
David Šišlák
david.sislak@fel.cvut.cz

Effec%ve	So*ware	

Lecture	6:	Non-blocking	I/O,	C10K,	efficient	networking	

10th	April	2017	 ESW	–	Lecture	6	 2	

Network	Communica%on	–	OSI	Model	

		

10th	April	2017	 ESW	–	Lecture	6	 3	

Network	Communica%on	–	Example	

		

10th	April	2017	 ESW	–	Lecture	6	 4	

Network	Communica%on	–	Introduc%on	

	
»  ports	–	16-bit	number	
»  IPv4	–	32-bit	address	
»  IPv6	–	128-bit	address	(

•  48-bit	or	more	rouNng	prefix,	16-bit	or	less	subnet	id,	64-bit	interface	
	 	hRp://[1fff:0:a88:85a3::ac1f]:8080/index.html	

	
»  TCP/UDP	connecNon	idenNficaNon	–	quad	–	src	IP,	src	port,	dst	IP,	dst	port	

10th	April	2017	 ESW	–	Lecture	6	 5	

C10k	Problem	

»  handling	a	large	number	of	clients	(10	000s)	at	the	same	Nme	(late	90s)	
•  concurrent	connec%ons	at	one	server	requiring	efficient	scheduling	
•  not	related	to	requests	per	second	

»  someNme	known	as	C1M	or	C10M	problem	(nowadays)	
»  approach	

•  don’t	use	threading	servers	like	Apache	
–  each	connecNon	handled	by	own	thread/process	(pooled	but	limited)	
–  connecNon	operaNons	usually	use	blocking	operaNons	
–  thread	scheduling	doesn’t	scale	(+cost	for	thread	context	switching)	
–  thread	scheduling	used	as	packet	scheduling	

•  use	event-driven	I/O	servers	like	Nginx	
–  do	packet	scheduling	yourself	–	single-threaded	event	loop	
–  using	non-blocking	(asynchronous)	operaNons	with	event	interceptors	
–  mul%-core	scalability	with	controlled	number	of	worker	threads	
–  reuse	thread-based	data	structures,	avoid	locks	(atomics,non-blocking)	

10th	April	2017	 ESW	–	Lecture	6	 6	

Threads	

»  processes	vs.	threads	
•  both	support	concurrent	execuNon	
•  one	process	has	one	or	mulNple	threads	
•  threads	share	the	same	address	space	(data	and	code)	
•  context	switching	between	threads	is	usually	less	expensive	
•  thread	inter-communicaNon	is	relaNvely	efficient	using	shared	

memory	
»  JVM	

•  a	thread	executes	sequence	of	code	with	own	stack	with	frames	
	 	 	 	t.getStackTrace()	

•  own	local	variables	
•  own	method	parameters	

»  thread	creaNon	by	
•  subclass	of	java.lang.Thread	
•  implementaNon	of	java.lang.Runnable	

10th	April	2017	 ESW	–	Lecture	6	 7	

JAVA	Thread	Pool	-	ExecutorService	

»  concept	of	thread	pooling	since	1.5	
»  suitable	for	execuNon	of	large	number	of	asynchronous	tasks	

•  e.g.	processing	of	requests	in	server	
»  reduce	overhead	with	Thread	creaNon	for	each	task,	context	switching	
»  interface	-	java.uNl.concurrent.ExecutorService	

•  shutdown(),	shutdownNow(),	awaitTerminaNon	
•  execute(Runnable	r)	
•  Future<?>	submit(Runnable	r),	Future<T>	submit(Callable<T>	c)	

»  java.uNl.concurrent.Future<T>	
•  boolean	cancel(boolean	mayInterruptIfRunning)	
•  isCancelled(),	isDone()	
•  V	get(),	V	get(long	Nmeout,	TimeUnit	unit)	

»  java.uNl.concurrent.Executors	(opNonally	with	ThreadFactory)	
•  newSingleThreadExecutor()	
•  newFixedThreadPool(nThreads)	
•  newCachedThreadPool()	–	default	60	seconds	keep-alive	

10th	April	2017	 ESW	–	Lecture	6	 8	

Non-Blocking	I/O	Approach	

»  polling	
•  looping	to	check	status	polling	
•  wastes	CPU	cycles	

»  signals	
•  OS	generated	interrupts	
•  might	leave	other	processes	inconsistent	

»  callbacks	
•  pointer	to	funcNon	
•  stack	deepening	issue	(callback	issuing	I/O)	

»  interrupts	
•  hardware	interrupts	in	kernel	mode	

»  event-based	
•  see	the	next	slide	

10th	April	2017	 ESW	–	Lecture	6	 9	

Event-Based	I/O	on	Descriptor	at	OS	level	

»  all	following	are	system	calls	allowing	waiNng	for	mulNple	events	
»  select	

•  defined	in	POSIX	(Portable	OperaNng	System	Interface)	
•  originally	used	for	blocking	I/O	
•  passed	lists	of	descriptors	cannot	be	reused	in	subsequent	calls	as	

they	are	modified	by	the	system	call	
•  not	scalable	–	limited	descriptors	+	iterate	over	to	find	the	event	

»  poll	
•  polled	descriptors	not	limited	
•  descriptors	can	be	reused	
•  beRer	but	you	sNll	need	iterate	over	descriptors	to	find	events	

»  epoll	
•  Linux	only	(Windows	has	IOCP	–	IO	CompleNon	Ports)	
•  scalable	
•  monitored	events	can	be	modified	while	polling	(via	syscall)	
•  returns	triggered	events	directly	

10th	April	2017	 ESW	–	Lecture	6	 10	

Epoll	

»  API	
•  epoll_create	&	epoll_create1	–	iniNalize	epoll	instance	
•  epoll_ctl	–	add/modify/remove	descriptors	to	epoll	instance	
•  epoll_wait	–	wait	for	events	up	to	Nmeout	

»  modes	
•  level	triggered	–	wait	always	returns	if	event	is	available	
•  event	triggered	(EPOLLET)	–	readiness	returned	upon	incoming	event	only	

	(you	have	to	process	all	pending	events	before	next	wait	!)	
»  events	

•  EPOLLIN,	EPOLLOUT,	EPOLLPRI		
•  EPOLLRDHUP,	EPOLLHUP	
•  EPOLLERR	

10th	April	2017	 ESW	–	Lecture	6	 11	

Epoll	Usage	

	epoll	structure:	

	
	
iniNalizaNon:	

10th	April	2017	 ESW	–	Lecture	6	 12	

Epoll	Event	Loop	

		

10th	April	2017	 ESW	–	Lecture	6	 13	

JAVA	Networking	

»  java.net	package	
»  addressing	

•  InetAddress,	InetSocketAddress	
»  UDP	

•  DatagramPacket	
•  DatagramSocket	
•  MulNcastSocket	

»  TCP	
•  Socket	
•  ServerSocket	
•  URL	
•  URLConnecNon,	HRpURLConnecNon	

10th	April	2017	 ESW	–	Lecture	6	 14	

JAVA	Networking	

»  InetAddress	
•  get	by	name	-	InetAddress	InetAddress.getByName(“google.com”)	
•  get	by	address	-	InetAddress	InetAddress.getByAddress(byte	ip[])	
•  get	special	-	InetAddress	InetAddress.getLocalHost()	

»  InetSocketAddress	
•  IP	with	port	–	complete	address	
•  new	InetSocketAddress(ia,	port)	
•  InetSocketAddress.createUnresolved(“www.google.com”,	80)	
•  nonspecified	address,	automaNc	port	–	new	InetSocketAddress(0)	

»  NetworkInterface	
•  NetworkInterface.getAll(),	NetworkInterface.getByName(“eth0”)	
•  methods	

–  getDisplayName(),	getHardwareAddress(),	getInetAddresses()	

10th	April	2017	 ESW	–	Lecture	6	 15	

JAVA	Networking	–	TCP	Client	

»  Socket	
•  end-point	of	network	TCP/IP	connecNon	
•  is	bound	to	parNcular	desNnaNon	IP	and	port	
•  each	TCP/IP	connecNon	is	uniquely	idenNfied	by	its	two	end-points	
•  provides	input/output	streams	

10th	April	2017	 ESW	–	Lecture	6	 16	

JAVA	Networking	–	TCP	Server	

»  ServerSocket	
•  special	socket	represenNng	listening	TCP/IP	end-point	
•  within	constructor	you	specify	the	port,	and	opNonally	IP	where	it	has	

to	be	bound	
•  wait	for	establishing	connecNon	using	method	Socket	accept()	

10th	April	2017	 ESW	–	Lecture	6	 17	

JAVA	Networking	–	TCP	Server	-	Example	

threading	server	example	–	each	handler	runs	in	own	thread	with	blocking	I/O	

10th	April	2017	 ESW	–	Lecture	6	 18	

JAVA	Networking	-	UDP	

»  DatagramPacket	
•  independent,	self-contained	message	sent	over	the	network	
•  like	packet	

–  InetAddress	address,	int	port	–	desNnaNon	
–  byte	data[],	int	length,	int	offset	
–  SocketAddress	sa	–	sender	

»  DatagramSocket	
•  sending	or	receiving	point	for	a	packet	delivery	service	
•  can	be	bound	to	any	available	port	(using	default	constructor)	
•  connect(InetAddress,int)	–	can	sent	or	receive	packets	only	specified	

host,	if	not	set	in	DatagramPacket	automaNcally	fill	
•  send(DatagramPacket	p),	receive(DatagramPacket	p)	–	blocking	IO	

»  Mul%castSocket	
•  addiNonal	capabiliNes	for	joining/leaving	mulNcast	groups,	loopback	
•  mulNcast	IP	(IGMP	–	Internet	Group	Management	Protocol)	

224.0.0.0	–	239.255.255.255	

10th	April	2017	 ESW	–	Lecture	6	 19	

JAVA	Networking	-	NIO	

»  scalable	I/O	–	asynchronous	I/O	requests	and	polling	
»  high-speed	block-oriented	binary	and	character	I/O	working	–	including	

mapping	files	to	the	memory,	using	channels	and	selectors	

»  Channel	is	like	a	bit	stream	working	Buffers	

10th	April	2017	 ESW	–	Lecture	6	 20	

JAVA	–	NIO	-	Buffer	

»  java.nio.Buffer	
•  linear,	finite	sequence	of	elements	of	a	specific	primiNve	type	

–  ByteBuffer,	CharBuffer,	DoubleBuffer,	FloatBuffer,	IntBuffer,	
LongBuffer,	ShortBuffer,	MappedByteBuffer	{FileChannel.map(…)}	

•  not	thread	safe,	mul%	mode	for	the	same	buffer	(read,	write)	
•  key	properNes	–	0	<=	mark	<=	posiNon	<=	limit	<=	capacity	

–  capacity	–	numbers	of	elements,	never	changing	!	
–  limit	–	index	of	the	first	element	that	should	not	be	read	or	wriRen	
–  posiNon	–	index	of	the	next	element	to	be	read	or	wriRen	
–  mark	–	index	to	which	its	posiNon	is	set	ayer	reset()	

•  clear()	–	posiNon=0,	limit=capacity	=>	ready	for	channel	read	(put)	
•  flip()	–	limit=posiNon,	posiNon=0	=>	ready	for	channel	write	(get)	
•  rewind()	–	limit	unchanged,	posiNon=0	=>	ready	for	re-reading	
•  mark()	–	mark	=	posiNon	
•  reset()	–	posiNon=mark	

10th	April	2017	 ESW	–	Lecture	6	 21	

JAVA	–	NIO	-	Buffer	

»  write	mode	–	channel.read(buf);	buf.put(…);	
»  read	mode	–	channel.write(buf);	…	buf.get();	

10th	April	2017	 ESW	–	Lecture	6	 22	

JAVA	–	NIO	-	Buffer	

»  java.nio.Buffer	
•  isReadOnly()	–	can	be	read-only	
•  hasArray()	–	is	backed	by	an	accessible	array	(array())	
•  equals(),	compareTo()	–	compare	remainder	sequence		

•  can	be	allocated	to	na%ve	memory	(see	next	slide)	

•  typical	usage	

Note:	compact()	–	bytes	between	posiNon	and	limit	are	copied	to	the	
beginning	of	the	buffer.		

10th	April	2017	 ESW	–	Lecture	6	 23	

JVM	–	Memory	Layout	–	Na%ve	Memory	

		

native memory

JNI

native
NIO
buffers

10th	April	2017	 ESW	–	Lecture	6	 24	

JVM	–	NIO	-	Direct	Buffers	

»  ByteBuffer.allocateDirect(…)		
»  stored	out	of	JAVA	heap	in	na%ve	memory	
»  allow	naNve	code	and	Java	code	to	share	data	without	copying		

•  useful	for	file	and	socket	
–  the	same	memory	is	passed	to	kernel	during	calls	

»  mulNple	buffers	can	share	naNve	memory	
•  slice()/duplicate()	–	independent	posiNon,	limit,	mark,	shared	content	
•  asReadOnlyBuffer()	–	read	only	view	of	shared	content	

»  tuning/tracking	
•  	-XX:MaxDirectMemorySize=N	(default	unlimited)	
•  	-XX:NaNveMemoryTracking=off|summary|detail	
•  	-XX:+PrintNMTStaNsNcs	

Note:	usage	of	heap	buffers	implies	content	copy	out/in	Java	heap	space	due	
to	possible	relocaNons	by	GC		

10th	April	2017	 ESW	–	Lecture	6	 25	

JAVA	Networking	-	NIO	–	Channel,	Selector	

	
	
»  one	thread	works	with	mul%ple	channels	at	the	same	%me	

•  epoll-based	if	OS	support	epoll	
»  Channel	–	cover	UDP+TCP	network	IO,	file	IO	

•  FileChannel	–	from	Input/OutputStream	or	RandomAccessFile	
•  DatagramChannel	
•  MulNcastChannel	(since	1.7)	
•  SocketChannel	
•  ServerSocketChannel	

10th	April	2017	 ESW	–	Lecture	6	 26	

JAVA	–	NIO	–	Channel	

»  Channel	
•  read/write	at	the	same	Nme	(streams	are	only	one-way)	
•  always	read/write	from/to	a	buffer	

»  FileChannel		
•  only	blocking		
•  support	–	direct	buffers,	mapped	files,	locking	
•  bulk	transfers	between	channels	

–  no	copy	at	all,	direct	transfer	e.g.	to	socket	
–  transferFrom(sourceChannel,	int	pos,	int	count)	
–  transferTo(int	pos,	int	count,	dstChannel)	

10th	April	2017	 ESW	–	Lecture	6	 27	

JAVA	–	NIO	–	Channel	

»  SocketChannel	
•  can	be	configured	as	non-blocking	before	connecNng	
•  SocketChannel	socket.getChannel();	
•  SocketChannel	SocketChannel.open();	
•  sch.connect(…)	

•  write(…)	and	read(…)	may	return	without	having	wriRen/read	
anything	for	non-blocking	channel		

»  ServerSocketChannel	
•  can	be	configured	as	non-blocking	
•  can	be	created	directly	using	open()	or	from	ServerSocket	
•  accept()	–	returns	SocketChannel	in	the	same	mode	

10th	April	2017	 ESW	–	Lecture	6	 28	

JAVA	–	NIO	–	Selector	

»  Selector	
•  Selector	Selector.open();	
•  only	channels	in	non-blocking	mode	can	be	registered	

channel.configureBlocking(false);	
SelecNonKey	channel.register(selector,	SelecNonKey.OP_READ);	

•  FileChannel	doesn’t	support	non-blocking	mode		

»  Selec%onKey	–	events	you	can	listen	for	(can	be	combined	together)	
•  OP_CONNECT	
•  OP_ACCEPT	
•  OP_READ	
•  OP_WRITE	

»  events	are	filled	by	channel	which	is	ready	with	operaNon	

10th	April	2017	 ESW	–	Lecture	6	 29	

JAVA	–	NIO	–	Selector	

»  Selec%onKey	–	returned	from	register	method	
•  interest	set	–	your	configured	ops	
•  ready	set	–	which	ops	are	ready,	sk.isReadable(),	sk.isWritable(),	…	
•  channel	
•  selector	
•  opNonal	aRached	object	–	sk.aRach(Object	obj);	Object	

sk.aRachment()	
SelecNonKey	channel.register(selector,	ops,	aRachmentObj);	

10th	April	2017	 ESW	–	Lecture	6	 30	

JAVA	–	NIO	–	Selector	

»  Selector	with	registered	one	or	more	channels	
•  int	select()	–	blocks	unNl	at	least	one	channel	is	ready	
•  int	select(long	Nmeout)	–	with	Nmeout	milliseconds	
•  int	selectNow()	–	doesn’t	block	at	all,	returns	immediately	

	return	the	number	of	channels	which	are	ready	from	the	last	call	
	Set<SelecNonKey>	selector.selectedKeys();	

•  wakeUp()	–	different	thread	can	“wake	up”	thread	blocked	in	select()	
•  close()	–	invalidates	selector,	channels	are	not	closed	

10th	April	2017	 ESW	–	Lecture	6	 31	

JAVA	–	NIO	Server	–	Using	Mul%ple	Reactors	

		

Reactors	NIOReactors	

Client	

Client	

Client	

NIOAcceptor	
Handler	

NIOClientHandlers	NIOClientHandlers	

parse	receive	 send	

ThreadPool	

Queued	parse	
tasks	

Worker	thread	

Worker	thread	

10th	April	2017	 ESW	–	Lecture	6	 32	

JAVA	–	NIOServer	Example	

		

10th	April	2017	 ESW	–	Lecture	6	 33	

JAVA	–	NIOReactor	Example	

		

10th	April	2017	 ESW	–	Lecture	6	 34	

JAVA	–	NIOHandler	Example	

		

10th	April	2017	 ESW	–	Lecture	6	 35	

JAVA	–	NIOAcceptorHandler	Example	

		

10th	April	2017	 ESW	–	Lecture	6	 36	

JAVA	–	NIOClientHandler	Example	

		

10th	April	2017	 ESW	–	Lecture	6	 37	

JAVA	–	NIOClientHandler	Example	

		

10th	April	2017	 ESW	–	Lecture	6	 38	

JAVA	-	NIOClientHandler	Example	

		

