
Programming with OpenMP

Libor Bukata a Jan Dvořák

2 / 13

Introduction to OpenMP

● OpenMP (Open Multi-Processing) provides constructs
(API) to support parallel programming in C++, C, and
Fortran on Linux, MacOS, and Windows.

● A sequential code is transformed to a parallel one by
adding pragmas, so if a compiler does not support
OpenMP, the pragmas are skipped and the output is a
sequential program.

● OpenMP 4.0 added constructs for the vectorization,
offloading, and extended tasks.

● OpenMP is used in software like Blender, fftw, OpenBLAS,
and eigen to accelerate computations.

● It is relatively easy to use in scientific applications.

3 / 13

First program - Hello world!
#include <iostream>
#include <omp.h>

using namespace std;

int main() {
 int numThreads = omp_get_max_threads();
 cout<<numThreads<<" threads to be spawned..."<<endl;
 #pragma omp parallel
 {
 #pragma omp critical
 cout<<"Hello from thread "<<omp_get_thread_num()<<endl;
 }
 cout<<"Threads finished."<<endl<<endl;

 omp_set_num_threads(12);
 #pragma omp parallel
 {
 #pragma omp critical
 cout<<"Goodbye from thread "<<omp_get_thread_num()<<endl;
 }

 return 0;
}

4 threads to be spawned...
Hello from thread 3
Hello from thread 2
Hello from thread 0
Hello from thread 1
Threads finished.

Goodbye from thread 1
...
Goodbye from thread 11

Possible output:

g++ -fopenmp -std=c++11 -o your_prog your_prog.cpp
OMP_NUM_THREADS=4 ./your_prog

How to compile and run the program from a command line:

4 / 13

Sequential code – matrix summation

#include <iostream>
#include <chrono>
#include <vector>

using namespace std;
using namespace std::chrono;

using MatrixRow = vector<double>;
using MatrixColumn = vector<double>;
using Matrix = vector<vector<double>>;

int main() {
 // Initialize the matrix by zero values.
 constexpr int M = 8000, N = 8000;
 Matrix m(M, MatrixRow(N, 0.0));

 // Fill the matrix such that total sum is one.
 for (int i = 0; i < M; ++i) {
 for (int j = 0; j < N; ++j)
 m[i][j] = 1.0/(M*N);
 }

...

5 / 13

Sequential code – matrix summation

...

 high_resolution_clock::time_point start = high_resolution_clock::now();

 // Sum all the entries in the matrix.
 MatrixColumn sumOfRows(M, 0.0);
 for (int i = 0; i < M; ++i) {
 for (int j = 0; j < N; ++j)
 sumOfRows[i] += m[i][j];
 }

 double totalSum = 0.0;
 for (int i = 0; i < M; ++i)
 totalSum += sumOfRows[i];

 cout<<"Sum of matrix elements: "<<totalSum<<endl;
 double runtime = duration_cast<duration<double>>(

high_resolution_clock::now()-start).count();
 cout<<"Total runtime: "<<runtime<<" s"<<endl;

 return 0;
}

6 / 13

OpenMP – the first attempt

#include <iostream>
#include <chrono>
#include <vector>
#include <omp.h>

using namespace std;
using namespace std::chrono;

...

 // Sum all the entries in the matrix.
 MatrixColumn sumOfRows(M, 0.0);
 for (int i = 0; i < M; ++i) {

 #pragma omp parallel for
 for (int j = 0; j < N; ++j)
 sumOfRows[i] += m[i][j];
 }

...

It declares OpenMP functions
accessible from API.

Distribution of the loop
work between threads.

We slightly accelerated the algorithm but the code is incorrect!
The expected result, i.e. 1.0, cannot be achieved as threads race
each other in accessing elements of sumOfRows vector.

7 / 13

Correction of the calculation

The parallel code is correct, but it is more than two orders of magnitude
slower than the sequential one!

 ...
 omp_lock_t updateLock;
 omp_init_lock(&updateLock);

 // Sum all the entries in the matrix.
 MatrixColumn sumOfRows(M, 0.0);
 for (int i = 0; i < M; ++i) {
 #pragma omp parallel for
 for (int j = 0; j < N; ++j) {
 omp_set_lock(&updateLock);
 sumOfRows[i] += m[i][j];
 omp_unset_lock(&updateLock);
 }
 }

 omp_destroy_lock(&updateLock);
 ...

 ...
 // Sum all the entries in the matrix.
 MatrixColumn sumOfRows(M, 0.0);
 for (int i = 0; i < M; ++i) {
 #pragma omp parallel for
 for (int j = 0; j < N; ++j) {
 #pragma omp critical
 sumOfRows[i] += m[i][j];
 }
 }
 ...

Simple version that is using pragmasVersion that is using lock API

8 / 13

Using atomics instead of locks

The parallel code is slightly faster but still much slower than the sequential version.

 ...
 // Sum all the entries in the matrix.
 MatrixColumn sumOfRows(M, 0.0);
 for (int i = 0; i < M; ++i) {
 #pragma omp parallel for
 for (int j = 0; j < N; ++j) {
 #pragma omp atomic update
 sumOfRows[i] += m[i][j];
 }
 }
 ...

Version that is using atomics

#pragma omp atomic update
sum += increment;

#pragma omp atomic read
int current_sum = sum;

#pragma omp atomic write
sum = 0.0;

#pragma omp atomic capture
{

load_sum = sum;
sum += increment;

}

Atomics operations in OpenMP

Note that it is possible to omit ‘update’ in
the pragma since it is used by default.

9 / 13

OpenMP reduction

Finally, the code is correct and it runs faster than the sequential version
(speedup 1.87 on Intel Core i7-3520M).

 ...
 // Sum all the entries in the matrix.
 MatrixColumn sumOfRows(M, 0.0);
 for (int i = 0; i < M; ++i) {
 double rowSum = 0.0;
 #pragma omp parallel for reduction(+: rowSum)
 for (int j = 0; j < N; ++j)
 rowSum += m[i][j];

 sumOfRows[i] = rowSum;
 }
 ...

Operators:
+, *, -,
&, |, ^, &&, ||,
max, min

List of variables:
var

1
, var

2
, …, var

n

Operator dependent
initial value.

10 / 13

OpenMP - distribution of work

 ...
 vector<int> threadMapping(sumOfRows.size());
 double totalSum = 0.0;
 #pragma omp parallel for reduction(+: totalSum) schedule(...)
 for (int i = 0; i < M; ++i) {
 totalSum += sumOfRows[i];
 threadMapping[i] = omp_get_thread_num();
 }

 for (int &threadId : threadMapping)
 cout<<" "<<threadId;
 cout<<endl;
 ...

Use this modified snippet of the code to
explore how threads are scheduled:

static
static, 8
dynamic
dynamic, 8
guided
guided, 8

● How is the work distributed among the threads for various kind of schedules?
● Which kind of schedule divides the work before loop execution?
● What is the default kind of the schedule?
● Try to devise, based on the expected overhead and behaviour of different kinds of

schedules, when it is suitable to use static, dynamic, or guided schedule.

Based on your experiments answer the following questions:

11 / 13

Alternative ways of parallelization

Distributing rows of matrix between threads:

 ...
 // Sum all the entries in the matrix.
 MatrixColumn sumOfRows(M, 0.0);
 #pragma omp parallel for if(M*N > 10e6)
 for (int i = 0; i < M; ++i) {
 for (int j = 0; j < N; ++j)
 sumOfRows[i] += m[i][j];
 }
 ...

Threads are only created
for large matrices. Small
matrices are summed
sequentially since it does
not pays off to create
threads.

Distributing elements of matrix between threads:
 ...
 // Sum all the entries in the matrix.
 MatrixColumn sumOfRows(M, 0.0);
 #pragma omp parallel for collapse(2) if(M*N > 10e6)
 for (int i = 0; i < M; ++i) {
 for (int j = 0; j < N; ++j)
 sumOfRows[i] += m[i][j];
 }

...

The most efficient parallel version.

Higher granularity of
the parallelization, the
work is divided based
on indices i and j.

Unprotected reduction, impossible to use
reduction clause since sumOfRows is a vector.

12 / 13

OpenMP - Final parallel version
 ...
 double totalSum = 0.0;

 #pragma omp parallel num_threads(omp_get_max_threads()) if(M*N > 10e6)
 {
 double threadSum = 0.0;

 // Sum all the entries in the matrix.
 #pragma omp for collapse(2) nowait
 for (int i = 0; i < M; ++i) {
 for (int j = 0; j < N; ++j)
 threadSum += m[i][j];
 }

 #pragma omp atomic update
 totalSum += threadSum;

 #pragma omp barrier
 #pragma omp single
 {
 cout<<"thread "<<omp_get_thread_num()<<" prints the results..."<<endl;
 cout<<"Sum of matrix elements: "<<totalSum<<endl;
 double runtime = duration_cast<duration<double>>(

high_resolution_clock::now()-start).count();
 cout<<"Total runtime: "<<runtime<<" s"<<endl;
 }
 }
 ...

It sets the number of threads.

Do not synchronize
the threads after the loop.

Atomically add the thread
subtotal to the total sum.

Wait until all threads
add their subtotal.

Instead of clause single it is possible to use
master. Try to find out, what is the difference.

13 / 13

OpenMP - assignments

● Calculate π by a parallel Monte Carlo method.

● Parallelize the matrix vector multiplication.

● Transform your implementation of LU decomposition
such that OpenMP is used instead of C++11
threads/pthreads.

● You can download a summary card from:
http://openmp.org/mp-documents/OpenMP-4.0-C.pdf

http://openmp.org/mp-documents/OpenMP-4.0-C.pdf

14 / 13

That’s all!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

