Parallel accelerators

Premysl Sicha, Jan Dvorak and Libor Bukata

“Parallel algorithms™, 2016/2017
CTU/FEL

Topic Overview

Graphical Processing Units (GPU) and CUDA
Matrix transpose on CUDA

Intel Xeon Phi

Matrix equations on Xeon Phi

Graphical Processing Units

Graphical Processing Units

s Pascal
Unified Memory

3D Memory
NVLink

Maxwell
DX12

Kepler

Dynamic Parallelism

©

(]
=
o

=

o

]
=z
=
~
=
=
Ll
Q
wv

SGEMM - Single precision floating General Matrix Multiply

Graphical Processing Units

GPU is especially well-suited to address problems that
can be expressed as data-parallel computations.

The same program is executed on many data elements
In parallel - with high arithmetic intensity - the ratio of
arithmetic operations to memory operations.

Applications that process large data sets can use a
data-parallel programming model to speed up the
computations (3D rendering, image processing, video
encoding, ...)

Many algorithms outside the field of image rendering
and processing are accelerated by data-parallel
processing too (general signal processing, physics
simulation, finance, computational biology).

Streaming Multiprocessor (SM)

Warp Scheduler
Dispatch Unit Dispatch Unit Dispatch Unit Disped ch Unil

B3 R RS n
Register File (32,768 x 32-bit) Register File (32,768 x 32-bit)

Core Core Core

Core Core Core

Core Core
LOVST Core

LDVST

LINEY

Streaming Multiprocessor (SM) - Pascal

« Pascal SM incorporates 64 single-precision CUDA
Cores (Core), 32 double precision CUDA Cores (DP
Unit), 16 SFUs (accelerate transcendental functions)
and 16 LD/ST (Load / Store) units.

« SM is partitioned into two processing block.

« Each warp scheduler (one per processing block) is
capable of dispatching two warp instructions per
clock (1 warp = 32 threads).

« SMM has a dedicated register file and shared
memory.

High Bandwidth Memory 2 High Bandwidth Memory 2

i T i 18

Momery Controlor Momory Contreller Momory Controlior Momery Contreller
M
|
I
I
i
IIf
g
I
I
I
A
|l
1l
|l
g
g
I8
|
|I¢
f
i
I¢
It
I
i
|18
I
d
I
|
|

rsTwesen (

PCi Express 3.0 Host Inferface

©
O
7
@
o

'
Q
.
S
ald
3
Q
=
<
O
.
<
>
o
O

I
Il

2041040 Aiowsayy A0{|ORU0Y Aowen JRonuO) Aowew Je|0Nu] Aowen

Tl i fl 1]

z owew ummpueg 4B 2 fsowew wipimoueg ubi

GPU Architecture

Tesla Products Tesla K40 Tesla M40 Tesla P100
GPU GK110 (Kepler) GM200 (Maxwell) GP100 (Pascal)
SMs 15 24 56

FP32 CUDA Cores/ SM 192 128 64

FP32 CUDA Cores / GPU 2880 3072 3584

Base Clock 745 MHz 948 MHz 1328 MHz
Peak FP32 GFLOPs 5040 6840 10600
Memory Interface 384-bit GDDR5 384-bit GDDR5 4096-bit HBM2
Memory Size Upto 12 GB Upto 24 GB 16 GB

L2 Cache Size 1536 KB 3072 KB 4096 KB
Register File Size / SM 256 KB 256 KB 256 KB

TDP 235 Watts 250 Watts 300 Watts
Transistors 7.1 billion 8 billion 15.3 billion

Single-Instruction, Multiple-Thread

« SIMT is an execution model where single instruction,
multiple data (SIMD) is combined with multithreading.

« The SM creates, manages, schedules, and executes
threads in groups of 32 parallel threads called warps.

« A warp start together at the same program address, but
they have their own instruction address counter and
register state and are therefore free to branch and
execute independently.

CUDA

« The NVIDIA GPU architecture is built around a scalable
array of multithreaded Streaming Multiprocessors (SMs).

 CUDA (Compute Unified Device Architecture) provides a
way how a CUDA program can be executed on any
number of SMs.

« A multithreaded program is partitioned into blocks of
threads that execute independently from each other, so
that a GPU with more multiprocessors will automatically
execute the program in less time than a GPU with fewer
multiprocessors.

CUDA

Multthreaded QUDA Program

o

GPU with

SM1

GPU with 4 5Ms

SM1

sSM2

SM2

Grid/Block/Thread

 threads can be identified using a ord
1-D, 2-D, or 3-D thread index, Book(00) || Bodk1.0) || Block (2 9)
forming a 1-D, 2-D, or 3-D block :
Block (0 1) Blodk (1, 1) (2 1)

of threads, called a thread W WW
block.

« Blocks are organized intoa 1-D, .~/

2-D, or 3-D grid of thread T
blocks.

2-D grid with 2-D thread blocks

Kernel

« CUDA C extends C by allowing the programmer to
define C functions, called kernels.

// Kernel definition
_ global__ void VecAdd(float* A, float* B, float* C)

{
int i = threadldx.x;
C[i] = A[i] + B[i];
}
int main()
{...
// Kernel invocation with N threads inside 1 thread block
VecAdd<<<1, N>>>(A, B, C);
}

 threadldx is a 3-component vector, so that threads can
be identified using a 1-D, 2-D, or 3-D thread index.

Memory Hierarchy

Thread

. - . Per-thread lol

Each thread has private set j - "I
of registers and local

Thread Block .
memory. e T
Each thread block has
shared memory visible to 6rd0

Block (1, O Black (2. O
all threads of the block. % W ‘W
All threads have access to B0 D [mek D) || Mok 1
the same global memory.

Grd 1

There are also two rwe | Eas s
additional read-only
memory spaces accessible %} %ﬁ%} .
by all threads (constant k(02 | ks

and texture memaory).

GPU Programming - Demo
« Matrix transposition.

[1] Greg Ruetsch, Optimizing Matrix Transpose in CUDA,
NVIDIA, 20009,

http://www.cs.colostate.edu/~cs675/MatrixTranspose.pdf.

Intel Xeon Phi

Yeon P\ COPIORSSHt

Intel Xeon Phi

Intel® Xeon® Processor Roadmap

Plan for HPC

2013 2014

87 GFLOPS
[DP-F.9. peak]

185 GFLOPS
[DP-F.P. peak)

Knights Corner

22nm 1.01 TFLOPS
KNI [DP-FP. peak]
PCle Card 4.6 GFLOPS/W
GDDRS

~225 GFLOPS ~500 GFLOPS
[DP-E.P. paak) [DP-FP. peak)

Knights Landing J Ay

14nm ~3+ TFLOPS
AVX3.1 [DP-F.P. peak]
Socket & PCle Card 14-16 GFLOPS/W
DDR4
PCle3

tbd GFLOPS tbd GFLOPS
[DP<F P, peak] |DP-FP. peak)

Westmere

Sandy
Bridge

-
Ivy
Bridge L Haswell

Broadwell Skylake 1 v

32am
SSEq2
DDR3
PCle2

32nm
AlVX
DDR2

PCle3

22nm 22nm
AVX2
DDR4
PCle3

14nm 14nm
AVX3.2

DDR4

PCleq

Intel Xeon Phi

 Intel Xeon Phi coprocessors are designed to extend the
reach of applications that have demonstrated the ability
to fully utilize the scaling capabillities of Intel Xeon
processor-based systems.

« Code compiled for Xeon processors can be run on an
Xeon Phi (Knights Landing).

* For successful parallelization it requires a program with
lots of threads and operations with vectors.

Knights Landing Architecture

2 x16
1x4

X4
DMI |\MCDRAM

36 Tiles

&~ OO

connected by
2N Iesh
Interconnect

nwrerm22>I0
nmrmZ22eI0N

K,‘J A /J ”J/

Knights Landing Architecture

The chip is constituted by 36 tiles interconnected by 2D
mesh.

The tile has two Cores (Atom Silvermont architecture),
two vector processing units (VPU) and 1M L2 cache.

A tile can execute concurrently 4 threads.

The tiles are interconnected a cache-coherent 2D
mesh; which provides a higher bandwidth and lower
latency compare to the 1D ring interconnect on Knights
corner.

The mesh enforces XY routing rule.

Knights Landing Architecture

Xeon Phi has 2 types of memory: (i) MCDRAM (Multi-
channel DRAM) and (ii) DDR.

MCDRAM is a high-bandwidth memory integrated on
the package. There are 8 of them 2 GB each.

MCDRAM can be configured at boot time into one of
three modes:
— Cache mode — MCDRAM is a cache for DDR,

— Flat mode — MCDRAM is a standard memory in the same
address space as DDR,

— Hybrid — a combination
DDR is a high-capacity memory which is external to
the Knight Landing package.

Vectorization

« Each tile has two VPUs (Vector Processing Unit).

 Itis the heard of computation. It processes all floating
point computations using SSE, AVX, AVX2, ..., AVX-512.

« Thus each tile can execute two 512-bit vector
multiple-add instructions per cycle, i.e. compute 32
double precision resp. 64 single precision floating point
operation in each cycle.

Knights Corner vs. Knights Landing

Product Name

Intel® Xeon Phi™ Coprocessor

Intel® Xeon Phi™ Processor

7120X (16GB, 1.238 GHz, 61

7290F (16GB, 1.50 GHz, 72

core)

core)

Knights Corner

Knights Landing

Code Name
Lithography 22nm 14 nm
Recommended Customer Price N/A $6401.00
of Cores 61 72

1.24 GHz 1.50 GHz
Processor Base Frequency

30.5MB L2 36 MB L2

Cache
TDP 300 W 260 W
Max Memory Size (dependent on 16 GB 384 GB
memory type)

352 GB/s 490 GB/s

Max Memory Bandwidth

http://ark.intel.com/products/75800/Intel-Xeon-Phi-Coprocessor-7120X-16GB-1_238-GHz-61-core
http://ark.intel.com/products/95831/Intel-Xeon-Phi-Processor-7290F-16GB-1_50-GHz-72-core
http://ark.intel.com/products/codename/57721/Knights-Corner
http://ark.intel.com/products/codename/48999/Knights-Landing

Offloading

« Choose highly-parallel sections of code to run on the
coprocessor. Serial code offloaded to the coprocessor
will run much slower than on the CPU.

int x, y[100];
void £ ()
{

x = 5b5;

// x sent from CPU, y computed on coprocessor

#fpragma offload target (mic:0) in(x) nocopy(y)
{ y[50] = 66; }

#pragma offload target (mic:0) nocopy (x,VY)

{ // x and y retain previous values }

}

Xeon Phi Programming - Demo

« Simple matrix equation.

[2] James Jeffers and James Reinders, Intel Xeon Phi
Coprocessor High-Performance Programming, Morgan
Kaufmann, 2013.

References

[1] Greg Ruetsch, Optimizing Matrix Transpose in CUDA,
NVIDIA, 20009.

[2] James Jeffers and James Reinders, Intel Xeon Phi
Coprocessor High-Performance Programming, Morgan
Kaufmann, 2013.

[3] NVIDIA, CUDA Toolkit Documentation v8.0, 2016.
(http://docs.nvidia.com/cuda/index.html)

[4] Avinash Sodani, Knights Landing (KNL): 2nd Generation
Intel® Xeon Phi™ Processor, Intel, 2016. ()

[5] James Jeffers and James Reinders and Avinash
Sodani, Intel Xeon Phi Processor High Performance
Programming, 2nd Edition, Morgan Kaufmann, 2016.

http://docs.nvidia.com/cuda/index.html

