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Topic Overview 

• Graphical Processing Units (GPU) and CUDA

• Vector addition on CUDA

• Intel Xeon Phi

• Matrix equations on Xeon Phi
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Graphical Processing Units 
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GPU – Nvidia - Roadmap
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GPU - Use

• GPU is especially well-suited to address problems that 

can be expressed as data-parallel computations.

• The same program is executed on many data elements 

in parallel - with high arithmetic intensity.

• Applications that process large data sets can use a 

data-parallel programming model to speed up the 

computations (3D rendering, image processing, video 

encoding, …)

• Many algorithms outside the field of image rendering 

and processing are accelerated by data-parallel 

processing too (machine learning, general signal 

processing, physics simulation, finance, …).
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GPU - Overview

• CPU code runs on the host, GPU code runs on the 

device.

• A kernel consists of multiple threads.

• Threads execute in 32-thread groups called warps.

• Threads are grouped into blocks.

• A collection of blocks is called a grid.
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GPU - Hardware Organization Overview

• GPU chip consists of one or more streaming 

multiprocessors (SM).

• A multiprocessor consists of 1 (CC 1.x), 2 (CC 2.x), or 4 

(CC 3.x, 5.x, 6.x) warp schedulers. (CC = CUDA 

Capability)

• Each warp scheduler can issue to two dispatch units 

(CC 5 and 6).

• A multiprocessor consists of 8 to 192 CUDA cores.

• A multiprocessor consists of functional units of several 

types.
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Streaming Multiprocessor (SM) - Pascal
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GPU - Functional Units 

• Core (CUDA Core) - functional unit that executes 

most types of instructions, including most integer and 

single precision floating point instructions.

• SFU (Special Functional Unit) - executes reciprocal 

and transcendental instructions such as sine, cosine, 

and reciprocal square root.

• DP (Double Precision) - executes double-precision 

floating point instructions.

• LD/ST (Load/Store Unit) – handles load and store 

instructions.
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Streaming Multiprocessor (SM) - Pascal

• Device memory hosts a 32- or 64-bit global address 

space.

• Each MP has a set of temporary registers split 

amongst threads.

• Instructions can access high-speed shared 

memory.

• Instructions can access a cache-backed constant 

space.

• Instructions can access local memory.

• Instructions can access global space. (very slow in 

general)
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GPU Architecture - Pascal
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GPU Architectures
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GPU Architecture Fermi Kepler Maxwell Pascal

GPU Process 40nm 28nm 28nm 16nm

Maximum 

Transistors

3.0 Billion 7.0 Billion 8.0 Billion 15.3 Billion

Stream

Processors Per 

Compute Unit

32 192 128 64

Maximum CUDA 

Cores

512 2880 3072 3840

FP32 Compute

(Tesla) [TFLOPs]

1.33 5.10 6.10 12

FP64 Compute

(Tesla) [TFLOPs]

0.66 1.43 0.20 6

Maximum VRAM 1.5 GB GDDR5 6 GB GDDR5 12 GB GDDR5 16 / 32 GB HBM2

Maximum 

Bandwidth

192 GB/s 336 GB/s 336 GB/s 720 GB/s - 1 TB/s

Maximum TDP 244W 250W 250W 300W



Single-Instruction, Multiple-Thread

• SIMT is an execution model where single instruction, 

multiple data (SIMD) is combined with multithreading.

• The SM creates, manages, schedules, and executes 

threads in groups of 32 parallel threads called warps.

• A warp start together at the same program address, but 

they have their own instruction address counter and 

register state and are therefore free to branch and 

execute independently.
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CUDA

• The NVIDIA GPU architecture is built around a scalable

array of multithreaded Streaming Multiprocessors (SMs).

• CUDA (Compute Unified Device Architecture) provides a 

way how a CUDA program can be executed on any 

number of SMs.

• A multithreaded program is partitioned into blocks of 

threads that execute independently from each other.

• A GPU with more multiprocessors will automatically 

execute the program in less time than a GPU with fewer 

multiprocessors.
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CUDA
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Grid/Block/Thread

• threads can be identified using a 

1-D, 2-D, or 3-D thread index, 

forming a 1-D, 2-D, or 3-D block 

of threads, called a thread 

block.

• Blocks are organized into a 1-D, 

2-D, or 3-D grid of thread 

blocks.

2-D grid with 2-D thread blocks
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Kernel

• CUDA C extends C by allowing the programmer to 

define C functions, called kernels.

• threadIdx is a 3-component vector, so that threads can 

be identified using a 1-D, 2-D, or 3-D thread index.

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C) 

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{ ...

// Kernel invocation with N threads inside 1 thread block

VecAdd<<<1, N>>>(A, B, C); 

}
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Memory Hierarchy

• Each thread has private set 

of registers and local 

memory.

• Each thread block has 

shared memory visible to 

all threads of the block.

• All threads have access to 

the same global memory.

• There are also two 

additional read-only 

memory spaces accessible 

by all threads (constant

and texture memory). 18



GPU Programming - Example

• Element by element vector addition

[1] NVIDIA Corporation, CUDA Toolkit Documentation 

v9.0.176, 2017. 
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Element by element vector addition

/* Host main routine */

int main(void)

{

int numElements = 50000;

size_t size = numElements * sizeof(float);

// Allocate the host input vectors A and B and output vector C

float *h_A = (float *)malloc(size);

float *h_B = (float *)malloc(size);

float *h_C = (float *)malloc(size);

// Initialize the host input vectors

for (int i = 0; i < numElements; ++i)

{

h_A[i] = rand()/(float)RAND_MAX;

h_B[i] = rand()/(float)RAND_MAX;

}
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Element by element vector addition

// Allocate the device input vectors A and B and output vector C

float *d_A = NULL;

cudaMalloc((void **)&d_A, size);

float *d_B = NULL;

cudaMalloc((void **)&d_B, size);

float *d_C = NULL;

cudaMalloc((void **)&d_C, size);

// Copy the host input vectors A and B in host memory to the device 

// input vectors in device memory

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
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Element by element vector addition

// Launch the Vector Add CUDA Kernel

int threadsPerBlock = 256;

int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);

// Copy the device result vector in device memory to the host result vector

// in host memory.

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
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Element by element vector addition

// Free device global memory

err = cudaFree(d_A);

err = cudaFree(d_B);

err = cudaFree(d_C);

// Free host memory

free(h_A);

free(h_B);

free(h_C);

return 0;

}
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Element by element vector addition

/**

* CUDA Kernel Device code

*

* Computes the vector addition of A and B into C. The 3 vectors have the same

* number of elements numElements.

*/

__global__ void vectorAdd(float *A, float *B, float *C, int numElements)

{

int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < numElements)

{

C[i] = A[i] + B[i];

}

}
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Intel Xeon Phi
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Intel Xeon Phi
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Intel Xeon Phi

• Intel Xeon Phi coprocessors are designed to extend the 

reach of applications that have demonstrated the ability 

to fully utilize the scaling capabilities of Intel Xeon 

processor-based systems.

• Code compiled for Xeon processors can be run on an 

Xeon Phi (Knights Landing).

• For successful parallelization it requires a program with 

lots of threads and operations with vectors.
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Knights Landing Architecture
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Knights Landing Architecture

• The chip is constituted by 36 tiles interconnected by 2D 

mesh.

• The tile has two Cores (Atom Silvermont architecture), 

two vector processing units (VPU) and 1M L2 cache.

• A tile can execute concurrently 4 threads.

• The tiles are interconnected a cache-coherent 2D 

mesh; which provides a higher bandwidth and lower 

latency compare to the 1D ring interconnect on Knights 

corner.

• The mesh enforces XY routing rule.
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Knights Landing Architecture

• Xeon Phi has 2 types of memory: (i) MCDRAM (Multi-

channel DRAM) and (ii) DDR.

• MCDRAM is a high-bandwidth memory integrated on 

the package. There are 8 of them 2 GB each.

• MCDRAM can be configured at boot time into one of 

three modes:

– Cache mode – MCDRAM is a cache for DDR,

– Flat mode – MCDRAM is a standard memory in the same 

address space as DDR,

– Hybrid – a combination

• DDR is a high-capacity memory which is external to 

the Knight Landing package.
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Vectorization

• Each tile has two VPUs (Vector Processing Unit).

• It is the heard of computation. It processes all floating 

point computations using SSE, AVX, AVX2, …, AVX-512.

• Thus each tile can execute two 512-bit vector 

multiple-add instructions per cycle, i.e. compute 32 

double precision resp. 64 single precision floating point 

operation in each cycle.
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Knights Corner vs. Knights Landing

Product Name

Intel® Xeon Phi™ Coprocessor

7120X (16GB, 1.238 GHz, 61 

core)

Intel® Xeon Phi™ Processor

7290F (16GB, 1.50 GHz, 72 

core)

Code Name
Knights Corner Knights Landing

Lithography
22 nm 14 nm

Recommended Customer Price
N/A $6401.00

# of Cores
61 72

Processor Base Frequency
1.24 GHz 1.50 GHz

Cache
30.5 MB L2 36 MB L2

TDP
300 W 260 W

Max Memory Size (dependent on 

memory type)

16 GB 384 GB

Max Memory Bandwidth
352 GB/s 490 GB/s

33

http://ark.intel.com/products/75800/Intel-Xeon-Phi-Coprocessor-7120X-16GB-1_238-GHz-61-core
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Offloading

• Choose highly-parallel sections of code to run on the 

coprocessor. Serial code offloaded to the coprocessor 

will run much slower than on the CPU.

int x, y[100];

void f()

{

x = 55;

// x sent from CPU, y computed on coprocessor

...

#pragma offload target(mic:0) in(x) nocopy(y)

{ y[50] = 66; }

…

#pragma offload target(mic:0) nocopy(x,y)

{ // x and y retain previous values }

}
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Xeon Phi Programming - Demo

• Simple matrix equation.

[2] James Jeffers and James Reinders, Intel Xeon Phi 

Coprocessor High-Performance Programming, Morgan 

Kaufmann, 2013.
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