
Arrays, Strings, and Pointers

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 04

B3B36PRG – C Programming Language

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 1 / 70

Overview of the Lecture
Part 1 – Arrays
Arrays
Variable-Length Array
Multidimensional Arrays
Initialization
Arrays and Pointers K. N. King: chapters 8 and 12

Part 2 – Strings
String Literals
String Variable
Reading Strings
C String Library K. N. King: chapters 13

Part 3 – Pointers
Pointers
const Specifier
Pointers to Functions
Dynamic Allocation K. N. King: chapters 11, 12, 17

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 2 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Part I

Arrays

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 3 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Array

Data structure to store several values of the same type

0 1 2 3 4 5Variable

The variable name represents the address of the memory where the
first element of the array is stored
The array is declared as type array_name[No. of elements]

No. of elements is an constant expression

In C99, the size of the array can be computed during run time
(as a non constant expression)

It is called Variable-Length Arrays

Array represents a continuous block of memory
Array declaration as a local variable allocates the memory from the
stack (if not defined as static) gcc

Array variable is passed to a function as a pointer

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 5 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Arrays – Example 1/2
Example of the array declaration

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int array[10];
6
7 for (int i = 0; i < 10; i++) {
8 array[i] = i;
9 }

10
11 int n = 5;
12 int array2[n * 2];
13
14 for (int i = 0; i < 10; i++) {
15 array2[i] = 3 * i - 2 * i * i;
16 }
17
18 printf("Size of array: %lu\n", sizeof(array));
19 for (int i = 0; i < 10; ++i) {
20 printf("array[%i]=%+2i \t array2[%i]=%6i\n", i,

array[i], i, array2[i]);
21 }
22 return 0;
23 }

Size of array: 40
array[0]=+0 array2[0]= 0
array[1]=+1 array2[1]= 1
array[2]=+2 array2[2]= -2
array[3]=+3 array2[3]= -9
array[4]=+4 array2[4]= -20
array[5]=+5 array2[5]= -35
array[6]=+6 array2[6]= -54
array[7]=+7 array2[7]= -77
array[8]=+8 array2[8]= -104
array[9]=+9 array2[9]= -135

lec04/demo-array.c

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 6 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Arrays – Example 2/2
Example of the array declaration with initialization

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int array[5] = {0, 1, 2, 3, 4};
6
7 printf("Size of array: %lu\n", sizeof(array));
8 for (int i = 0; i < 5; ++i) {
9 printf("Item[%i] = %i\n", i, array[i]);

10 }
11 return 0;
12 }

Size of array: 20
Item[0] = 0
Item[1] = 1
Item[2] = 2
Item[3] = 3
Item[4] = 4

lec04/array-init.c

Array initialization
double d[] = {0.1, 0.4, 0.5}; // initialization of the array

char str[] = "hallo"; // initialization with the text literal

char s[] = {’h’, ’a’, ’l’, ’l’, ’o’, ’\0’}; //elements

int m[3][3] = { { 1, 2, 3 }, { 4 , 5 ,6 }, { 7, 8, 9 }}; // 2D array

char cmd[][10] = { "start", "stop", "pause" };

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 7 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Variable-Length Array
C99 allows to determined the size of the array during program
runtime

Previous versions of C requires compile-time size of the array.

Array size can be a function argument
void fce(int n)
{

// int local_array[n] = { 1, 2 }; initialization is not allowed
int local_array[n]; // variable length array

printf("sizeof(local_array) = %lu\n", sizeof(local_array));
printf("length of array = %lu\n", sizeof(local_array) / sizeof(int));
for (int i = 0; i < n; ++i) {

local_array[i] = i * i;
}

}
int main(int argc, char *argv[])
{

fce(argc);
return 0;

} lec04/fce_var_array.c

Variable-length array cannot be initialized in the declaration
Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 9 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Variable-Length Array (C99) – Example

1 #include <stdio.h>
2

3 int main(void)
4 {
5 int i, n;
6 printf("Enter number of integers to be read: ");
7 scanf("%d", &n);
8

9 int a[n]; /* variable length array */
10 for (i = 0; i < n; ++i) {
11 scanf("%d", &a[i]);
12 }
13 printf("Entered numbers in reverse order: ");
14 for (i = n - 1; i >= 0; --i) {
15 printf(" %d", a[i]);
16 }
17 printf("\n");
18 return 0;
19 }

lec04/vla.c

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 10 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Multidimensional Arrays
Array can be declared as multidimensional, e.g., two-dimensional
array for storing a matrix

int m[3][3] = {
{ 1, 2, 3 },
{ 4, 5, 6 },
{ 7, 8, 9 }

};

printf("Size of m: %lu == %lu\n",
sizeof(m), 3*3*sizeof(int));

for (int r = 0; r < 3; ++r) {
for (int c = 0; c < 3; ++c) {

printf("%3i", m[r][c]);
}
printf("\n");

}

Size of m: 36 == 36
1 2 3
4 5 6
7 8 9

lec04/matrix.c

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 12 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Multidimensional Array and Memory Representation
Multidimensional array is always a continuous block of memory

E.g., int a[3][3]; represents allocated memory of the size
9*sizeof(int), i.e., usually 36 bytes.

int m[3][3] = { { 1, 2, 3 }, { 4, 5, 6}, { 7, 8, 9 } };

int *pm = (int *)m; // pointer to an allocated continuous memory block
printf("m[0][0]=%i m[1][0]=%i\n", m[0][0], m[1][0]); // 1 4
printf("pm[0]=%i pm[3]=%i\n", m[0][0], m[1][0]); // 1 4

lec04/matrix.c

1 2 3 4 5 6 7 8 9

Row 0 Row 1 Row 2

Two-dimensional array can be declared as point to a pointer, e.g.,
int **a; – pointer to pointer of the int value(s)
A pointer does not necessarily refer to a continuous memory
Therefore, when accessing to a as to one-dimensional array

int *b = (int *)a;
the access to the second (and further) row cannot be guaranteed
as in the above example

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 13 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Array Initialization

An array (as any other variable) is not initialized by default
The array can be explicitly initialized by listing the particular
values in { and }

int a[5]; // elements of the array a are not initialized

/* elements of the array b are initialized
to the particular values in the given order */

int b[5] = { 1, 2, 3, 4, 5 };

In C99, designated initializers can be used to explicitly initialize
specific elements only
Using designated initializers it is not no longer needed to preserve
the order

int a[5] = { [3] = 1, [4] = 2 };

int b[5] = { [4] = 6, [1] = 0 };

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 15 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Initialization of Multidimensional Array
Multidimensional array can be also initialized during the declaration

Two-dimensional array is initialized row by row.

Using designated initializers, the other elements are set to 0
void print(int m[3][3])
{

for (int r = 0; r < 3; ++r) {
for (int c = 0; c < 3; ++c) {

printf("%4i", m[r][c]);
}
printf("\n");

}
}

int m0[3][3];
int m1[3][3] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int m2[3][3] = { 1, 2, 3 };
int m3[3][3] =
{ [0][0] = 1, [1][1] = 2, [2][2] = 3 };

print(m0);
print(m1);
print(m2);
print(m3);

m0 - not initialized
-584032767743694227

0 1 0
740314624 0 0

m1 - init by rows
1 2 3
4 5 6
7 8 9

m2 - partial init
1 2 3
0 0 0
0 0 0

m3 - indexed init
1 0 0
0 2 0
0 0 3

lec04/array_inits.c

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 16 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Array vs Pointer 1/2
Variable of the type array of int values
int a[3] = {1,2,3};

a refers to the address of the 1st element of a

Pointer variable int *p = a;
Pointer p contains the address of the 1st element

Value a[0] directly represents the value
at the address 0x10.

p=a;

0x10

1

2

3

0x10

0x14

0x18

p 0x13

names

variable
memory

a

int a[3]={1,2,3};

Value of p is the address 0x10, where the value of the 1st element
of the array is stored
Assignment statement p = a is legal

A compiler sets the address of the first element to the pointer.

Access to the 2nd element can be made by a[1] or p[1]
Both ways provide the requested elements; however, pointer
access is based on the Pointer Arithmetic

Further details about pointer arithmetic later in this lecture
Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 18 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Array vs Pointer 2/2
Pointer refers to the dedicated memory of some variable

We consider a proper usage of the pointers (without dynamic allocation for now).

Array is a mark (name) to a continuous block of memory space
int *p; //pointer (address) where a value of int type is stored
int a[10]; //a continuous block of memory for 10 int values

sizeof(p); //no.of bytes for storing the address (8 for 64-bit)
sizeof(a); //size of the allocated array is 10*sizeof(int)

Both variables refer to a memory space; however, the compiler
works differently with them

Array variable is a symbolic name of the memory space, where
values of the array’s elements are stored
Compiler (linker) substitute the name with a particular direct memory address
Pointer contains an address, at which the particular value is stored
(indirect addressing)

http://eli.thegreenplace.net/2009/10/21/are-pointers-and-arrays-equivalent-in-c

Passing array to a function, it is passed as a pointer!
Viz compilation of the lec01/main_env.c file by clang

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 19 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Example – Passing Array to Function 1/2
Array is an argument of the function fce()

1 void fce(int array[])
2 {
3 int local_array[] = {2, 4, 6};
4 printf("sizeof(array) = %lu -- sizeof(local_array) = %

lu\n",
5 sizeof(array), sizeof(local_array));
6 for (int i = 0; i < 3; ++i) {
7 printf("array[%i]=%i local_array[%i]=%i\n", i,

array[i], i, local_array[i]);
8 }
9 }

10 ...
11 int array[] = {1, 2, 3};
12 fce(array); lec04/fce_array.c

Compiled program (by gcc -std=c99 at amd64) provides
sizeof(array) returns the seize of 8 bytes (64-bit address)
sizeof(local_array) returns 12 bytes (3×4 bytes– int)

Array is passed to a function as a pointer to the first
element!

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 20 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Example – Passing Array to Function 2/2

The clang compiler (with default settings) warns the user about
using int* instead of int[]
fce_array.c:7:16: warning: sizeof on array function

parameter will return size of ’int *’ instead of ’int
[]’ [-Wsizeof-array-argument]

sizeof(array), sizeof(local_array));
^

fce_array.c:3:14: note: declared here
void fce(int array[])

^
1 warning generated.

The program can be compiled anyway; however, we cannot rely on
the value of sizeof
Pointer does not carry information about the size of the allocated
memory!

For the array, the compiler may provide such a feature to warn user
about wrong usage!

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 21 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Example – Passing Pointer to Array
Using only a pointer to an array, the array length is not known
Therefore, it is desirable to also pass number of elements n explicitly

1 #include <stdio.h>
2
3 void fce(int *array, int n) //array is local variable (pointer)
4 { // we can modify the memory defined main()
5 int local_array[] = {2, 4, 6};
6 printf("sizeof(array) = %lu, n = %i -- sizeof(local_array) =

%lu\n",
7 sizeof(array), n, sizeof(local_array));
8 for (int i = 0; i < 3 && i < n; ++i) { // ! Do the test for

n
9 printf("array[%i]=%i local_array[%i]=%i\n", i, array[i],

i, local_array[i]);
10 }
11 }
12 int main(void)
13 {
14 int array[] = {1, 2, 3};
15 fce(array, sizeof(array)/sizeof(int)); // number of elements
16 return 0;
17 } lec04/fce_pointer.c

Using array in fce() we can access to the array declared in main()
Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 22 / 70

Arrays Variable-Length Array Multidimensional Arrays Initialization Arrays and Pointers

Array as a Function Argument

A pointer to an array, e.g., array of the int type
int (*p)[3] = m; // pointer to array of int

printf("Size of p: %lu\n", sizeof(p));
printf("Size of *p: %lu\n", sizeof(*p)); // 3 * sizeof(int) = 12

Size of p: 8
Size of *p: 12

Function argument cannot be declared as the type [][], e.g.,
int fce(int a[][]) × not allowed

a compiler cannot determine the index for accessing the array
elements, for a[i][j] the address arithmetic is used differently
For int m[row][col] the element m[i][j] is at the address *(m + col * i + j)

It is possible to declare a function as follows:

int g(int a[]); which corresponds to int g(int *a)
int fce(int a[][13]); – the number of columns is known
or int fce(int a[3][3]);
or in C99 as int fce(int n, int m, int a[n][m]); or
int fce(int m, int a[]n[m]);

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 23 / 70

String Literals String Variable Reading Strings C String Library

Part II

Strings

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 24 / 70

String Literals String Variable Reading Strings C String Library

String Literals

It is a sequence of characters (and control characters – escape
sequences) enclosed within double quotes:

"String literal with the end of line \n"

String literals separated by white spaces are joined together, e.g.,
"String literal" "with the end of line \n"

is concatenated to
"String literal with the end of line \n"

String literal is stored in array of char values terminated by the
character ’\0’, e.g., string literal "word" is stored as

’w’ ’o’ ’r’ ’d’ ’\0’

The length of the array must be longer than the text itself!

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 26 / 70

String Literals String Variable Reading Strings C String Library

Referencing String Literal

String literal can be used wherever char* pointer can be used
The pointer char* p = "abc";
points to the first character of the literal given literal "abc"
String literal can be referenced by pointer to char; the type char*

char *sp = "ABC";
printf("Size of ps %lu\n", sizeof(sp));
printf(" ps ’%s’\n", sp);

Size of ps 8
ps ’ABC’

Size of the pointer is 8 bytes (64-bit architecture)
String has to be terminated by ’\0’

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 27 / 70

String Literals String Variable Reading Strings C String Library

String Literals, Character Literals

Pointers can be subscripted, and thus also string literals can be
subscripted, e.g.,

char c = "abc"[2];
A function to convert integer digit to hexadecimal character can be
defined as follows

char digit_to_hex_char(int digit)
{

return "0123456789ABCDEF"[digit];
}

Having a pointer to a string literal, we can attempt to modify it
char *p = "123";

*p = ’0’; // This may cause undefined behaviour!

Notice, the program may crash or behave erratically!

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 28 / 70

String Literals String Variable Reading Strings C String Library

String Variables
Any one-dimensional array of characters can be used to store a
string
Initialization of a string variable

char str[9] = "B3B36PRG"; // declaration with the size

Compiler automatically adds the ’\0’
There must be space for it

Initialization can be also by particular elements
char str[9] = { ’B’, ’3’, ’B’, ’3’, ’6’, ’P’, ’R’, ’G’, ’\0’ };

Do not forget null character!
If the size of the array is declared larger than the actual initializing
string, the rest of elements is set to ’\0’

Consistent behaviour of the array initialization.

Specification of the length of the array can be omitted – it will be
computed by the compiler

char str[] = "B3B36PRG";

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 30 / 70

String Literals String Variable Reading Strings C String Library

Example – Initialization of String Variables

String variables can be initialized as an array of characters
char str[] = "123";
char s[] = {’5’, ’6’, ’7’ };

printf("Size of str %lu\n", sizeof(str));
printf("Size of s %lu\n", sizeof(s));
printf("str ’%s’\n", str);
printf(" s ’%s’\n", s);

Size of str 4
Size of s 3
str ’123’
s ’567123’ lec04/array_str.c

If the string is not terminated by ’\0’, as for the char s[]
variable, the listing continues to the first occurrence of ’\0’

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 31 / 70

String Literals String Variable Reading Strings C String Library

Character Arrays vs. Character Pointers
The string variable is a character array, while pointer can refers to
string literal
char str1[] = "B3B36PRG"; // initialized string variable
char *str2 = "B3B36PRG"; // pointer to string literal

printf("str1 \"%s\"\n", str1);
printf("str2 \"%s\"\n", str2);

printf("size of str1 %u\n", sizeof(str1));
printf("size of str2 %u\n", sizeof(str2));

lec04/string_var_vs_ptr.c

The pointer just refers to the string literal you cannot modify it, it
does not represents a writable memory

However, using dynamically allocated memory we can allocate desired
amount of space, later in this lecture.

Pointer to the first element of the array (string) can be used instead
#define STR_LEN 10 // best practice for string lengths
char str[STR_LEN + 1] // to avoid forgetting \0
char *p = str;

Notice the practice for defining size of string.
Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 32 / 70

String Literals String Variable Reading Strings C String Library

Reading Strings 1/2

Program arguments are passed to the program as arguments of
the main() function

int main(int argc, char *argv[])
Appropriate memory allocation is handled by compiler and loader

Reading strings during the program can be performed by scanf()
Notice, using a simple control character %s may case erratic
behaviour, characters may be stored out of the dedicated size

char str0[4] = "PRG"; // +1 \0
char str1[5]; // +1 for \0
printf("String str0 = ’%s’\n", str0);
printf("Enter 4 chars: ");
scanf("%s", str1);
printf("You entered string ’%s’\n", str1);
printf("String str0 = ’%s’\n", str0);

Example of the program output:

String str0 = ’PRG’

Enter 4 chars: 1234567
You entered string ’1234567’

String str0 = ’67’
lec04/str_scanf-bad.c

Reading more characters than the size of the array str1 causes
overwriting the elements of str0

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 34 / 70

String Literals String Variable Reading Strings C String Library

Reading Strings 2/2
The maximal number of characters read by the scanf() can be
set to 4 by the control string "%4s"

char str0[4] = "PRG";
char str1[5];
...
scanf("%4s", str1);
printf("You entered string ’%s’\n", str1);
printf("String str0 = ’%s’\n", str0);

Example of the program output:

String str0 = ’PRG’
Enter 4 chars: 1234567
You entered string ’1234’
String str0 = ’PRG’

lec04/str_scanf-limit.c

scanf() skips white space before starting to read the string

Alternative function to read strings from the stdin can be
gets() or character by character using getchar()

gets() reads all characters until it finds a new-line character
E.g., ’\n’

getchar() – read characters in a loop

scanf() and gets() automatically add ’\0’ at the end of the
string

For your custom readl_line, you have to care about it by yourself.
Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 35 / 70

String Literals String Variable Reading Strings C String Library

Getting the Length of the String

In C, string is an array (char[]) or pointer (char*) refering to a
part of the memory where sequence of characters is stored
String is terminated by the ’\0’ character
Length of the string can be determined by sequential counting of
the characters until the ’\0’ character

int getLength(char *str)
{

int ret = 0;
while (str && (*str++) != ’\0’) {

ret++;
}
return ret;

}

for (int i = 0; i < argc; ++i) {
printf("argv[%i]: getLength = %i -- strlen = %lu\n",

i, getLength(argv[i]), strlen(argv[i]));
}

String functions are in standard
string library <string.h>

String length – strlen()

The string length query has
linear complexity O(n).

lec04/string_length.c

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 37 / 70

String Literals String Variable Reading Strings C String Library

Selected Function of the Standard C Library

The <string.h> library contains function for copying and
comparing strings

char* strcpy(char *dst, char *src);
int strcmp(const char *s1, const char *s2);
Functions assume sufficient size of the allocated memory for the
strings
There are functions with explicit maximal length of the strings
char* strncpy(char *dst, char *src, size_t len);
int strncmp(const char *s1, const char *s2, size_t len);

Parsing a string to a number – <stdlib.h>
atoi(), atof() – parsing integers and floats
long strtol(const char *nptr, char **endptr, int base);
double strtod(const char *nptr, char **restrict endptr);

Functions atoi() and atof() are „obsolete“, but can be faster
Alternatively also sscanf() can be used

See man strcpy, strncmp, strtol, strtod, sscanf

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 38 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Part III

Pointers

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 39 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Pointers – Overview
Pointer is a variable to store a memory address
Pointer is declared as an ordinary variable, where the name must
be preceded by an asterisk, e.g., int *p;
Two operators are directly related to pointers

& – Address operator
&variable

Returns address of the variable

* – Indirection operator
*pointer_variable

Returns l-value corresponding to the value at the address stored
in the pointer variable

The address can be printed using "%p" in printf()
Guaranteed invalid memory is defined as NULL or just as 0 (in C99)
Pointer to a value of the empty type is void *ptr;

Variables are not automatically initialized in C.
Pointers can reference to an arbitrary address

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 41 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Declaring Pointer Variables
Declaration of ordinary variables provide the way to “mark” a mem-
ory with the value to use the mark in the program
Pointers work in similar way, but the value can be any memory
address, e.g., where the value of some other variable is actually
stored

int *p; // points only to integers
double *q; // points only to doubles
char *r; // points only to characters

int i; // int variable i
int *pi = &i; //pointer to the int value

//the value of pi is the address
//where the value of i is stored

*pi = 10; // will set the value of i to 10

Without the allocated memory, we cannot set the value using pointer
and indirection operator

int *p;
*p = 10; //Wrong, p points to somewhere in the memory

//The program can behave erratically
Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 42 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Pointer Arithmetic
Arithmetic operations + and − are defined for pointers and integers

pointer = pointer of the same type +/- and integer number (int)
Alternatively shorter syntax can be used, e.g., pointer += 1 and
unary operators, e.g., pointer++

Arithmetic operations are useful if the pointer refers to memory
block where several values of the same type are stored, e.g.,

array (i.e., passed to a function)
dynamically allocated memory

Adding an int value and the pointer, the results is the address to
the next element, e.g.,
int a[10];
int *p = a;

int i = *(p+2); // refers to address of the 3rd element
According to the type of the pointer, the address is appropriately
increased (or decreased)
(p+2) is equivalent to the address computed as

address of p + 2*sizeof(int)

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 43 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Pointer Arithmetic, Arrays, and Subscripting
Arrays passed as arguments to functions are pointers to the first
element of the array
Using pointer arithmetic, we can address particular elements
We can use subscripting operator [] to access particular element

The compiler uses p[i] as *(p+i)1 #define N 10
2

3 int a[N];
4 int *pa = a;
5 int sum = 0;
6

7 for (int i = 0; i < N; ++i) {
8 *(pa+i) = i; // initialization of the array a
9 }

10 int *p = &a[0]; // address of the 1st element
11 for (int i = 0; i < N; ++i, ++p) {
12 printf("array[%i] = %i\n", i, pa[i]);
13 sum += *p; // add the value at the address of p
14 }

Even though the internal representation is different – we can use
pointers as one-dimensional arrays almost transparently.

Special attention must be taken for memory allocation and multidimensional arrays!
Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 44 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Example – Pointer Arithmetic
1 int a[] = {1, 2, 3, 4};
2 int b[] = {[3] = 10, [1] = 1, [2] = 5, [0] = 0}; //initialization
3
4 // b = a; It is not possible to assign arrays
5 for (int i = 0; i < 4; ++i) {
6 printf("a[%i] =%3i b[%i] =%3i\n", i, a[i], i, b[i]);
7 }
8
9 int *p = a; //you can use *p = &a[0], but not *p = &a

10 a[2] = 99;
11
12 printf("\nPrint content of the array ’a’ with pointer arithmetic\n");
13 for (int i = 0; i < 4; ++i) {
14 printf("a[%i] =%3i p+%i =%3i\n", i, a[i], i, *(p+i));
15 }

a[0] = 1 b[0] = 0
a[1] = 2 b[1] = 1
a[2] = 3 b[2] = 5
a[3] = 4 b[3] = 10

Print content of the array ’a’ using pointer arithmetic
a[0] = 1 p+0 = 1
a[1] = 2 p+1 = 2
a[2] = 99 p+2 = 99
a[3] = 4 p+3 = 4 lec04/array_pointer.c

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 45 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Pointer Arithmetic – Subtracting
Subtracting an integer from a pointer

int a[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

int *p = &a[8]; // p points to the 8th element (starting from 0)

int *q = p - 3; // q points to the 5th element (starting from 0)

p -= 6; // p points to the 2nd element (starting from 0)

Subtracting one pointer from another, e.g.,
int i
int *q = &a[5];
int *p = &a[1];

i = p - q; // i is 4
i = q - p; // i is -4

The result is a the distance between the pointers (no. of elements)
Subtracting one pointer from another is undefined unless both
point to elements of the same array

Performing arithmetic on a pointer that does not point to an array
element causes undefined behaviour.

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 46 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Pointers as Arguments
Pointers can be used to pass the memory addressed of same
variable to a function
Then, using the pointer, the memory can be filled by a new value,
e.g., like in the scanf() function
Consider an example of swapping values of two variables
1 void swap(int x, int y)
2 {
3 int z;
4 z = x;
5 x = y;
6 y = z;
7 }
8 int a, b;
9 swap(a, b);

1 void swap(int *x, int *y)
2 {
3 int z;
4 z = *x;
5 *x = *y;
6 *y = z;
7 }
8 int a, b;
9 swap(&a, &b);

The left variant does not propagate the local changes to the
calling function

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 47 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Pointers as Return Values
A function may also return a pointer value
Such a return value can be a pointer to an external variable
It can also be a local variable declared static
Never return a pointer to an automatic local variable

1 int* fnc(void)
2 {
3 int i; // i is a local (automatic) variable
4 // allocated on the stack
5 ... // it is valid only within the function
6 return &i; // passsing pointer to the i is legal,
7 // but the address will not be valid
8 // address of the automatically
9 // destroyed local variable a

10 // after ending the function
11 }

Returning pointer to dynamically allocated memory is OK
Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 48 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Specifier const

Using the keyword const a variable is declared as constant
Compiler check assignment to such a variable

The constant variable can be declared, e.g.,
const float pi = 3.14159265;

In contrast to the symbolic constant
#define PI 3.14159265

Constant variables has type, and thus compiler can perform type
check

Reminder

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 50 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Pointers to Constant Variables and Constant Pointers
The keyword const can be writable before the type name or
before the variable name
There are 3 options how to define a pointer with const
(a) const int *ptr; – pointer to a const variable

Pointer cannot be used to change value of the variable
(b) int *const ptr; – constant pointer

The pointer can be set during initialization, but it cannot be set to
another address after that

(c) const int *const ptr; – constant pointer to a constant variable
Combines two cases above lec04/const_pointers.c

Further variants of (a) and (c) are
const int * can be written as int const *
const int * const can also be written as int const * const

const can on the left or on the right side from the type name

Further complex declarations can be, e.g., int ** const ptr;
A constant pointer to point to the int

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 51 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Example – Pointer to Constant Variable

It is not allowed to change variable using pointer to constant variable

1 int v = 10;
2 int v2 = 20;
3

4 const int *ptr = &v;
5 printf("*ptr: %d\n", *ptr);
6

7 *ptr = 11; /* THIS IS NOT ALLOWED! */
8

9 v = 11; /* We can modify the original variable */
10 printf("*ptr: %d\n", *ptr);
11

12 ptr = &v2; /* We can assign new address to ptr */
13 printf("*ptr: %d\n", *ptr);

lec04/const_pointers.c

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 52 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Example – Const Pointer
Constant pointer cannot be changed once it is initialized
Declaration int *const ptr; can be read from the right to the
left

ptr – variable (name) that is
*const – constant pointer
int – to a variable/value of the int type

1 int v = 10;
2 int v2 = 20;
3 int *const ptr = &v;
4 printf("v: %d *ptr: %d\n", v, *ptr);
5

6 *ptr = 11; /* We can modify addressed value */
7 printf("v: %d\n", v);
8

9 ptr = &v2; /* THIS IS NOT ALLOWED! */

lec04/const_pointers.c
Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 53 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Example – Constant Pointer to Constant Variable
Value of the constant pointer to a constant variable cannot be
change and the pointer cannot be used to change value of the
addressed variable
Declaration const int *const ptr; can be read from the right
to the left

ptr – variable (name) that is
*const – const pointer
const int – to a variable of the const int type

1 int v = 10;
2 int v2 = 20;
3 const int *const ptr = &v;
4

5 printf("v: %d *ptr: %d\n", v, *ptr);
6

7 ptr = &v2; /* THIS IS NOT ALLOWED! */
8 *ptr = 11; /* THIS IS NOT ALLOWED! */

lec04/const_pointers.c
Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 54 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Pointers to Functions
Implementation of a function is stored in a memory and similarly
as for a variable, we can refer a memory location with the function
implementation
Pointer to function allows to dynamically call a particular function
according to the value of the pointer
Function is identified (except the name) by its arguments and return
value. Therefore, these are also a part of the declaration of the
pointer to the function
Function (a function call) is the function name and (), i.e.,

return_type function_name(function arguments);
Pointer to a function is declared as

return_type (*pointer)(function arguments);
It can be used to specify a particular implementation, e.g., for sort-
ing custom data using the qsort() algorithm provided by the stan-
dard library <stdlib.h>

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 56 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Example – Pointer to Function 1/2

Indirection operator * is used similarly as for variables

double do_nothing(int v); /* function prototype */

double (*function_p)(int v); /* pointer to function */

function_p = do_nothing; /* assign the pointer */

(*function_p)(10); /* call the function */

Brackets (*function_p) “help us” to read the pointer definition
We can imagine that the name of the function is enclosed by the
brackets. Definition of the pointer to the function is similar to the
function prototype.

Calling a function using pointer to the function is similar to an
ordinary function call. Instead of the function name, we use the
variable of the pointer to the function type.

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 57 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Example – Pointer to Function 2/2

In the case of a function that returns a pointer, we use it similarly

double* compute(int v);

double* (*function_p)(int v);
^^^^^^^^^^^^^---- substitute a function name

function_p = compute;

Example of the pointer to function usage – lec04/pointer_fnc.c

Pointers to functions allows to implement a dynamic link of the
function call determined during the program run time

In object oriented programming, the dynamic link is a crucial
feature to implement polymorphism.

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 58 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Dynamic Storage Allocation
A dynamic memory allocation of the memory block with the size
can be performed by calling void* malloc(size);

from the <stdlib.h>

The size of the allocated memory (from the heap memory class) is
stored in the memory manager
The size is not a part of the pointer
Return value is of the void* type – cast is required
The programmer is fully responsible for the allocated memory

Example of the memory allocation for 10 values of the int type
1 int *int_array;
2 int_array = (int*)malloc(10 * sizeof(int));
The usage is similar to array (pointer arithmetic and subscripting)
The allocated memory must be explicitly released

void* free(pointer);
By calling free() the memory manager released the memory
associated to the pointer. The value of the pointer is not changed!

The pointer has the previous address, which is no longer valid!
Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 60 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Example – Dynamic Allocation 1/3

Allocation may fail – we can test the return value of the malloc()
E.g., our custom function for memory allocation check the return
value and terminate the program in a case of allocation fail

Since we want to fill the value of the pointer to the newly allocated
memory, we pass pointer to the pointer

1 void* allocate_memory(int size, void **ptr)
2 {
3 // use **ptr to store value of newlly allocated
4 // memery in the pointer ptr (i.e., the address the
5 // pointer ptr is pointed).
6
7

8 // call library function malloc to allocate memory
9 *ptr = malloc(size);

10

11 if (*ptr == NULL) {
12 fprintf(stderr, "Error: allocation fail");
13 exit(-1); /* exit program if allocation fail */
14 }
15 return *ptr;
16 } lec04/malloc_demo.c

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 61 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Example – Dynamic Allocation 2/3
For filling the memory (dynamically allocated array), just the ad-
dress of this array is sufficient
1 void fill_array(int* array, int size)
2 {
3 for (int i = 0; i < size; ++i) {
4 *(array++) = random();
5 }
6 }

After memory is released by calling free(), the pointer still points
to the previous address. Therefore, we can explicitly set it to guar-
anteed invalid address (NULL or 0) in our custom function.
Passing pointer to a pointer is required, otherwise we cannot null the original pointer.

1 void deallocate_memory(void **ptr)
2 {
3 if (ptr != NULL && *ptr != NULL) {
4 free(*ptr);
5 *ptr = NULL;
6 }
7 } lec04/malloc_demo.c

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 62 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Example – Dynamic Allocation 3/3

Example of usage

1 int main(int argc, char *argv[])
2 {
3 int *int_array;
4 const int size = 4;
5

6 allocate_memory(sizeof(int) * size, (void**)&int_array);
7 fill_array(int_array, size);
8 int *cur = int_array;
9 for (int i = 0; i < size; ++i, cur++) {

10 printf("Array[%d] = %d\n", i, *cur);
11 }
12 deallocate_memory((void**)&int_array);
13 return 0;
14 } lec04/malloc_demo.c

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 63 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Standard Function for Dynamic Allocation

malloc() – allocates a block of memory, but does not initialize it
calloc() – allocates a block of memory and clears it
realloc() – resizes a previously allocated block of memory

It tries to enlarge the previous block
If it it not possible, a new (larger) block is allocated.
The previous block is copied into the new one
The previous block is deleted
The return values points to the enlarged block

See man malloc, man calloc, man realloc

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 64 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

realloc()

The behaviour of the realloc() function is further specified
It does not initialize the bytes added to the block
If it cannot enlarge the memory, it returns null pointer and the old
memory block is untouched
If it is called with null pointer as the argument, it behaves as
malloc()
If it is called with 0 as the second argument, it frees the memory
block

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 65 / 70

Pointers const Specifier Pointers to Functions Dynamic Allocation

Restricted Pointers
In C99, the keyword restrict can be used in the pointer declara-
tion

int * restrict p;
The pointer declared using restrict is called restricted pointer
The main intent of the restricted pointers is that

If p points to an object that is later modified
Then that object is not accessed in any way other than through p

It is used in several standard functions, e.g., such as memcpy() and
memmove() from <string.h>

void *memcpy(void * restrict dst, const void * restrict src, size_t len);

void *memmove(void *dst, const void *src, size_t len);

In memcpy(), it indicates src and dst should not overlap, but it
does not guarantee that
It provides useful documentation, but its main intention is to
provide information to the compiler to produce more efficient code
(e.g., similarly to register keyword)

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 66 / 70

Part IV

Part 4 – Assignment HW 04

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 67 / 70

HW 04 – Assignment

Topic: Text processing – Grep
Mandatory: 3 points; Optional: 4 points; Bonus : none

Motivation: Memory allocation and string processing
Goal: Familiar yourself with string processing
Assignment:
https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw04

Read input file and search for a pattern
Optional assignment – carefull handling of error and possible (wrong)
inputs

Deadline: 25.03.2017, 23:59:59 PDT PDT – Pacific Daylight Time

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 68 / 70

Topics Discussed

Summary of the Lecture

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 69 / 70

Topics Discussed

Topics Discussed

Arrays
Variable-Length Arrays
Arrays and Pointers

Strings
Pointers

Pointer Arithmetic
Dynamic Storage Allocation

Next: Data types: struct, union, enum, and bit fields

Jan Faigl, 2017 B3B36PRG – Lecture 04: Arrays, Strings, and Pointers 70 / 70

