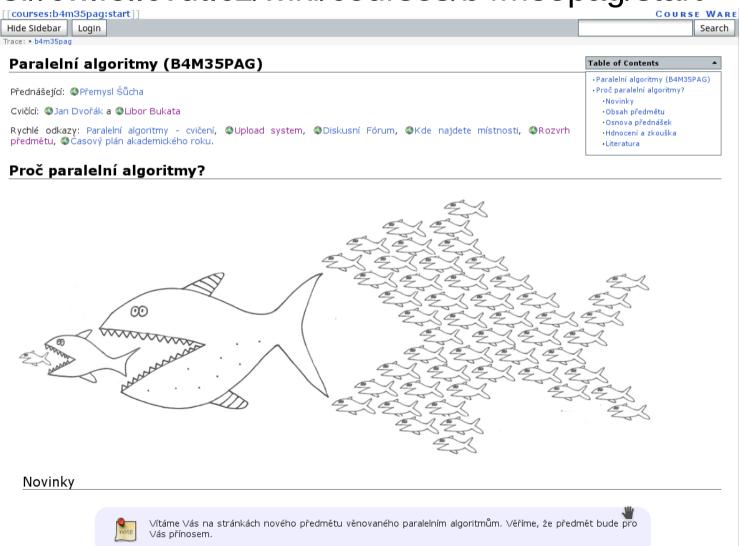

Parallel programming Introduction

Libor Bukata a Jan Dvořák

Instruktors

Libor Bukata


Jan Dvořák

Web sites

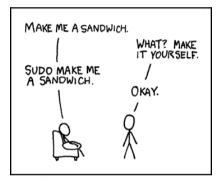
https://cw.fel.cvut.cz/wiki/courses/b4m35pag/start

Academic calendar

04.10.	Introduction to Parallel programming
11.10.	Pthreads
18.10.	C++11 threads
25.10.	1. individual lab assignment (ILA), semestral work assignment
01.11.	Basics of OpenMP
08.11.	Advanced statements in OpenMP
15.11.	2. ILA, deadline for submission of 1. ILA
22.11.	Consultation of the semestral work
22.11.29.11.	Consultation of the semestral work OpenMPI
29.11.	OpenMPI
29.11. 06.12.	OpenMPI 3. ILA, deadline for submission of 2. ILA
29.11. 06.12.	OpenMPI 3. ILA, deadline for submission of 2. ILA Reserve

What is the aim of this lab?

- To get the feel for parallel programming
 - 1) Understand what makes the parallelisation complicated
 - 2) Which **problems** can occur during the paralellisation
 - 3) What can be a **bottleneck**
 - 4) How to think about **algorithms** from the paralellsation point of view
- To get basic skills in common parallel programming frameworks
 - 1) for Multicore processors Pthreads, C++11 threads, OpenMP
 - 2) for Computer clusters OpenMPI



What this course requires?

• Basic skills with Linux – shell, ssh, etc.

Knowledge of C and C++ language

```
# include (Stalo.h)
int main(void)

{
  int count;
  for (count = 1; count <= 500; count ++)
    printf ("I will not throw paper dirplanes in class.");
  return 0;
}

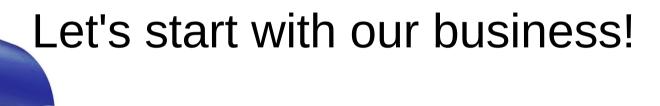
***MBB 16-3**
```

Analytical thinking and opened mind

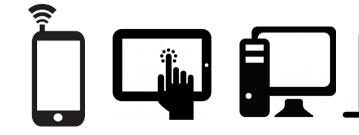
How will we evaluate you?

Labs

- Each Individual Lab Assignment 7 points
- Semestral work 14 points
- Lectures
 - Teoretical test (optional) 10 points
- Final Exam
 - Written exam **45 points**
 - Oral exam **10 points**
- Pass criteria:
 - Assignment: Everything submitted + at least 25 points
 - Exam: At least 25 points from written exam

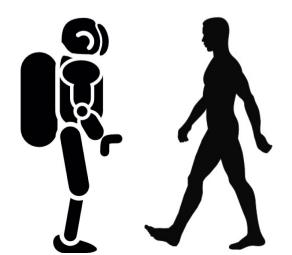


Parallel programing – the first cut


No questions?

Why should you care about it?

- Parallel computing is a dominant player in scientific and cluster computing. Why?
 - Moore law is reaching its limits
 - Increase in transistor density is limited
 - Memory access time has not been reduced at a rate comparable with processing speed
- How to get out of this trap?
 - Most promising approach is to have multiple cores on a single processor.
 - Parallel computing can be found at many devices today:



Ok; However, It should be task for compiler and not for me!!!

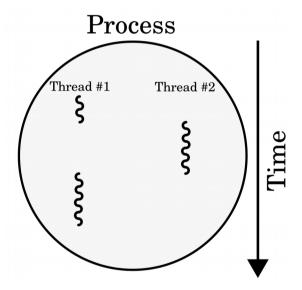
- Yes, compiler can help you, but without your guidance, it is not able pass all the way to the successful result.
 - Parallel programs often look very different than sequential ones.
 - An efficient parallel implementation of a serial program may not be obtained by simply parallelizing each step.
 - Rather, the best parallelization may be obtained by stepping back and devising an entirely new algorithm.

Basics of Parallel programming theory Terms

Program

- Collection of instructions designed to perform a group of coordinated functions

Process

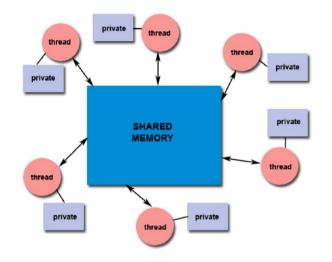

- Instance of a program that is being executed.
- Multiple processes are typically independent
- It has its own memory space.

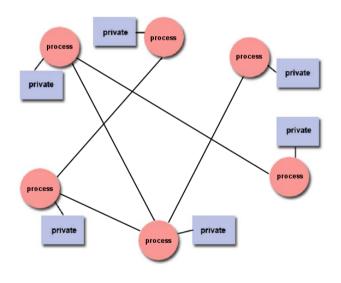
Thread

- Sequence of instructions that is managed independently by system scheduler.
- Subset of process
- Multiple threads within process share the memory space.

Task

Unit of execution

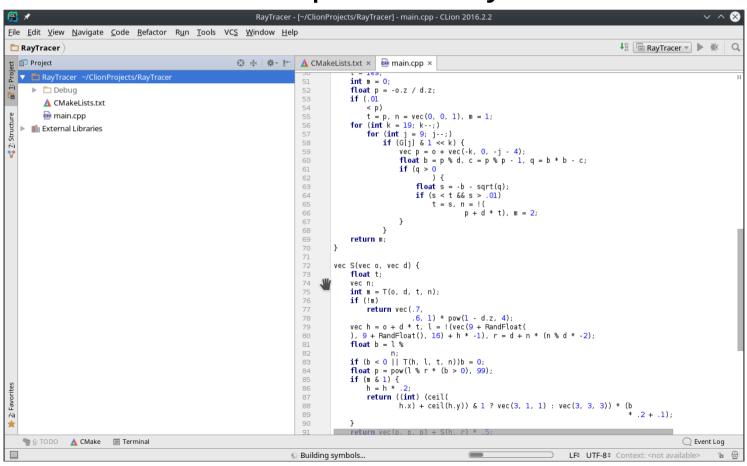

Basics of Parallel programming theory Memory architectures


Shared memory

- All functional units share the common memory space.
- When a functional unit share the value in the common memory space another functional unit can access this value.

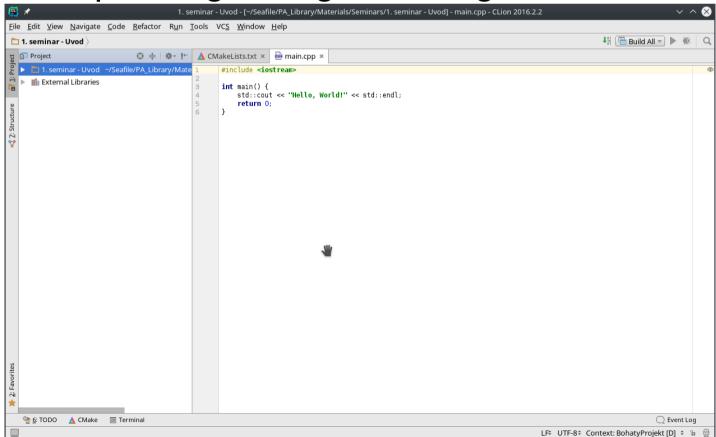
Distributed memory

- Each functional unit has its own private memory space.
- When two or more units need to share a value, they have to exchange this value by a message transmitted through the network.



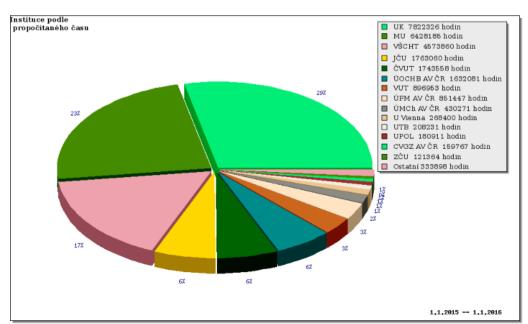
That was theory and now something practical!

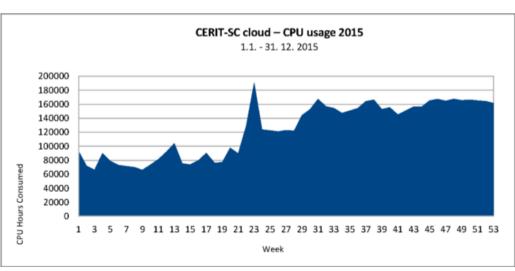
Clion IDE


Licence server - https://turnkey.felk.cvut.cz/

Hello world for free

- Live example and walk-through
 - Create project, Build code, Run code, Debug code,
 - Code profiling valgrind, callgrind




Metacentrum system

 operates and manages distributed computing infrastructure consisting of computing and storage resources owned by

CESNET

 MetaCentrum membership is free for researchers and students of academic institutions in the Czech Republic

MetaCentrum – Sign up

How to sign up

Metacentrum – How to run code?

- Example of the execution of a program
 - qsub
 - module
 - \$SCRATCHDIR
 - \$PSB_O_WORKDIR
- Running jobs in MetaCentrum
 - https://wiki.metacentrum.cz/wiki/Running jobs in scheduler
- Detailed description of the scheduling system
 - https://wiki.metacentrum.cz/wiki/Scheduling_system_-_detailed_description
- Application modules
 - https://wiki.metacentrum.cz/wiki/Application_modules

That was nice, wasn't it?

Thank you for your attention...

