	
	
-XX:YoungGeneraKonSizeIncrement=20	;	-XX:TenuredGeneraKonSizeIncrement=20	
-XX:AdapKveSizeDecrementScaleFactor=4	(default	20%)	
-XX:YoungGeneraKonSizeSupplement=80		(similar	for	tenured)	
-XX:YoungGeneraKonSizeSupplementDecay=8	(8	Kmes	added)	
-XX:TenuredGeneraKonSizeSupplementDecay=2	(2	Kmes	added)	

11th	May	2017	 ESW	–	Lecture	11	 24	

Garbage	First	Collector	

»  dynamic	genera%onal	collector	called	G1GC	(-XX:+UseG1GC)	
»  concurrent	collector	for	large	heaps	(replacement	for	older	CMS)	
»  whole	heap	divided	into	regions	(by	def.	to	be	close	2048	regions	1-32MB)	
»  no	explicit	separaKon	between	generaKons,	only	regions	are	mapped	to	

generaKonal	spaces	(generaKon	is	set	of	regions,	changing	in	Kme)	

»  set	of	regions	defines	
»  young	generaKon	
»  tenured	generaKon	

»  compacKng	->	enables	bump-the-pointer,	TLABs,	uses	CAS	
»  copying	=	copy	live	from	a	region	to	an	empty	region	
»  keep	Humongous	regions	(sequence)	for	objects	>=50%	regions	size	
»  maintain	list	of	free	regions	for	constant	Kme	

11th	May	2017	 ESW	–	Lecture	11	 25	

Garbage	First	Collector	

»  ac%vi%es	in	garbage	first	collector	
•  parallel	with	global	safe	point	

–  minor	collecKon	
•  iniKal	mark	

–  mixed	collecKon	
–  full	collecKon	

•  concurrent	with	mulKple	threads	
–  remember	set	refinement	
–  scanning	
–  marking	
–  clean-up	

»  major	speed-up	is	that	fast	copying	collecKon	applied	incrementally	to	tenured		
•  requires	more	heap	than	parallel	due	to	concurrent	acKviKes	

»  poor	handling	of	larger	objects	(humongous	objects)	
»  not	NUMA	aware	
»  proposed	to	be	default	in	JVM	9	

11th	May	2017	 ESW	–	Lecture	11	 26	

Garbage	First	Collector	–	Remember	Set	

»  track	references	into	a	region	
•  ignore	null	and	inter-region	references	
•  old-to-young	and	old-to-old	

»  addiKonal	structures	with	~5%	heap	overhead	
»  use	per-region-table	(PRT)	with	card	table		

updated	asynchronously	using	
update	thread	log	buffers	
•  processed	by	refinement	threads	

-XX:G1ConcRefinementThreads=<n>	(max	threads)	
•  filled	by	compiled	write	barrier	(pseudo	code	shown	for	simplificaKon)	

-XX:+G1SummarizeRSetStats	-XX:G1SummarizeRSetStatsPeriod=1	

log2 of region size (1MB)

11th	May	2017	 ESW	–	Lecture	11	 28	

Garbage	First	Collector	–	Minor	and	Mixed	Collec%on	

»  stop-the-world	approach	with	parallel	threads	
»  triggered	when	no	more	allocaKon	in	Young	regions	possible	
»  collec%on	set	(CSet)	

•  eden	and	from	survivor	regions	for	pure	minor	collec%on	
•  eden,	from	survivor	and	candidate	tenured	regions	for	mixed	collec%on	

»  reachable	objects	idenKfied	from	roots	+	Rset	for	the	regions	+	card	table	
»  reachable	objects	are	copied	(from	eden	and	survivor	regions)	into	one	or	

more	new	survivor	regions	
•  using	forwarding	address	with	marking	similar	to	parallel	scavenge	

»  if	aging	threshold	is	met	=>	promoted	into	tenured	regions	(opKonally	new)	

11th	May	2017	 ESW	–	Lecture	11	 29	

Garbage	First	Collector	–	Concurrent	Phase		

»  triggered	by	heap	occupancy	percent		(-XX:IniKaKngHeapOccupancyPercent=45)	
»  outcomes	

•  candidate	tenured	regions	with	a	lot	of	garbage	for	mixed	collecKon	
•  cleanup	completely	empty	tenured	regions	

»  ini%al	mark	–	done	right	afer	minor	collecKon	uKlizing	global	safe	point	
•  snapshot-at-the-beginning	(SATB)	

»  concurrent	phases	(-XX:ConcGCThreads=<n>)	
•  scan	roots	–	minor	GC	is	prohibited		

(if	needed	=>	global	safe	point)	
•  marking	and	region-based	sta/s/cs	collec/on	

–  can	be	interrupted	by	minor	GC	
–  pre-write	barrier	keeps	previous	reference	in	SATB	

•  re-marking	afer	minor	GC	and	final	marking	
–  right	afer	the	next	minor	collecKon	uKlizing		
modificaKons	in	card	tables	

•  final	output	(cleanup	+	candidates)	

11th	May	2017	 ESW	–	Lecture	11	 30	

Garbage	First	Collector	–	Full	Collec%on	

»  mulKphase	full	tracking	with	compact	of	all	regions	during	global	safe	point	
»  triggered	by	

•  concurrent	mode	failure	–	tenured	fill-up	before	concurrent	complete	
–  increase	heap,	decrease	trigger	threshold,	more	concurrent	threads	

•  promo%on	failure	–	mixed	collecKon	but	run-of	space	in	tenured	
–  trigger	sooner	

•  evacua%on	failure	–	minor	collecKon	has	no	more	space	for	promoKon	
–  increase	heap	

•  humongous	alloca%on	failure	–	no	space	for	large	objects	
–  avoid	large	objects	(>50%	of	region	size)	
–  increase	region	size	(alternaKvely	increase	heap)	

11th	May	2017	 ESW	–	Lecture	11	 31	

Garbage	First	Collector	–	Humongous	Objects	

»  objects	larger	than	½	of	the	region	are	considered	as	humongous	
•  with	1MB	region	it	is	just	500kB	->	there	can	be	a	lot	of	such	objects	

»  alloca%on	
•  check	concurrent	trigger	and	opKonally	start	concurrent	marking	
•  one	set	of	humongous	regions	contain	just	one	such	object	

–  waste	up	to	region	size	–	1		+	allocated	out	of	Young	generaKon	
•  not	having	sequence	of	free	regions	for	allocaKon	of	a	object	trigger	

expensive	full	collec%on	
»  reclama%on	of	non-reachable	during	(compacted	during	full	collecKon	only)	

•  cleanup	phase	of	concurrent	cycle	
•  full	collecKon	

»  debug	humongous	allocaKons	
•  -XX:+UnlockExperimentalVMOpKons	–XX:G1LogLevel=finest		

–XX:+PrintAdapKveSizePolicy	
•  use	Java	Flight	Recorder	in	Java	Mission	Control	

–  all	allocaKons	tracked	in	runKme	rouKnes	like	TLAB	allocaKons	

11th	May	2017	 ESW	–	Lecture	11	 32	

Garbage	First	Collec%on	–	Tuning	Op%ons	J	

		

11th	May	2017	 ESW	–	Lecture	11	 33	

Conclusion	

		

