
Writing Program in C
Expressions and Control Structures
(Selection Statements and Loops)

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 02

B3B36PRG – C Programming Language

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 1 / 55

Overview of the Lecture

Part 1 – Expressions

Operators – Arithmetic, Relational, Logical, Bitwise, and Other

Associativity and Precedence

Assignment K. N. King: chapter 4 and 20

Part 2 – Control Structures: Selection Statements and Loops

Statements and Coding Styles

Selection Statements

Loops

Conditional Expression K. N. King: chapters 5 and 6

Part 3 – Assignment HW 02

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 2 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Part I

Part 1 – Expressions

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 3 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Expressions
Expression – prescribes calculation using operands, operators,
and brackets
Expression consists of

literals

variables

constants

unary and binary operators

function call

brackets
The order of operation evaluation is prescribed by the operator
precedence and associativity.

10 + x * y // order of the evaluation 10 + (x * y)
10 + x + y // order of the evaluation (10 + x) + y

* has higher priority than +
+ is associative from the left-to-right

A particular order of evaluation can be precisely prescribed by
fully parenthesized expression

Simply: If you are not sure, use brackets.

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 5 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Operators

Operators are selected characters (or a sequences of characters)
dedicated for writting expressions
Five types of binary operators can be distinguished

Arithmetic operators – additive (addition/subtraction) and multi-
plicative (multiplication/division)
Relational operators – comparison of values (less than, . . .)
Logical operators – logical AND and OR
Bitwise operators – bitwise AND, OR, XOR, bitwise shift (left, right)
Assignment operator = – a variable (l-value) is on its left side

Unary operators
Indicating positive/negative value: + and −

Operator − modifies the sign of the expression
Modifying a variable : ++ and −−
Logical negation: !
Bitwise negation: ∼

Ternary operator – conditional expression ? :
Reminder

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 6 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Arithmetic Operators

Operands of arithmetic operators can be of any arithmetic type
The only exception is the operator for the integer reminder %
defined for the int type

* Multiplication x * y Multiplication of x and y
/ Division x / y Division of x and y
% Reminder x % y Reminder from the x / y
+ Addition x + y Sum of x and y
- Subtraction x - y Subtraction x and y
+ Unary plus +x Value of x
- Unary minus -x Value of −x
++ Increment ++x/x++ Incrementation before/after the

evaluation of the expression x
-- Decrement --x/x-- Decrementation before/after the

evaluation of the expression x

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 7 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Integer Division

The results of the division of the operands of the int type is the
integer part of the division

E.g.. 7/3 is 2 and −7/3 is −2

For the integer reminder, it holds x%y = x − (x/y) ∗ y
E.g., 7 % 3 is 1 -7 % 3 is -1 7 % -3 is 1 -7 % -3 is -1

C99: The result of the integer division of negative values is the
value closer to 0.

It holds that (a/b)*b + a%b = a.

For older versions of C, the results depends on the compiler.

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 8 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Implementation-Defined Behaviour

The C standard deliberately leaves parts of the language
unspecified
Thus, some parts depend on the implementation, i.e., compiler,
environment, computer architecture

E.g., Reminder behavior for negative values and version of the C prior C99.

The reason for that is the focus of C on efficiency, i.e., match the
hardware behavior

Having this in mind, it is best rather to avoid writing programs
that depend on implementation-defined behavior.

K.N.King: Page 55

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 9 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Unary Arithmetic Operators

Unary operator (++ and −−) change the value of its operand
The operand must be the l-value, i.e., an expression that has memory
space, where the value of the expression is stored, e.g., a variable.

It can be used as prefix operator, e.g., ++x and −−x
or as postfix operator, e.g., x++ and x−−
In each case, the final value of the expression is different!

int i; int a; value of i value of a
i = 1; a = 9; 1 9
a = i++; 2 1
a = ++i; 3 3
a = ++(i++); Not allowed!, value of i++ is not the l-value

Notice, for the unary operator i++ it is necessary to store the previous
value of i and then the variable i is incremented. The expression ++i
only increments the value of i. Therefore, ++i can be more efficient.

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 10 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Relational Operators

Operands of relational operators can be of arithmetic type, pointers
(of the same type) or one operand can be NULL or pointer of the
void type

< Less than x < y 1 if x is less than y; otherwise 0
<= Less than or equal x <= y 1 if x is less then or equal to y;

otherwise 0
> Greater than x > y 1 if x is greater than y; otherwise 0
>= Greater than or equal x >= y 1 if x is greater than or equal to y;

otherwise 0
== Equal x == y 1 if x is equal to y; otherwise 0
!= Not equal x != y 1 if x is not equal to y; otherwise 0

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 11 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Logical operators
Operands can be of arithmetic type or pointers
Resulting value 1 means true, 0 means false
In the expressions && (Logical AND) and || (Logical OR), the left
operand is evaluated first
If the results is defined by the left operand, the right operand is
not evaluated

Short-circuiting behavior – it may speed evaluation of complex expressions in

runtime.

&& Logical AND x && y 1 if x and y is not 0; other-
wise 0

|| Logical OR x || y 1 if at least one of x, y is
not 0; otherwise 0

! Logical NOT !x 1 if x is 0; otherwise 0
Operands && a || have the short-circuiting behavior, i.e., the
second operand is not evaluated if the result can be determined
from the value of the first operand.

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 12 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Bitwise Operators

Bitwise operators treat operands as a series of bits
Low-Level Programming – A programming language is low level when its
programs require attention of the irrelevant. K.N.King: Chapter 20.

& Bitwise AND x & y 1 if x and y is equal to
1 (bit-by-bit)

| Bitwise inclusive OR x | y 1 if x or y is equal to 1
(bit-by-bit)

ˆ Bitwise exclusive or (XOR) x ˆ y 1 if only x or only y is 1
(bit-by-bit)

∼ Bitwise complement (NOT) ∼x 1 if x is 0 (bit-by-bit)

<< Bitwise left shift x << y Shift of x about y bits
to the left

>> Bitwise right shift x >> y Shift of x about y bits
to the right

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 13 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Bitwise Shift Operators

Bitwise shift operators shift the binary representation by a given
number of bits to the left or right

Left shift – Each bit shifted off a zero bit enters at the right
Right shift – Each bit shift off

a zero bit enters at the left – for positive values or unsigned types
for negative values, the entered bit it can be either 0 (logical shift)
or 1 (arithmetic shift right). Depends on the compiler.

Bitwise shift operators have lower precedence than the arithmetic
operators!

i << 2+ 1 means i << (2+ 1)
Do not be surprise – parenthesized the expression!

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 14 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Example – Bitwise Expressions

uint8_t a = 4;
uint8_t b = 5;

a dec: 4 bin: 0100
b dec: 5 bin: 0101
a & b dec: 4 bin: 0100
a | b dec: 5 bin: 0101
a ^ b dec: 1 bin: 0001

a >> 1 dec: 2 bin: 0010
a << 1 dec: 8 bin: 1000

lec02/bits.c

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 15 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Operators for Accessing Memory
Here, for completeness, details in the further lectures.

In C, we can directly access the memory address of the variable
The access is realized through a pointer

It allows great options, but it also needs responsibility.

Operator Name Example Result

& Address &x Pointer to x
* Indirection *p Variable (or function) ad-

dressed by the pointer p
[] Array sub-

scripting
x[i] *(x+i) – item of the array x

at the position i
. Structure/union

member
s.x Member x of the struct/union

s
-> Structure/union

member
p->x Member x of the struct/union

addressed by the pointer p
It is not allowed an operand of the & operator is a bit field or variable
of the register class.
Operator of the indirect address * allows to access to the memory
using pointers.

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 16 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Other Operators

Operator Name Example Result

() Function call f(x) Call the function f with the ar-gument x
(type) Cast (int)x Change the type of x to int
sizeof Size of the

item
sizeof(x) Size of x in bytes

? : Conditional x ? y : z Do y if x != 0; otherwise z
, Comma x, y Evaluate x and then y, the result

is the result of the last expression

The operand of sizeof() can be a type name or expression

int a = 10;
printf("%lu %lu\n", sizeof(a), sizeof(a + 1.0));

lec02/sizeof.c

Example of the comma operator
for (c = 1, i = 0; i < 3; ++i, c += 2) {

printf("i: %d c: %d\n", i, c);
}

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 17 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Cast Operator

Changing the variable type in runtime is called type case
Explicit cast is written by the name of the type in (), e.g.,

int i;
float f = (float)i;

Implicit cast is made automatically by the compiler during the pro-
gram compilation
If the new type can represent the original value, the value is pre-
served by the cast
Operands of the char, unsigned char, short, unsigned short,
and the bit field types can be used everywhere where it is allowed
to use int or unsigned int.

C expects at least values of the int type.

Operands are automatically cast to the int or unsigned int.

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 18 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Operators Associativity and Precedence

Binary operation op is associative on the set S if
(x op y) op z = x op(y op z), for each x , y , z ∈ S

For not associative operators, it is required to specify the order of
evaluation

Left-associative – operations are grouped from the left
E.g., 10 − 5 − 3 is evaluated as (10 − 5)− 3

Right-associative – operations are grouped from the right
E.g. 3 + 52 is 28 or 3 · 52 is 75 vs (3 · 5)2 is 225

The assignment is left-associative
E.g., y=y+8

First, the whole right side of the operator = is evaluated, and then,
the results are assigned to the variable on the left.

The order of the operator evaluation can be defined by the fully
parenthesized expression.

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 20 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Summary of the Operators and Precedence 1/3
Precedence Operator Associativity Name

1 ++ L→R Increment (postfix)

−− Decrementation (postfix)

() Function call

[] Array subscripting

. − > Structure/union member

2 ++ R→L Increment (prefix)

−− Decrementation (prefix)

! Logical negation

∼ Bitwise negation

− + Unary plus/minus

* Indirection

& Address

sizeof Size

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 21 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Summary of the Operators and Precedence 2/3

Precedence Operator Associativity Name

3 () R→L Cast

4 *, /, % L→R Multiplicative

5 + - Additive

6 >>, << Bitwise shift

7 <, >, <=, >= Relational

8 ==, != Equality

9 & Bitwise AND

10 ˆ Bitwise exclusive OR (XOR)

11 ˆ Bitwise inclusive OR (OR)

12 && Logical AND

13 || Logical OR

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 22 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Summary of the Operators and Precedence 3/3

Precedence Operator Associativity Name

14 ? : R→L Conditional

15 =

R→L

Assignment

+ =, − = additive

∗ =, / =, % = multiplicative

<<=, >>= bitwise shift

& =, ˆ=, | = Bitwise AND, XOR, OR

15 , L→R Comma

K. N. King: Page 735
http://en.cppreference.com/w/c/language/operator_precedence

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 23 / 55

http://en.cppreference.com/w/c/language/operator_precedence

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Simple Assignment
Set the value to the variable

Store the value into the memory space referenced by the variable name.

The form of the assignment operator is
〈variable〉 = 〈expression〉

Expression is literal, variable, function call, . . .

C is statically typed programming language
A value of an expression can be assigned only to a variable of the
same type Otherwise type case it necessary

Example of implicit type case

int i = 320.4; // implicit conversion from ’double’ to ’int’
changes value from 320.4 to 320 [-Wliteral-conversion]

char c = i; // implicit truncation 320 -> 64

C is type safe only within a limited context of the compilation,
e.g., for printf("%d\n", 10.1); A compiler reports an error
In general, C is not type safe

In runtime, it is possible to write out of the allocated memory space.

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 25 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Compound Assignment

A short version of the assignment to compute a new value of the
variable from itself:

〈variable〉 = 〈variable〉 〈operator〉 〈expression〉
can be written as

〈variable〉 〈operator〉 = 〈expression〉
Example

int i = 10;
double j = 12.6;

i = i + 1;
j = j / 0.2;

int i = 10;
double j = 12.6;

i += 1;
j /= 0.2;

Notice, assignment is an expression
The assignment of the value to the variable is a side effect

int x, y;

x = 6;
y = x = x + 6;

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 26 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Assignment Expression and Assignment Statement

The statement performs some action and it is terminated by ;
robot_heading = -10.23;
robot_heading = fabs(robot_heading);
printf("Robot heading: %f\n", robot_heading);

Expression has type and value
23 int type, value is 23
14+16/2 int type, value is 22
y=8 int type, value is 8

Assignment is expression and its value is assigned to the left side
The assignment expression becomes the assignment statement by
adding the semicolon

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 27 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Undefined Behaviour

There are some statements that can cause undefined behavior
according to the C standard.

c = (b = a + 2) - (a - 1);
j = i * i++;

The program may behaves differently according to the used com-
piler, but also may not compile or may not run; or it may even crash
and behave erratically, produce meaningless results.
It may also happened if variables are used without initialization

Avoid statements that may produce undefined behavior!

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 28 / 55

Operators – Arithmetic, Relational, Logical, Bitwise, and Other Associativity and Precedence Assignment

Example of Undefined Behaviour
Standard C does not defined the behaviour for the overflow of the
integer value (signed)

E.g., For the complement representation the expression can be
127 + 1 of the char equal to -128 (see lec02/demo-loop_byte.c)
Representation of integer values may depend on the architecture and
can be different, e.g., binary or inverse codes

Implementation of the defined behaviour can be computationally
expensive, and thus the behaviour is not defined by the standard
Behaviour is not defined and depends on the compiler, e.g. clang
and gcc without/with the optimization -O2

for (int i = 2147483640; i >= 0; ++i) {
printf("%i %x\n", i, i);

} lec02/int_overflow-1.c
Without the optimization, the program prints 8 lines, for -O2, the
program compiled by clang prints 9 lines and gcc produces infinite loop.
for (int i = 2147483640; i >= 0; i += 4) {

printf("%i %x\n", i, i);
} lec02/int_overflow-2.c
A program compiled by gcc with -O2 is crashing

Take a look to the asm code using the compiler parameter-S
Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 29 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

Part II

Part 2 – Control Structures: Selection
Statements and Loops

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 30 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

Statement and Compound Statement (Block)

Statement is terminated by ;
Statement consisting only of the semicolon is empty statement.

Block consists of sequences of declarations and statements
ANSI C, C89, C90: Declarations must be placed prior other
statements It is not necessary for C99

Start and end of the block is marked by the { and }

A block can be inside other block

void function(void)
{ /* function block start */

{/* inner block */
for (i = 0; i < 10; ++i)
{
//inner for-loop block
}

}
}

void function(void) { /* function
block start */

{ /* inner block */
for (int i = 0; i < 10; ++i) {
//inner for-loop block
}

}
}

Notice the coding styles.

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 32 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

Coding Style
It supports clarity and readability of the source code

https://www.gnu.org/prep/standards/html_node/Writing-C.html

Formatting of the code is the fundamental step
Setup automatic formatting in your text editor

Appropriate identifiers
Train yourself in coding style even at the cost of slower coding.
Readability and clarity is important, especially during debugging.

Notice, sometimes it can be better to start from scratch

Recommend coding style (PRG)
1 void function(void)
2 { /* function block start */
3 for (int i = 0; i < 10; ++i) {
4 //inner for-loop block
5 if (i == 5) {
6 break;
7 }
8 }
9 }

Use English, especially for
identifiers
Use nouns for variables
Use verbs for function names

Lecturer’s preference: indent shift 3, space characters rather than tabular.
Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 33 / 55

https://www.gnu.org/prep/standards/html_node/Writing-C.html

Statements and Coding Styles Selection Statements Loops Conditional Expression

Coding Styles – Links

There are many different coding styles
Inspire yourself by existing recommendations
Inspire yourself by reading representative source codes

http://users.ece.cmu.edu/~eno/coding/CCodingStandard.html

https://www.doc.ic.ac.uk/lab/cplus/cstyle.html

http://en.wikipedia.org/wiki/Indent_style

https://google.github.io/styleguide/cppguide.html

https://www.kernel.org/doc/Documentation/CodingStyle

https://google.github.io/styleguide/cppguide.html

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 34 / 55

http://users.ece.cmu.edu/~eno/coding/CCodingStandard.html
https://www.doc.ic.ac.uk/lab/cplus/cstyle.html
http://en.wikipedia.org/wiki/Indent_style
https://google.github.io/styleguide/cppguide.html
https://www.kernel.org/doc/Documentation/CodingStyle
https://google.github.io/styleguide/cppguide.html

Statements and Coding Styles Selection Statements Loops Conditional Expression

Control Statements

Selection Statement
Selection Statement: if () or if () ... else
Switch Statement: switch () case ...

Control Loops
for ()
while ()
do ... while ()

Jump statements (unconditional program branching)
continue
break
return
goto

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 35 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

Selection Statement – if
if (expression) statement1; else statement2
For expression != 0 the statement1 is executed; otherwise
statement2 The statement can be the compound statement

The else part is optional
Selection statements can be nested and cascaded

int max;
if (a > b) {

if (a > c) {
max = a;

}
}

int max;
if (a > b) {

...
} else if (a < c) {

...
} else if (a == b) {

...
} else {

...
}

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 37 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

The switch Statement

Allows to branch the program based on the value of the expression
of the enumerate (integer) type, e.g., int, char, short, enum
The form is

switch (expression) {
case constant1: statements1; break;
case constant2: statements2; break;
. . .
case constantn: statementsn; break;
default: statementsdef; break; }

where constants are of the same type as the expression and
statementsi is a list of statements
Switch statements can be nested

Semantics: First the expression value is calculated. Then, the statements under
the same value are executed. If none of the branch is selected, statementsdef
under default branch as performed (optional)

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 38 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

The switch Statement – Example

switch (v) {
case ’A’:

printf("Upper ’A’\n");
break;

case ’a’:
printf("Lower ’a’\n");
break;

default:
printf(
"It is not ’A’ nor ’a’\n");
break;

}

if (v == ’A’) {
printf("Upper ’A’\n");

} else if (v == ’a’) {
printf("Lower ’a’\n");

} else {
printf(
"It is not ’A’ nor ’a’\n");

}

lec02/switch.c

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 39 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

The Role of the break Statement
The statement break terminates the branch. If not presented, the
execution continues with the statement of the next case label

Example
1 int part = ?
2 switch(part) {
3 case 1:
4 printf("Branch 1\n");
5 break;
6 case 2:
7 printf("Branch 2\n");
8 case 3:
9 printf("Branch 3\n");

10 break;
11 case 4:
12 printf("Branch 4\n");
13 break;
14 default:
15 printf("Default branch\n");
16 break;
17 }

part ← 1
Branch 1

part ← 2
Branch 2
Branch 3

part ← 3
Branch 3

part ← 4
Branch 4

part ← 5
Default branch

lec02/demo-switch_break.c
Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 40 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

Loops
Loop statements for and while test the control-
ling expression before the enter to the loop body

for – initialization, condition, change of the con-
trolling variable can be a part of the syntax
for (int i = 0; i < 5; ++i) {

...
}
while – controlling variable out of the syntax
int i = 0;
while (i < 5) {

...
i += 1;

}

The do loop tests the controlling expression after
the first loop

int i = -1;
do {

...
i += 1;

} while (i < 5);

true

false

true
false

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 42 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

The for Loop

The basic form is: for (expr1; expr2; expr3) statement
All expri are expression and typically they are used for
1. expr1 – initialization of the controlling variable (side effect of the

assignment expression)
2. expr2 – Test of the controlling expression
3. If expr2 !=0 the statement is executed; Otherwise the loop is

terminated
4. expr3 – updated of the controlling variable (performed at the end

of the loop

Any of the expressions expri can be omitted
break statement – force termination of the loop
continue – force end of the current iteration of the loop

The expression expr3 is evaluated and test of the loop is performed.

An infinity loop can be written by omitting the expressions
for (;;) {...}

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 43 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

The continue Statement

It transfers the control to the evaluation of the controlling
expressions of the loops
The continue statement can be used inside the body of the loops

for ()
while ()
do...while ()

Examples

int i;
for (i = 0; i < 20; ++i) {

if (i % 2 == 0) {
continue;

}
printf("%d\n", i);

}
lec02/continue.c

for (int i = 0; i < 10; ++i) {
printf("i: %i ", i);
if (i % 3 != 0) {

continue;
}
printf("\n");

} lec02/demo-continue.c

clang demo-continue.c
./a.out
i:0
i:1 i:2 i:3
i:4 i:5 i:6
i:7 i:8 i:9

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 44 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

The break Statement – Force Termination of the Loop
The program continue with the next statement after the loop
Example in the while loop
int i = 10;
while (i > 0) {

if (i == 5) {
printf("i reaches 5, leave the loop\n");
break;

}
i--;
printf("End of the while loop i: %d\n", i);

} lec02/break.c

Example in the for loop
for (int i = 0; i < 10; ++i) {

printf("i: %i ", i);
if (i % 3 != 0) {

continue;
}
printf("\n");
if (i > 5) {

break;
}

}

clang demo-break.c
./a.out
i:0
i:1 i:2 i:3
i:4 i:5 i:6

lec02/demo-break.c

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 45 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

The goto Statement

Allows to transfers the control to the defined label
It can be used only within a function body

Syntax goto label;

The jump goto can jump only outside of the particular block
Can be used only within a function block

1 int test = 3;
2 for (int i = 0; i < 3; ++i) {
3 for (int j = 0; j < 5; ++j) {
4 if (j == test) {
5 goto loop_out;
6 }
7 fprintf(stdout, "Loop i: %d j: %d\n", i, j);
8 }
9 }

10 return 0;
11 loop_out:
12 fprintf(stdout, "After loop\n");
13 return -1;

lec02/goto.c

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 46 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

Nested Loops

The break statement terminates the inner loop

for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {

printf("i-j: %i-%i\n", i, j);
if (j == 1) {

break;
}

}
}

i-j: 0-0
i-j: 0-1
i-j: 1-0
i-j: 1-1
i-j: 2-0
i-j: 2-1

The outer loop can be terminated by the goto statement

for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 3; ++i) {

printf("i-j: %i-%i\n", i, j);
if (j == 2) {

goto outer;
}

}
}
outer:

i-j: 0-0
i-j: 0-1
i-j: 0-2

lec02/demo-goto.c

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 47 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

Example – isPrimeNumber() 1/2
#include <stdbool.h>
#include <math.h>

_Bool isPrimeNumber(int n)
{

_Bool ret = true;
for (int i = 2; i <= (int)sqrt((double)n); ++i) {

if (n % i == 0) {
ret = false;
break;

}
}
return ret;

} lec02/demo-prime.c

Once the first factor is found, call break to terminate the loop
It is not necessary to test other numbers

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 48 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

Example – isPrimeNumber() 2/2
The value of (int)sqrt((double)n) is not changing in the loop

for (int i = 2; i <= (int)sqrt((double)n); ++i) {
...

}
We can use the comma operator to initialize the maxBound variable

for (int i = 2, maxBound = (int)sqrt((double)n);
i <= maxBound; ++i) {

...
Or, we can declare maxBound as constant

_Bool ret = true;
const int maxBound = (int)sqrt((double)n);
for (int i = 2; i <= maxBound ; ++i) {

...
}

E.g., Compile and run demo-prime.c: clang demo-prime.c -lm; ./a.out 13
Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 49 / 55

Statements and Coding Styles Selection Statements Loops Conditional Expression

Conditional Expression – Example Greatest Common Divisor
1 int getGreatestCommonDivisor(int x, int y)
2 {
3 int d;
4 if (x < y) {
5 d = x;
6 } else {
7 d = y;
8 }
9 while ((x % d != 0) || (y % d ! = 0)) {

10 d = d - 1;
11 }
12 return d;
13 }

The same with the conditional expression: expr1 ? expr2 : expr3
1 int getGreatestCommonDivisor(int x, int y)
2 {
3 int d = x < y ? x : y;
4 while ((x % d != 0) || (y % d ! = 0)) {
5 d = d - 1;
6 }
7 return d;
8 } lec02/demo-gcd.c

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 51 / 55

Part III

Part 3 – Assignment HW 02

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 52 / 55

HW 02 – Assignment
Topic: Prime Factorization

Mandatory: 3 points; Optional: 5 points; Bonus : none

Motivation: Experience loops, variables and their internal
representation in a computational task

Goal: Familiar yourself with the algorithmic solution of the
computational task

Assignment:
https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw02

Read sequence of positive integer values, less than 108, but still rep-
resentable as 64-bit integer, and compute their prime factorization
using Sieve of Eratosthenes

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
Optional assignment – an extension of the prime factorization for
integer values with up to 100 digits. Notice, the input values are
such that, the the greatest number in the factorization is always less
than 106.

Deadline: 11.03.2017, 23:59:59 PST
PST – Pacific Standard Time

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 53 / 55

https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw02
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Topics Discussed

Summary of the Lecture

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 54 / 55

Topics Discussed

Topics Discussed

Expressions
Operators – Arithmetic, Relational, Logical, Bitwise, and others
Operator Associativity and Precedence
Assignment and Compound Assignment
Implementation-Defined Behaviour
Undefined Behaviour

Coding Styles
Select Statements
Loops
Conditional Expression

Next: Data types, memory storage classes, function call

Jan Faigl, 2017 B3B36PRG – Lecture 02: Writing your program in C 55 / 55

	1
	Operators – Arithmetic, Relational, Logical, Bitwise, and Other
	Associativity and Precedence
	Assignment

	2
	Statements and Coding Styles
	Selection Statements
	Loops
	Conditional Expression

	3
	Summary
	Topics Discussed

