ARO Homework 3: 2D beacon SLAM.

Karel Zimmermann, Libor Wagner

Robot has followed trajectory consisting of M unknown positions $\mathbf{x_j} \in \mathbb{R}^2, j=1\dots M$. From each j-th position, N distances $\mathbf{d_i^j} \in \mathbb{R}$ towards N different beacons at unknown locations $\mathbf{a_i} \in \mathbb{R}^2, i=1\dots N$ was measured. Given the set of $M \times N$ measured distances $\mathbf{d_i^j} \in \mathbb{R}$, reconstruct the trajectory and beacon positions.

- 1. Download $nlsq_d.npy$ data file, which contains $2 \times N \times M$ array with measured distances.
- 2. Formulate the problem as a overdetermined set of non-linear equations.
- 3. Linearize the problem and impose additional constrains. Iteratively solve the problem.
- 4. Draw reconstructed trajectory and beacons into a common figure.