ARO Homework 3: 2D beacon SLAM.

Karel Zimmermann, Libor Wagner

Robot has followed trajectory consisting of M unknown positions $\mathbf{x}_{\mathbf{j}} \in$ $\mathrm{R}^{2}, j=1 \ldots M$. From each j-th position, N distances $\mathbf{d}_{\mathbf{i}}^{\mathbf{j}} \in \mathrm{R}$ towards N different beacons at unknown locations $\mathbf{a}_{\mathbf{i}} \in \mathrm{R}^{2}, i=1 \ldots N$ was measured. Given the set of $M \times N$ measured distances $\mathbf{d}_{\mathbf{i}}^{\mathbf{j}} \in \mathrm{R}$, reconstruct the trajectory and beacon positions.

1. Download nlsq_d.npy data file, which contains $2 \times N \times M$ array with measured distances.
2. Formulate the problem as a overdetermined set of non-linear equations.
3. Linearize the problem and impose additional constrains. Iteratively solve the problem.
4. Draw reconstructed trajectory and beacons into a common figure.
