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Motivation

• TOP500 (www.top500.org) - June 2017

http://www.top500.org/


Recent Highlights in Parallel Computing

• In March 2016, AlphaGo beat Lee 

Sedol, a 9-dan professional. 

AlphaGo ran on 48 CPUs and 8 

GPUs.

• In June 2016, Ford Using Deep 

Learning for Lane Detection - new 

sub-centimeter accurate approach 

to estimate a moving vehicle’s 

position within a lane in real-time



Parallel Computing Platforms

Ananth Grama, Anshul Gupta, 

George Karypis, and Vipin Kumar

To accompany the text ``Introduction to Parallel Computing'', 

Addison Wesley, 2003. 



Topic Overview 

• Parallel Computing Platforms 

• Communication Model of Parallel Platforms 

• Physical Organization of Parallel Platforms 

• Communication Costs in Parallel Machines 

• Messaging Cost Models and Routing Mechanisms 

• Mapping Techniques 



Parallel Computing Platforms 

• An explicitly parallel program must specify concurrency 

and interaction between concurrent subtasks. 

• The former is sometimes also referred to as the control 

structure and the latter as the communication model. 



Control Structure of  Parallel Programs 

• Parallelism can be expressed at various levels of 

granularity - from instruction level to processes. 

• Between these extremes exist a range of models, along 

with corresponding architectural support. 



Control Structure of  Parallel Programs 

• Processing units in parallel computers either operate 

under the centralized control of a single control unit or 

work independently. 

• If there is a single control unit that dispatches the same 

instruction to various processors (that work on different 

data), the model is referred to as single instruction 

stream, multiple data stream (SIMD). 

• If each processor has its own control unit, each 

processor can execute different instructions on different 

data items. This model is called multiple instruction 

stream, multiple data stream (MIMD). 



SIMD and MIMD Processors

A typical SIMD architecture (a) and a typical MIMD architecture (b).



SIMD Processors 

• Variants of this concept have found use in co-processing 

units such as the MMX, SSE, … units in Intel 

processors and DSP chips such as the Sharc. 

• SIMD relies on the regular structure of computations 

(such as those in image processing). 

• It is often necessary to selectively turn off operations 

on certain data items. For this reason, most SIMD 

programming paradigms allow for an ``activity mask'', 

which determines if a processor should participate in a 

computation or not. 



Conditional Execution in SIMD 

Processors 

Executing a conditional statement on an SIMD computer with four 

processors: (a) the conditional statement; (b) the execution of the 

statement in two steps.



MIMD Processors

• In contrast to SIMD processors, MIMD processors can 

execute different programs on different processors. 

• A variant of this, called single program multiple data 

streams (SPMD) executes the same program on 

different processors. 

• It is easy to see that SPMD and MIMD are closely 

related in terms of programming flexibility and underlying 

architectural support. 

• Examples of such platforms include current generation 

Sun Ultra Servers, SGI Origin Servers, multiprocessor 

PCs, workstation clusters, and the IBM SP. 



SIMD-MIMD Comparison 

• SIMD computers require less hardware than MIMD 

computers (single control unit). 

• However, since SIMD processors ae specially 

designed, they tend to be expensive and have long 

design cycles. 

• Not all applications are naturally suited to SIMD 

processors. 

• In contrast, platforms supporting the SPMD paradigm 

can be built from inexpensive off-the-shelf 

components with relatively little effort in a short amount 

of time. 



Communication Model 

of  Parallel Platforms 

• There are two primary forms of data exchange

between parallel tasks - accessing a shared data space 

and exchanging messages. 

• Platforms that provide a shared data space are called 

shared-address-space machines or multiprocessors. 

• Platforms that support messaging are also called 

message passing platforms or multicomputers. 



Shared-Address-Space Platforms 

• Part (or all) of the memory is accessible to all 

processors. 

• Processors interact by modifying data objects stored in 

this shared-address-space. 

• If the time taken by a processor to access any memory 

word in the system global or local is identical, the 

platform is classified as a uniform memory access 

(UMA), else, a non-uniform memory access (NUMA) 

machine.



NUMA and UMA Shared-Address-Space 

Platforms 

Typical shared-address-space architectures: (a) Uniform-memory 

access shared-address-space computer; (b) Uniform-memory-

access shared-address-space computer with caches and 

memories; (c) Non-uniform-memory-access shared-address-space 

computer with local memory only.



NUMA and UMA 

Shared-Address-Space Platforms 

• The distinction between NUMA and UMA platforms is important 

from the point of view of algorithm design. NUMA machines 

require locality from underlying algorithms for performance. 

• Programming these platforms is easier since reads and writes are 

implicitly visible to other processors. 

• However, read-write data to shared data must be coordinated 

(this will be discussed in greater detail when we talk about threads 

programming). 

• Caches in such machines require coordinated access to multiple 

copies. This leads to the cache coherence problem. 



Shared-Address-Space 

vs. 

Shared Memory Machines
• It is important to note the difference between the terms 

shared address space and shared memory. 

• We refer to the former as a programming abstraction 

and to the latter as a physical machine attribute. 

• It is possible to provide a shared address space using 

a physically distributed memory. 



Message-Passing Platforms 

• These platforms comprise of a set of processors and 

their own (exclusive) memory. 

• Instances of such a view come naturally from clustered 

workstations and non-shared-address-space 

multicomputers. 

• These platforms are programmed using (variants of) 

send and receive primitives. 

• Libraries such as MPI and PVM provide such primitives. 



Message Passing 

vs. 

Shared Address Space Platforms
• Message passing requires little hardware support, 

other than a network. 

• Shared address space platforms can easily emulate 

message passing. The reverse is more difficult to do (in 

an efficient manner). 



Physical Organization 

of  Parallel Platforms 

We begin this discussion with an ideal parallel machine 

called Parallel Random Access Machine, or PRAM. 



Architecture of  an 

Ideal Parallel Computer 

• A natural extension of the Random Access Machine 

(RAM) serial architecture is the Parallel Random Access 

Machine, or PRAM. 

• PRAMs consist of p processors and a global memory 

of unbounded size that is uniformly accessible to all 

processors. 

• Processors share a common clock but may execute 

different instructions in each cycle. 



Architecture of  an 

Ideal Parallel Computer

• Depending on how simultaneous memory accesses are 

handled, PRAMs can be divided into four subclasses. 

– Exclusive-read, exclusive-write (EREW) PRAM. 

– Concurrent-read, exclusive-write (CREW) PRAM. 

– Exclusive-read, concurrent-write (ERCW) PRAM. 

– Concurrent-read, concurrent-write (CRCW) PRAM. 



Architecture of  an 

Ideal Parallel Computer 

• What does concurrent write mean, anyway? 

– Common: write only if all values are identical. 

– Arbitrary: write the data from a randomly selected processor. 

– Priority: follow a predetermined priority order. 

– Sum: Write the sum of all data items. 



Interconnection Networks 

for Parallel Computers 

• Interconnection networks carry data between 

processors and to memory. 

• Interconnects are made of switches and links (wires, 

fiber). 

• Interconnects are classified as static or dynamic. 

• Static networks consist of point-to-point communication 

links among processing nodes and are also referred to 

as direct networks. 

• Dynamic networks are built using switches and 

communication links. Dynamic networks are also 

referred to as indirect networks. 



Network Topologies: 

Completely Connected Network

• Each processor is connected to every other processor.

• The number of links in the network scales as O(p2).

• While the performance scales very well, the hardware 

complexity is not realizable for large values of p.

• In this sense, these networks are static counterparts of 

crossbars.



Network Topologies: Completely Connected 

and Star Connected Networks

Example of an 8-node completely connected network.

(a) A completely-connected network of eight nodes; 

(b) a star connected network of nine nodes.



Network Topologies: 

Star Connected Network

• Every node is connected only to a common node at the 

center.

• Distance between any pair of nodes is O(1). However, 

the central node becomes a bottleneck.

• In this sense, star connected networks are static 

counterparts of buses.



Network Topologies: 

Linear Arrays, Meshes, and k-d Meshes

• In a linear array, each node has two neighbors, one to 

its left and one to its right. If the nodes at either end are 

connected, we refer to it as a 1-D torus or a ring.

• A generalization to 2 dimensions has nodes with 4 

neighbors, to the north, south, east, and west.

• A further generalization to d dimensions has nodes with 

2d neighbors.

• A special case of a d-dimensional mesh is a hypercube. 

Here, d = log p, where p is the total number of nodes.



Network Topologies: Linear Arrays

Linear arrays: (a) with no wraparound links; (b) with 

wraparound link.



Network Topologies: 

Two- and Three Dimensional Meshes

Two and three dimensional meshes: (a) 2-D mesh with no 

wraparound; (b) 2-D mesh with wraparound link (2-D torus); and 

(c) a 3-D mesh with no wraparound.



Network Topologies: 

Hypercubes and their Construction

Construction of hypercubes from hypercubes of lower 

dimension.



Network Topologies: 

Properties of  Hypercubes

• The distance between any two nodes is at most log p.

• Each node has log p neighbors.

• The distance between two nodes is given by the number 

of bit positions at which the two nodes differ.



Network Topologies: Tree-Based Networks

Complete binary tree networks: (a) a static tree network; and (b) 

a dynamic tree network.



Network Topologies: Tree Properties 

• The distance between any two nodes is no more than 

2logp. 

• Links higher up the tree potentially carry more traffic than 

those at the lower levels. 

• For this reason, a variant called a fat-tree, fattens the 

links as we go up the tree. 

• Trees can be laid out in 2D with no wire crossings. 

This is an attractive property of trees. 



Network Topologies: Fat Trees

A fat tree network of 16 processing nodes.



Evaluating 

Static Interconnection Networks

• Diameter: The distance between the farthest two nodes in the 

network. The diameter of a linear array is p − 1, that of a mesh 

is 2(     − 1), that of a tree and hypercube is log p, and that of a 

completely connected network is O(1).

• Bisection Width: The minimum number of wires you must cut 

to divide the network into two equal parts. The bisection width 

of a linear array and tree is 1, that of a mesh is      , that of a 

hypercube is p/2 and that of a completely connected network 

is p2/4.

• Cost: The number of links or switches (whichever is 

asymptotically higher) is a meaningful measure of the cost. 

However, a number of other factors, such as the ability to 

layout the network, the length of wires, etc., also factor in to 

the cost.



Evaluating 

Static Interconnection Networks

Network Diameter 
Bisection

Width 

Arc 

Connectivity 

Cost 

(No. of links) 

Completely-connected 

Star 

Complete binary tree 

Linear array 

2-D mesh, no wraparound 

2-D wraparound mesh 

Hypercube 

Wraparound k-ary d-cube 



Communication Costs 

in Parallel Machines 

• Along with idling and contention, communication is a 

major overhead in parallel programs. 

• The cost of communication is dependent on a variety 

of features including the programming model 

semantics, the network topology, data handling and 

routing, and associated software protocols. 



Message Passing Costs in 

Parallel Computers

• The total time to transfer a message over a network 

comprises of the following:

– Startup time (ts): Time spent at sending and receiving nodes 

(executing the routing algorithm, programming routers, etc.).

– Per-hop time (th): This time is a function of number of hops and 

includes factors such as switch latencies, network delays, etc.

– Per-word transfer time (tw): This time includes all overheads 

that are determined by the length of the message. This 

includes bandwidth of links, error checking and correction, etc.



Store-and-Forward Routing 

• A message traversing multiple hops is completely 

received at an intermediate hop before being 

forwarded to the next hop.

• The total communication cost for a message of size m

words to traverse l communication links is

• In most platforms, th is small and the above expression 

can be approximated by



Routing Techniques

Passing a message from node P0 to P3 (a) through a store-and-

forward communication network; (b) and (c) extending the concept 

to cut-through routing. The shaded regions represent the time that 

the message is in transit. The startup time associated with this 

message transfer is assumed to be zero.



Cut-Through Routing 

• Takes the concept of packet routing to an extreme by 

further dividing messages into basic units called flits. 

• Since flits are typically small, the header information 

must be minimized. 

• This is done by forcing all flits to take the same path, in 

sequence. 

• A tracer message first programs all intermediate routers. 

All flits then take the same route. 

• Error checks are performed on the entire message, 

as opposed to flits. 

• No sequence numbers are needed. 



Simplified Cost Model for 

Communicating Messages

• The cost of communicating a message between two 

nodes l hops away using cut-through routing is given 

by

• In this expression, th is typically smaller than ts and 

tw. For this reason, the second term in the RHS does 

not show, particularly, when m is large.

• Furthermore, it is often not possible to control 

routing and placement of tasks.

• For these reasons, we can approximate the cost of 

message transfer by



Simplified Cost Model for 

Communicating Messages

• It is important to note that the original expression for 

communication time is valid for only uncongested 

networks. 

• If a link takes multiple messages, the corresponding tw
term must be scaled up by the number of messages. 

• Different communication patterns congest different 

networks to varying extents. 

• It is important to understand and account for this in the 

communication time accordingly. 



Routing Mechanisms 

for Interconnection Networks 

• How does one compute the route that a message takes 

from source to destination? 

– Routing must prevent deadlocks - for this reason, we use 

dimension-ordered or e-cube routing. 

– Routing must avoid hot-spots - for this reason, two-step 

routing is often used. In this case, a message from source s to 

destination d is first sent to a randomly chosen intermediate 

processor i and then forwarded to destination d. 



Routing Mechanisms 

for Interconnection Networks

Routing a message from node Ps (010) to node Pd (111) in a three-

dimensional hypercube using E-cube routing.



Mapping Techniques for Graphs 

• Often, we need to embed a known communication 

pattern into a given interconnection topology. 

• We may have an algorithm designed for one network, 

which we are porting to another topology. 

For these reasons, it is useful to understand mapping 

between graphs. 



Mapping Techniques for Graphs: Metrics 

• When mapping a graph G(V,E) into G’(V’,E’), the 

following metrics are important:

• The maximum number of edges mapped onto any edge 

in E’ is called the congestion of the mapping.

• The maximum number of links in E’ that any edge in E is 

mapped onto is called the dilation of the mapping.

• The ratio of the number of nodes in the set V’ to that in 

set V is called the expansion of the mapping.



Embedding a Linear Array 

into a Hypercube 

• A linear array (or a ring) composed of 2d nodes (labeled 

0 through 2d − 1) can be embedded into a d-dimensional 

hypercube by mapping node i of the linear array onto 

node

• G(i, d) of the hypercube. The function G(i, x) is defined 

as follows:

0



Embedding a Linear Array 

into a Hypercube

The function G is called the binary reflected Gray 

code (RGC).

Since adjoining entries (G(i, d) and G(i + 1, d)) differ 

from each other at only one bit position, corresponding 

processors are mapped to neighbors in a hypercube. 

Therefore, the congestion, dilation, and expansion of 

the mapping are all 1.



Embedding a Linear Array 

into a Hypercube: Example

(a) A three-bit reflected Gray code ring; and (b) its embedding into a 

three-dimensional hypercube.



Embedding a Mesh 

into a Hypercube

• A 2r× 2s wraparound mesh can be mapped to a 2r+s

node hypercube by mapping node (i, j) of the mesh onto 

node G(i, r− 1) || G(j, s − 1) of the hypercube (where || 

denotes concatenation of the two Gray codes).



Embedding a Mesh into a Hypercube

(a) A 4 × 4 mesh illustrating the mapping of mesh nodes to the nodes 

in a four-dimensional hypercube; and (b) a 2 × 4 mesh embedded into 

a three-dimensional hypercube.

Once again, the congestion, dilation, and expansion 

of the mapping is 1.



Embedding a Mesh into a Linear Array 

• Since a mesh has more edges than a linear array, we 

will not have an optimal congestion/dilation mapping. 

• We first examine the mapping of a linear array into a 

mesh and then invert this mapping. 

• This gives us an optimal mapping (in terms of 

congestion). 



Embedding a Mesh into a Linear Array: 

Example

(a) Embedding a 16 node linear array into a 2-D mesh; and (b) the 

inverse of the mapping. Solid lines correspond to links in the linear 

array and normal lines to links in the mesh.



Embedding a Hypercube into a 2-D Mesh

• Each        node subcube of the hypercube is mapped to 

a        node row of the mesh.

• This is done by inverting the linear-array to hypercube 

mapping.

• This can be shown to be an optimal mapping.



Embedding a Hypercube into a 2-D 

Mesh: Example 

Embedding a hypercube into a 2-D mesh.


