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Core problem classes in question? 

• Deterministic vs. stochastic actions

• Fully observable vs. partially observable environment
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Derministic action, fully observable environment
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• Imagine the case: The world stands known, „nearly“ symmetric, exhibits narrow 

and broad passageways; the robot is located in its‘ center (green blob) and not 

being aware of its‘ orientation (heading) targets towards the goal (red blob). 

Neither decisions are needed, nor uncertainty is present.

• The task for the robot is to attain the target (red blob)
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Stochastic action, fully observable environment (Markov Decision 

Process, MDP)

Payoff function and strategy in MDP:

(a) Deterministic consequence of an

applied action. Only unique pathway is

possible.

(b) Non-deterministic consequence of an

applied action. Multiple pathways are 

possible. 

Using deterministic models the robot: 

• More easily (reliably)  navigates

through narrow passageways

• Preferes even longer path to cases, in 

which action outputs are uncertain. The

aim is to supress the risk of a collision.
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Stochastic action, partially observable environment (POMDP)
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• Actions are „also“ dedicated to 

knowledge gathering in POMDP 

cases. 

• i.e. to attain the goal (red blob) with 

higher certainty than 50%, the 

probabilistic planner first navigates to 

a spot, where global orientation can be 

built. 

• Situation (upper case) shows a 

corresponding strategy and possible  

alternatives, that the robot/planner can 

choose to determine its‘ own position.

• Based on knowing its‘ own position, 

the robot/planner can find initial 

positions, which allow safe reaching of 

the goal (red blob)

(2 diverse cases are shown in the middle and 

the bottom figure)
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Markov decision process (Markov Decision Process - MDP)
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An example of Markov model (a graph) with state(s) s, and probabilities of transitions from <0,1>
and reward(s) r for reaching a state
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Which state is the Goal then?
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Markov Decision Process (MDP)

Let‘s presume:

• System states: x

• Admissible actions (controls): u

• Probabilities of transitions: u,x → x‘: p(x‘|u,x)

• Reward function for reaching a state: r(x,u)

The problem statement: 

A search for a strategy π(x), that maximizes the expected future reward r(x,u).
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Reward, Costst and Strategy I

• A strategy (generally said) zt stands for state observation, that has been achieved via 

applying of action ut:

• The Strategy in a fully observable case:

• Reward for the goal achievement is measured in a quantitative way, and comprises 2 basic 

and complementary components:

1. Cost (Value) function, that denotes “costs“ of execution of the given path. Measures „price for an 

action“

2. Reward (Payoff) function for attaining a state of the system, or a goal.  Mesures „success of an 

action execution“

• Both the preceeding components are integrated into a joint and unique Objective function. 

• The Objective function comprises future efforts spent on the next steps via the Cost/Value  

function and price for the so far executed steps through the Reward/Payoff function.

• In cases of uncertain position of the robot, the approach invokes reasoning in direction as: 

„Is raising certainty of reaching the desired goal worth the expected spent efforts?“  

p : z1:t-1,u1:t-1® ut

tt ux :
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Strategy choice I

•Expected (E - expectation) cumulative reward with decay γ:

Types of strategies

•T=1: single-step „greedy“ strategy

•T>1: finite horizon cases, finite reward - typically with no exponential decay,  γ = 1

•T→∞: infinite horizon case, finite reward on condition of exponential decay with γ < 1 (the series 

converges for every  r ≤ rmax)

•Expected cumulative reward for applying the strategy

•Best possible (optimal) strategy

Strategy alternatives may be:

Single-step strategy:

•Exhibits best possible (optimal)  strategy as

•The path cost function for single-step strategy as
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Strategy choice II

2 – step strategy:

• Optimal strategy

• Path cost function

T – step strategy, or infinite horizon strategy:

• Optimal strategy

• Path cost function

...or eventually the infinite horizon case as:

which for  T→ ∞ exhibits steady value of V∞(x) being entitled as Bellman law/equation.

Lemma: Every value V(x), that satisfies the Bellman law stands for both the necessary and 
satisfying conditions of optimality of teh corresponding strategy.  
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The strategy and costs iteration

• An algorithm to attain (iterate) optimal costs of the path in infinite state space 

(For spaces with finite number of states the integration can be replaced by summing 

over these states):

for all x do {iniciation of the V(x) value}

Eventually in a discrete form:

endfor

repeat until convergence Eventually in a discrete form in finite state-spaces:

for all x do

endfor

endrepeat

while the optimal strategy (an iteration of the strategy) can be calculated
from the expression:

...or in a dicrete form:
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An example – robot motion planning 
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• Obstacles (black spots), the graytone area stands for the cost function V(x) – higher values correspond 

to lighter spots. Applying the „greedy“ strategy using the given cost function leads always  to a solution (on 

condition, that position of the robot is observable)

• Important point is, that the cost function is defined for the whole environment, that allows to determine 

a strategy even in the case, in which the robot position is not precisely known (uncertain)

• What represents the action(s) in this case?  

• How would look a case with non-deterministic actions? 
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Costs iteration and/or the strategy choice? The experience...

• The best possible/optimal strategy is typically achieved before the price of the path
konverges (gets settled).

A varying cost function?

• Iteration of a strategy calculates/determines yet a new strategy. The new strategy is
always based on the present cost function. The new strategy subsequently denotes a 
new cost function. 

• The previous process mainly konverges to optimal much faster than in the cases which
fix  the cost function.  
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