
Parallel Accelerators

Přemysl Šůcha

``Parallel algorithms'', 2017/2018

CTU/FEL

1

Topic Overview

• Graphical Processing Units (GPU) and CUDA

• Vector addition on CUDA

• Intel Xeon Phi

• Matrix equations on Xeon Phi

2

Graphical Processing Units

3

GPU – Nvidia - Roadmap

4

GPU - Use

• GPU is especially well-suited to address problems that

can be expressed as data-parallel computations.

• The same program is executed on many data elements

in parallel - with high arithmetic intensity.

• Applications that process large data sets can use a

data-parallel programming model to speed up the

computations (3D rendering, image processing, video

encoding, …)

• Many algorithms outside the field of image rendering

and processing are accelerated by data-parallel

processing too (machine learning, general signal

processing, physics simulation, finance, …).
5

GPU - Overview

• CPU code runs on the host, GPU code runs on the

device.

• A kernel consists of multiple threads.

• Threads execute in 32-thread groups called warps.

• Threads are grouped into blocks.

• A collection of blocks is called a grid.

6

GPU - Hardware Organization Overview

• GPU chip consists of one or more streaming

multiprocessors (SM).

• A multiprocessor consists of 1 (CC 1.x), 2 (CC 2.x), or 4

(CC 3.x, 5.x, 6.x) warp schedulers. (CC = CUDA

Capability)

• Each warp scheduler can issue to two dispatch units

(CC 5 and 6).

• A multiprocessor consists of 8 to 192 CUDA cores.

• A multiprocessor consists of functional units of several

types.

7

Streaming Multiprocessor (SM) - Pascal

8

GPU - Functional Units

• Core (CUDA Core) - functional unit that executes

most types of instructions, including most integer and

single precision floating point instructions.

• SFU (Special Functional Unit) - executes reciprocal

and transcendental instructions such as sine, cosine,

and reciprocal square root.

• DP (Double Precision) - executes double-precision

floating point instructions.

• LD/ST (Load/Store Unit) – handles load and store

instructions.

9

Streaming Multiprocessor (SM) - Pascal

• Device memory hosts a 32- or 64-bit global address

space.

• Each MP has a set of temporary registers split

amongst threads.

• Instructions can access high-speed shared

memory.

• Instructions can access a cache-backed constant

space.

• Instructions can access local memory.

• Instructions can access global space. (very slow in

general)

10

GPU Architecture - Pascal

11

GPU Architectures

12

GPU Architecture Fermi Kepler Maxwell Pascal

GPU Process 40nm 28nm 28nm 16nm

Maximum

Transistors

3.0 Billion 7.0 Billion 8.0 Billion 15.3 Billion

Stream

Processors Per

Compute Unit

32 192 128 64

Maximum CUDA

Cores

512 2880 3072 3840

FP32 Compute

(Tesla) [TFLOPs]

1.33 5.10 6.10 12

FP64 Compute

(Tesla) [TFLOPs]

0.66 1.43 0.20 6

Maximum VRAM 1.5 GB GDDR5 6 GB GDDR5 12 GB GDDR5 16 / 32 GB HBM2

Maximum

Bandwidth

192 GB/s 336 GB/s 336 GB/s 720 GB/s - 1 TB/s

Maximum TDP 244W 250W 250W 300W

Single-Instruction, Multiple-Thread

• SIMT is an execution model where single instruction,

multiple data (SIMD) is combined with multithreading.

• The SM creates, manages, schedules, and executes

threads in groups of 32 parallel threads called warps.

• A warp start together at the same program address, but

they have their own instruction address counter and

register state and are therefore free to branch and

execute independently.

13

CUDA

• The NVIDIA GPU architecture is built around a scalable

array of multithreaded Streaming Multiprocessors (SMs).

• CUDA (Compute Unified Device Architecture) provides a

way how a CUDA program can be executed on any

number of SMs.

• A multithreaded program is partitioned into blocks of

threads that execute independently from each other.

• A GPU with more multiprocessors will automatically

execute the program in less time than a GPU with fewer

multiprocessors.

14

CUDA

15

Grid/Block/Thread

• threads can be identified using a

1-D, 2-D, or 3-D thread index,

forming a 1-D, 2-D, or 3-D block

of threads, called a thread

block.

• Blocks are organized into a 1-D,

2-D, or 3-D grid of thread

blocks.

2-D grid with 2-D thread blocks

16

Kernel

• CUDA C extends C by allowing the programmer to

define C functions, called kernels.

• threadIdx is a 3-component vector, so that threads can

be identified using a 1-D, 2-D, or 3-D thread index.

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{ ...

// Kernel invocation with N threads inside 1 thread block

VecAdd<<<1, N>>>(A, B, C);

}

17

Memory Hierarchy

• Each thread has private set

of registers and local

memory.

• Each thread block has

shared memory visible to

all threads of the block.

• All threads have access to

the same global memory.

• There are also two

additional read-only

memory spaces accessible

by all threads (constant

and texture memory). 18

GPU Programming - Example

• Element by element vector addition

[1] NVIDIA Corporation, CUDA Toolkit Documentation

v9.0.176, 2017.

19

Element by element vector addition

/* Host main routine */

int main(void)

{

int numElements = 50000;

size_t size = numElements * sizeof(float);

// Allocate the host input vectors A and B and output vector C

float *h_A = (float *)malloc(size);

float *h_B = (float *)malloc(size);

float *h_C = (float *)malloc(size);

// Initialize the host input vectors

for (int i = 0; i < numElements; ++i)

{

h_A[i] = rand()/(float)RAND_MAX;

h_B[i] = rand()/(float)RAND_MAX;

}

20

Element by element vector addition

// Allocate the device input vectors A and B and output vector C

float *d_A = NULL;

cudaMalloc((void **)&d_A, size);

float *d_B = NULL;

cudaMalloc((void **)&d_B, size);

float *d_C = NULL;

cudaMalloc((void **)&d_C, size);

// Copy the host input vectors A and B in host memory to the device

// input vectors in device memory

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

21

Element by element vector addition

// Launch the Vector Add CUDA Kernel

int threadsPerBlock = 256;

int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);

// Copy the device result vector in device memory to the host result vector

// in host memory.

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

22

Element by element vector addition

// Free device global memory

err = cudaFree(d_A);

err = cudaFree(d_B);

err = cudaFree(d_C);

// Free host memory

free(h_A);

free(h_B);

free(h_C);

return 0;

}

23

Element by element vector addition

/**

* CUDA Kernel Device code

*

* Computes the vector addition of A and B into C. The 3 vectors have the same

* number of elements numElements.

*/

__global__ void vectorAdd(float *A, float *B, float *C, int numElements)

{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < numElements)

{

C[i] = A[i] + B[i];

}

}

24

Intel Xeon Phi

25

Intel Xeon Phi

26

Intel Xeon Phi

• Intel Xeon Phi coprocessors are designed to extend the

reach of applications that have demonstrated the ability

to fully utilize the scaling capabilities of Intel Xeon

processor-based systems.

• Code compiled for Xeon processors can be run on an

Xeon Phi (Knights Landing).

• For successful parallelization it requires a program with

lots of threads and operations with vectors.

27

Knights Landing Architecture

28

Knights Landing Architecture

• The chip is constituted by 36 tiles interconnected by 2D

mesh.

• The tile has two Cores (Atom Silvermont architecture),

two vector processing units (VPU) and 1M L2 cache.

• A tile can execute concurrently 4 threads.

• The tiles are interconnected a cache-coherent 2D

mesh; which provides a higher bandwidth and lower

latency compare to the 1D ring interconnect on Knights

corner.

• The mesh enforces XY routing rule.

29

Knights Landing Architecture

• Xeon Phi has 2 types of memory: (i) MCDRAM (Multi-

channel DRAM) and (ii) DDR.

• MCDRAM is a high-bandwidth memory integrated on

the package. There are 8 of them 2 GB each.

• MCDRAM can be configured at boot time into one of

three modes:

– Cache mode – MCDRAM is a cache for DDR,

– Flat mode – MCDRAM is a standard memory in the same

address space as DDR,

– Hybrid – a combination

• DDR is a high-capacity memory which is external to

the Knight Landing package.
30

Vectorization

• Each tile has two VPUs (Vector Processing Unit).

• It is the heard of computation. It processes all floating

point computations using SSE, AVX, AVX2, …, AVX-512.

• Thus each tile can execute two 512-bit vector

multiple-add instructions per cycle, i.e. compute 32

double precision resp. 64 single precision floating point

operation in each cycle.

32

Knights Corner vs. Knights Landing

Product Name

Intel® Xeon Phi™ Coprocessor

7120X (16GB, 1.238 GHz, 61

core)

Intel® Xeon Phi™ Processor

7290F (16GB, 1.50 GHz, 72

core)

Code Name
Knights Corner Knights Landing

Lithography
22 nm 14 nm

Recommended Customer Price
N/A $6401.00

of Cores
61 72

Processor Base Frequency
1.24 GHz 1.50 GHz

Cache
30.5 MB L2 36 MB L2

TDP
300 W 260 W

Max Memory Size (dependent on

memory type)

16 GB 384 GB

Max Memory Bandwidth
352 GB/s 490 GB/s

33

http://ark.intel.com/products/75800/Intel-Xeon-Phi-Coprocessor-7120X-16GB-1_238-GHz-61-core
http://ark.intel.com/products/95831/Intel-Xeon-Phi-Processor-7290F-16GB-1_50-GHz-72-core
http://ark.intel.com/products/codename/57721/Knights-Corner
http://ark.intel.com/products/codename/48999/Knights-Landing

Offloading

• Choose highly-parallel sections of code to run on the

coprocessor. Serial code offloaded to the coprocessor

will run much slower than on the CPU.

int x, y[100];

void f()

{

x = 55;

// x sent from CPU, y computed on coprocessor

...

#pragma offload target(mic:0) in(x) nocopy(y)

{ y[50] = 66; }

…

#pragma offload target(mic:0) nocopy(x,y)

{ // x and y retain previous values }

}

34

Xeon Phi Programming - Demo

• Simple matrix equation.

[2] James Jeffers and James Reinders, Intel Xeon Phi

Coprocessor High-Performance Programming, Morgan

Kaufmann, 2013.

35

References

[1] David M. Koppelman, GPU Microarchitecture – Lecture

notes, Louisiana State University, 2017.

[2] James Jeffers and James Reinders, Intel Xeon Phi

Coprocessor High-Performance Programming, Morgan

Kaufmann, 2013.

[3] NVIDIA, CUDA Toolkit Documentation v8.0, 2016.

(http://docs.nvidia.com/cuda/index.html)

[4] Avinash Sodani, Knights Landing (KNL): 2nd Generation

Intel® Xeon Phi™ Processor, Intel, 2016. ()

[5] James Jeffers and James Reinders and Avinash

Sodani, Intel Xeon Phi Processor High Performance

Programming, 2nd Edition, Morgan Kaufmann, 2016.
36

http://docs.nvidia.com/cuda/index.html

