
Introduction to C Programming

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 01

B3B36PRG – C Programming Language

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 1 / 80

Overview of the Lecture

Part 1 – Course Organization

Course Goals

Means of Achieving the Course Goals

Evaluation and Exam

Part 2 – Introduction to C Programming

Program in C

Values and Variables

Expressions

Standard Input/Output
K. N. King: chapters 1, 2, and 3

Part 3 – Assignment HW 01

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 2 / 80

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Part I

Part 1 – Course Organization

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 3 / 80

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Course and Lecturer

B3B36PRG – Programming in C

Course web page
https://cw.fel.cvut.cz/wiki/courses/b3b36prg

Submission of the homeworks – BRUTE Upload System
https://cw.felk.cvut.cz/brute and individually during the labs for
the homeworks with STM32F446 board

Lecturer:

doc. Ing. Jan Faigl, Ph.D.

Department of Computer Science – http://cs.fel.cvut.cz
Artificial Intelligence Center (AIC)

http://aic.fel.cvut.cz

Center for Robotics and Autonomous Systems (CRAS)
http://robotics.fel.cvut.cz

Computational Robotics Laboratory (ComRob)
http://comrob.fel.cvut.cz

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 5 / 80

https://cw.fel.cvut.cz/wiki/courses/b3b36prg
https://cw.felk.cvut.cz/brute
http://cs.fel.cvut.cz
http://aic.fel.cvut.cz
http://robotics.fel.cvut.cz
http://comrob.fel.cvut.cz

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Course Goals

Master (yourself) programming skills
Labs, homeworks, exam

Acquire knowledge of C programming language
Acquire experience of C programming to use it efficiently

Your own experience!

Gain experience to read, write, and understand small C programs
Acquire programming habits to write

easy to read and understandable source codes;
reusable programs.

Experience programming with
Workstation/desktop computers – using services of operating
system

E.g., system calls, read/write files, input and outputs

Multithreading applications;
Embedded applications – STM32F446 Nucleo

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 6 / 80

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Course Organization and Evaluation

B3B36PRG – Programming in C
Extent of teaching: 2(lec)+2(lab)+5(hw);
Completion: Z,ZK; Credits: 6;

Z – ungraded assessment, ZK – exam

Ongoing work during the semester
Homeworks

mandatory, optional, and bonus parts
Semester project – a combined application for a workstation and
STM32F446

Exam: test and implementation exam
Be able to independently work with the computer in the lab (class room)

Attendance to labs, submission of homeworks, and project

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 7 / 80

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Resources and Literature

Textbook
„C Programming: A Modern Approach“ (King, 2008)

C Programming: A Modern Approach, 2nd
Edition, K. N. King, W. W. Norton & Company,
2008, ISBN 860-1406428577

The main course textbook

Lectures – support for the textbook, slides, comments, and your
notes

Demonstration source codes are provided as a part of the lecture materials!

Laboratory Exercises – gain practical skills by doing homeworks
(yourself).

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 9 / 80

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Further Books

Programming in C, 4th Edition,
Stephen G. Kochan, Addison-Wesley, 2014,
ISBN 978-0321776419

21st Century C: C Tips from the New School,
Ben Klemens, O’Reilly Media, 2012,
ISBN 978-1449327149

The C Programming Language, 2nd Edition
(ANSI C) , Brian W. Kernighan, Dennis M.
Ritchie, Prentice Hall, 1988 (1st edition – 1978)

Advanced Programming in the UNIX
Environment, 3rd edition, W. Richard Stevens,
Stephen A. Rago Addison-Wesley, 2013, ISBN
978-0-321-63773-4

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 10 / 80

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Further Resources

The C++ Programming Language, 4th Edition
(C++11) , Bjarne Stroustrup, Addison-Wesley,
2013, ISBN 978-0321563842

Introduction to Algorithms, 3rd Edition, Cormen,
Leiserson, Rivest, and Stein, The MIT Press,
2009, ISBN 978-0262033848

Algorithms, 4th Edition , Robert Sedgewick,
Kevin Wayne, Addison-Wesley, 2011, ISBN
978-0321573513

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 11 / 80

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Lectures – Spring Semester Academic Year 2016/2017

Schedule for the academic year 2016/2017
http://www.fel.cvut.cz/en/education/calendar.html

Lectures:

Dejvice, Lecture Hall No. T2:D3-209, Tuesday, 14:30-16:00

14 teaching weeks
13 lectures

Tuesday 2.5.2017 – classes as on Monday

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 12 / 80

http://www.fel.cvut.cz/en/education/calendar.html

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Teachers

doc. Ing. Pavel Pačes, Ph.D.

Bc. Otakar Jašek

Ing. Daniel Fišer

Ing. Petr Čížek

Ing. Petr Váňa
BRUTE Upload System

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 13 / 80

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Communicating Any Issues Related to the Course

Ask the lab teacher or the lecturer
Use e-mail for communication

Use your faculty e-mail
Put PRG or B3B36PRG to the subject of your message
Send copy (Cc) to lecturer/teacher

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 14 / 80

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Computers and Development Tools
Network boot with home directories (NFS v4)

Data transfer and file synchronizations – ownCloud, SSH, FTP, USB
Compilers gcc or clang https://gcc.gnu.org or http://clang.llvm.org

Project building make (GNU make) Examples of usage on lectures and labs

Text editor – gedit, atom, sublime, vim
https://atom.io/, http://www.sublimetext.com/

http://www.root.cz/clanky/textovy-editor-vim-jako-ide

C/C++ development environments – WARNING: Do Not Use An IDE
http://c.learncodethehardway.org/book/ex0.html

Debugging – gdb, cgdb, ddd
Code::Blocks, CodeLite

http://www.codeblocks.org, http://codelite.org
NetBeans 8.0 (C/C++), Eclipse–CDT
CLion – https://www.jetbrains.com/clion

Embedded development for the Nucleo
ARMmbed – https://developer.mbed.org/platforms/ST-Nucleo-F446RE
System Workbench for STM32 (based on Eclipse)
Direct cross-compiling using makefiles

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 15 / 80

https://gcc.gnu.org
http://clang.llvm.org
https://atom.io/
http://www.sublimetext.com/
http://www.root.cz/clanky/textovy-editor-vim-jako-ide
http://c.learncodethehardway.org/book/ex0.html
http://www.codeblocks.org
http://codelite.org
https://www.jetbrains.com/clion
https://developer.mbed.org/platforms/ST-Nucleo-F446RE

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Services – Academic Network, FEE, CTU

http://www.fel.cvut.cz/cz/user-info/index.html

Cloud storage ownCloud – https://owncloud.cesnet.cz

Sending large files – https://filesender.cesnet.cz

Schedule, deadlines – FEL Portal, https://portal.fel.cvut.cz
FEL Google Account – access to Google Apps for Education

See http://google-apps.fel.cvut.cz/

Gitlab FEL – https://gitlab.fel.cvut.cz/

Information resources (IEEE Xplore, ACM, Science Direct,
Springer Link) https://dialog.cvut.cz

Academic and campus software license https://download.cvut.cz

National Super Computing Grid Infrastructure – MetaCentrum
http://www.metacentrum.cz/cs/index.html

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 16 / 80

http://www.fel.cvut.cz/cz/user-info/index.html
https://owncloud.cesnet.cz
https://filesender.cesnet.cz
https://portal.fel.cvut.cz
http://google-apps.fel.cvut.cz/
https://gitlab.fel.cvut.cz/
https://dialog.cvut.cz
https://download.cvut.cz
http://www.metacentrum.cz/cs/index.html

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Homeworks
7 homeworks for the workstation and 3 for the embedded Nucleo
platform

https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/start

1. HW 01 – ASCII Art (3 points)
2. HW 02 – Prime Factorization (3 points + 5 points optional)
3. HW 03 – Caesar Cipher (3 points + 3 points optional)
4. HW 04 – Text Search (3 points + 4 points optional)
5. HW 05 – Matrix Calculator (2 points + 3 points optional + 5 points bonus)
6. HW 06 – Linked List Queue with Priorities (2 points + 3 points optional)
7. HW 07 – Circular Buffer (2 points + 2 points optional)
8. HW 08 – Nucleo – LED and Button (2 points)
9. HW 09 – Nucleo – Single Byte Serial Communication (2 points)
10. HW 10 – Nucleo – Computation and Communication: (3 points)

Some adjustments are expected

All homeworks must be submitted to award an ungraded assessment
Late submission is penalized!

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 17 / 80

https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/start

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Semester Project

A combination of application for workstation (multi-threading /
communication / interaction) and program for the Nucleo
STM32F446
Computation on the embedded platform via control application
Mandatory task can be awarded up to 20 points
Bonus part can be awarded for additional 10 points

Up to 30 points in the total for the project

Distributed computation using several Nucleo STM32F446 boards

Minimum required points: 10

Deadline – best before 27.5.2017

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 18 / 80

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Course Evaluation

Points Maximum Required Minimum Points
Points Semestr Exam

Homeworks 50 30
Semestr Project 30 10

Exam test 20 10
Implementation exam 10 0

Total 110 points 40 points is F!

30 points from the homeworks and 10 points from the project are
required for awarding ungraded assessment
The course can be passed with ungraded assessment and exam
All homeworks must be submitted and they have to pass the manda-
tory assessment

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 20 / 80

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Grading Scale
Grade Points Mark Evaluation

A ≥ 90 1 Excellent
B 80–89 1,5 Very Good
C 70–79 2 Good
D 60–69 2,5 Satisfactory
E 50–59 3 Sufficient
F <50 4 Fail

All homeworks work passed the mandatory assessment and some
of them with optional Gain around 40 points out of 50 points

Semestral project for up 30 points
In an average, gain around 15 points or 25 with the bonus part

Exam: test (20 points) and implementation (10 points)
Around 85 points (B – Very Good)
Optional and bonus tasks are needed for around 95 points (A –
Excellent)

With few imperfections
Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 21 / 80

Course Goals Means of Achieving the Course Goals Evaluation and Exam

Overview of the Lectures
1. Course information, Introduction to C programming

K. N. King: chapters 1, 2, and 3
2. Writing your program in C, control structures (loops), expressions

K. N. King: chapters 4, 5, 6, and 20
3. Data types, arrays, pointer, memory storage classes, function call

K. N. King: chapters 7, 8, 9, 10, 11, and 18
4. Data types: arrays, strings, and pointers K. N. King: chapters 8, 11, 12, 13, and 17
5. Data types: Struct, Union, Enum, Bit fields. Preprocessor and Large Programs.

K. N. King: chapters 10, 14, 15, 16, and 20
6. Input/Output – reading/writting from/to files and other communication channels,

Standard C library – selected functions
K. N. King: chapters 21, 22, 23, 24, 26, and 27

7. Parallel and multi-thread programming – methods and synchronizations primitives
8. Multi-thread application models, POSIX threads and C11 threads
9. Examples - C programming language wrap up

10. ANSI C, C99, C11 and differences between C and C++. Introduction to object oriented
programming in C++.

11. Object oriented programming in C++: classes, objects, encapsulation, inheritance,
and polymorphism

12. Version Control Systems (VCS)

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 22 / 80

Program in C Values and Variables Expressions Standard Input/Output

Part II

Part 2 – Introduction to C Programming

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 23 / 80

Program in C Values and Variables Expressions Standard Input/Output

C Programming Language
Low-level programming language
System programming language (operating system)

Language for (embedded) systems — MCU, cross-compilation

A user (programmer) can do almost everything
Initialization of the variables, release of the dynamically allocated memory, etc.

Very close to the hardware resources of the computer
Direct calls of OS services, direct access to registers and ports

Dealing with memory is crucial for correct behaviour of the program
One of the goals of the PRG course is to acquire fundamental principles that can
be further generalized for other programming languages. The C programming
language provides great opportunity to became familiar with the memory model
and key elements for writting efficient programs.

It is highly recommended to have compilation of your
program fully under control.

It may look difficult at the beginning, but it is relatively easy and straight-
forward. Therefore, we highly recommend to use fundamental tools for your
program compilation. After you acquire basic skills, you can profit from them
also in more complex development environments.

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 25 / 80

Program in C Values and Variables Expressions Standard Input/Output

Writing Your C Program

Source code of the C program is written in text files

Header files usually with the suffix .h
Sources files usually named with the suffix .c

Header and source files together with declaration and definition
(of functions) support

Organization of sources into several files (modules) and libraries
Modularity – Header file declares a visible interface to others

A description (list) of functions and their arguments without particular
implementation

Reusability
Only the “interface” declared in the header files is need to use
functions from available binary libraries

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 26 / 80

Program in C Values and Variables Expressions Standard Input/Output

Writing Codes in C

Each executable program must have at least one function and the
function has to be main()

The run of the program starts at the beginning of the function
main(), e.g.,

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("I like B3B36PRG!\n");
6
7 return 0;
8 }

The form of the main() function is prescribed.
See further examples in this lecture

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 27 / 80

Program in C Values and Variables Expressions Standard Input/Output

Valid Characters for Writing Source Codes in C
Lowercase and uppercase letters, numeric characters, symbols and
separators ASCII – American Standard Code for Information Interchange

a–z A–Z 0—9
! " # % & ’ () * + , - . / : ; < = > ? [\] ˆ _ { | } ∼
space, tabular, new line

Escape sequences for writting special symbols
\’ – ’, \" – ", \? – ?, \\– \

Escape sequences for writting numeric values in a text string
\o, \oo, where o is an octal numeral
\xh, \xhh, where h is a hexadecimal numeral

1 int i = ’a’;
2 int h = 0x61;
3 int o = 0141;
4
5 printf("i: %i h: %i o: %i c: %c\n", i, h, o, i);
6 printf("oct: \141 hex: \x61\n");

E.g., \141, \x61 lec01/esqdho.c

\0 – character reserved for the end of the text string (null
character)

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 28 / 80

Program in C Values and Variables Expressions Standard Input/Output

Writing Identifiers in C

Identifiers are names of variables (custom types and functions)
Types and functions, viz further lectures

Rules for the identifiers
Characters a–z, A–Z, 0–9 a _
The first character is not a numeral
Case sensitive
Length of the identifier is not limited
First 31 characters are significant – depends on the implementation / compiler

Keywords32
auto break case char const continue default do
double else enum extern float for goto if int long
register return short signed sizeof static struct
switch typedef union unsigned void volatile while C98

C99 introduces, e.g., inline, restrict, _Bool, _Complex, _Imaginary
C11 further adds, e.g., _Alignas, _Alignof, _Atomic, _Generic,
_Static_assert, _Thread_local

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 29 / 80

Program in C Values and Variables Expressions Standard Input/Output

Simple C Program

1 #include <stdio.h>
2

3 int main(void)
4 {
5 printf("I like B3B36PRG!\n");
6

7 return 0;
8 }

lec01/program.c

Source files are compiled by the compiler to the so-called object
files usually with the suffix .o

Object code contains relative addresses and function calls or just ref-
erences to function without known implementations.

The final executable program is created from the object files by
the linker

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 30 / 80

Program in C Values and Variables Expressions Standard Input/Output

Program Compilation and Execution
Source file program.c is compiled into runnable form by the
compiler, e.g., clang or gcc

clang program.c

There is a new file a.out that can be executed, e.g.,
./a.out

Alternatively the program can be run only by a.out in the case the
actual working directory is set in the search path of executable files

The program prints the argument of the function printf()
./a.out
I like B3B36PRG!

If you prefer to run the program just by a.out instead of ./a.out you need
to add your actual working directory to the search paths defined by the
environment variable PATH

export PATH="$PATH:‘pwd‘"
Notice, this is not recommended, because of potentially many working directories.

The command pwd prints the actual working directory, see man pwd

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 31 / 80

Program in C Values and Variables Expressions Standard Input/Output

Structure of the Source Code – Commented Example
Commented source file program.c

1 /* Comment is inside the markers (two characters)
2 and it can be split to multiple lines */
3 // In C99 - you can use single line comment
4 #include <stdio.h> /* The #include direct causes to

include header file stdio.h from the C standard
library */

5

6 int main(void) // simplified declaration
7 { // of the main function
8 printf("I like B3B36PRG!\n"); /* calling printf()

function from the stdio.h library to print string
to the standard output. \n denotes a new line */

9 return 0; /* termination of the function. Return
value 0 to the operating system */

10 }
Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 32 / 80

Program in C Values and Variables Expressions Standard Input/Output

Program Building: Compiling and Linking

The previous example combines three particular steps of the pro-
gram building in a single call of the command (clang or gcc). The
particular steps can be performed individually

1. Text preprocessing by the preprocessor, which utilizes its own
macro language (commands with the prefix #)

All referenced header files are included into a single source file

2. Compilation of the source file into the object file
Names of the object files usually have the suffix .o

clang -c program.c -o program.o
The command combines preprocessor and compiler.

3. Executable file is linked from the particular object files and
referenced libraries by the linker (linking), e.g.,

clang program.o -o program

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 33 / 80

Program in C Values and Variables Expressions Standard Input/Output

Compilation and Linking Programs
Program development is editing of the source code (files with suf-
fixes .c and .h); Human readable

Compilation of the particular source files (.c) into object files (.o or
.obj) ; Machine readable

Linking the compiled files into executable binary file;
Execution and debugging of the application and repeated editing of
the source code.

a.out
Preprocesor

Compiler

Header files

.h.c

Source file

Linker

Object files

Lib files

.a/.lib

Object

File

.o/.obj

.o/.obj

Executable binary file

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 34 / 80

Program in C Values and Variables Expressions Standard Input/Output

Steps of Compiling and Linking

Preprocessor – allows to define macros and adjust compilation the
particular environment

The output is text (“source”) file.

Compiler – Translates source (text) file into machine readable form
Native (machine) code of the platform, bytecode, or assembler alternatively

Linker – links the final application from the object files
Under OS, it can still reference library functions (dynamic libraries linked
during the program execution), it can also contains OS calls (libraries).

Particular steps preprocessor, compiler, and linker are usually
implemented by a “single” program that is called with appropriate
arguments.

E.g., clang or gcc

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 35 / 80

Program in C Values and Variables Expressions Standard Input/Output

Compilers of C Program Language

In PRG, we mostly use compilers from the families of compilers:
gcc – GNU Compiler Collection

https://gcc.gnu.org
clang – C language family frontend for LLVM

http://clang.llvm.org

Under Win, two derived environments can be utilized: cygwin https://www.cygwin.com/ or
MinGW http://www.mingw.org/

Basic usage (flags and arguments) are identical for both compilers
clang is compatible with gcc

Example
compile: gcc -c main.c -o main.o
link: gcc main.o -o main

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 36 / 80

https://gcc.gnu.org
http://clang.llvm.org
https://www.cygwin.com/
http://www.mingw.org/

Program in C Values and Variables Expressions Standard Input/Output

Functions, Modules, and Compiling and Linking

Function is the fundamental building block of the modular
programming language

Modular program is composed of several modules/source files

Function definition consists of the
Function header
Function body Definition is the function implementation.

Function prototype (declaration) is the function header to
provide information how the function can be called

It allows to use the function prior its definition, i.e., it allows to compile
the code without the function implementation, which may be located in
other place of the source code, or in other module.

Declaration is the function header and it has the form

type function_name(arguments);

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 37 / 80

Program in C Values and Variables Expressions Standard Input/Output

Functions in C
Function definition inside other function is not allowed in C.
Function names can be exported to other modules

Module is an independent file (compiled independently)

Function are implicitly declared as extern, i.e., visible
Using the static specifier, the visibility of the function can be
limited to the particular module Local module function

Function arguments are local variables initialized by the values
passed to the function Arguments are passed by value (call by value)

C allows recursions – local variables are automatically allocated
at the stack Further details about storage classes in next lectures.

Arguments of the function are not mandatory – void arguments
fnc(void)

The return type of the function can be void, i.e., a function
without return value – void fnc(void);

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 38 / 80

Program in C Values and Variables Expressions Standard Input/Output

Example of Program / Module

1 #include <stdio.h> /* header file */
2 #define NUMBER 5 /* symbolic constatnt */
3

4 int compute(int a); /* function header/prototype */
5

6 int main(int argc, char *argv[])
7 { /* main function */
8 int v = 10; /* variable declaration */
9 int r;

10 r = compute(v); /* function call */
11 return 0; /* termination of the main function */
12 }
13

14 int compute(int a)
15 { /* definition of the function */
16 int b = 10 + a; /* function body */
17 return b; /* function return value */
18 }

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 39 / 80

Program in C Values and Variables Expressions Standard Input/Output

Program Starting Point – main()
Each executable program must contain at least one definition of
the function and that function must be the main()
The main() function is the starting point of the program
The main() has two basic forms
1. Full variant for programs running under an Operating System (OS)

int main(int argc, char *argv[])
{

...
}

It can be alternatively written as
int main(int argc, char **argv)
{

...
}

2. For embedded systems without OS
int main(void)
{

...
}

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 40 / 80

Program in C Values and Variables Expressions Standard Input/Output

Arguments of the main() Function
During the program execution, the OS passes to the program the
number of arguments (argc) and the arguments (argv)

In the case we are using OS

The first argument is the name of the program

1 int main(int argc, char *argv[])
2 {
3 int v;
4 v = 10;
5 v = v + 1;
6 return argc;
7 }

lec01/var.c

The program is terminated by the return in the main() function
The returned value is passed back to the OS and it can be further
use, e.g., to control the program execution.

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 41 / 80

Program in C Values and Variables Expressions Standard Input/Output

Example of Compilation and Program Execution

Building the program by the clang compiler – it automatically joins
the compilation and linking of the program to the file a.out

clang var.c
The output file can be specified, e.g., program file var

clang var.c -o var
Then, the program can be executed

./var
The compilation and execution can be joined to a single command

clang var.c -o var; ./var
The execution can be conditioned to successful compilation

clang var.c -o var && ./var

Programs return value — 0 means OK

Logical operator && depends on the command interpret, e.g., sh, bash, zsh.

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 42 / 80

Program in C Values and Variables Expressions Standard Input/Output

Example – Program Execution under Shell

The return value of the program is stored in the variable $?
sh, bash, zsh

Example of the program execution with different number of argu-
ments

./var

./var; echo $?
1

./var 1 2 3; echo $?
4

./var a; echo $?
2

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 43 / 80

Program in C Values and Variables Expressions Standard Input/Output

Example – Processing the Source Code by Preprocessor

Using the -E flag, we can perform only the preprocessor step
gcc -E var.c

Alternatively clang -E var.c

1 # 1 "var.c"
2 # 1 "<built-in>"
3 # 1 "<command-line>"
4 # 1 "var.c"
5 int main(int argc, char **argv) {
6 int v;
7 v = 10;
8 v = v + 1;
9 return argc;

10 }
lec01/var.c

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 44 / 80

Program in C Values and Variables Expressions Standard Input/Output

Example – Compilation of the Source Code to Assembler

Using the -S flag, the source code can be compiled to Assembler
clang -S var.c -o var.s

1 .file "var.c"
2 .text
3 .globl main
4 .align 16, 0x90
5 .type main,@function
6 main:

@main
7 .cfi_startproc
8 # BB#0:
9 pushq %rbp

10 .Ltmp2:
11 .cfi_def_cfa_offset 16
12 .Ltmp3:
13 .cfi_offset %rbp, -16
14 movq %rsp, %rbp
15 .Ltmp4:
16 .cfi_def_cfa_register %rbp
17 movl $0, -4(%rbp)
18 movl %edi, -8(%rbp)

19 movq %rsi, -16(%rbp)
20 movl $10, -20(%rbp)
21 movl -20(%rbp), %edi
22 addl $1, %edi
23 movl %edi, -20(%rbp)
24 movl -8(%rbp), %eax
25 popq %rbp
26 ret
27 .Ltmp5:
28 .size main, .Ltmp5-main
29 .cfi_endproc
30
31
32 .ident "FreeBSD clang

version 3.4.1 (tags/
RELEASE_34/dot1-final
208032) 20140512"

33 .section ".note.GNU-stack","
",@progbits

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 45 / 80

Program in C Values and Variables Expressions Standard Input/Output

Example – Compilation to Object File

The souce file is compiled to the object file
clang -c var.c -o var.o

% clang -c var.c -o var.o
% file var.o
var.o: ELF 64-bit LSB relocatable, x86-64, version 1

(FreeBSD), not stripped

Linking the object file(s) provides the executable file
clang var.o -o var

% clang var.o -o var
% file var
var: ELF 64-bit LSB executable, x86-64, version 1 (

FreeBSD), dynamically linked (uses shared libs),
for FreeBSD 10.1 (1001504), not stripped

dynamically linked
not stripped

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 46 / 80

Program in C Values and Variables Expressions Standard Input/Output

Example – Executable File under OS 1/2
By default, executable files are “tied” to the C library and OS services
The dependencies can be shown by ldd var

ldd – list dynamic object dependenciesldd var
var:

libc.so.7 => /lib/libc.so.7 (0x2c41d000)

The so-called static linking can be enabled by the -static
clang -static var.o -o var
% ldd var
% file var
var: ELF 64-bit LSB executable, x86-64, version 1 (

FreeBSD), statically linked, for FreeBSD 10.1
(1001504), not stripped

% ldd var
ldd: var: not a dynamic ELF executable

Check the size of the created binary files!
Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 47 / 80

Program in C Values and Variables Expressions Standard Input/Output

Example – Executable File under OS 2/2

The compiled program (object file) contains symbolic names (by
default)

E.g., usable for debugging.

clang var.c -o var
wc -c var

7240 var
wc – word, line, character, and byte count

-c – byte count

Symbols can be removed by the tool (program) strip

strip var
wc -c var

4888 var

Alternatively, you can show size of the file by the command ls -l

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 48 / 80

Program in C Values and Variables Expressions Standard Input/Output

Writting Values of the Numeric Data Types – Literals

Values of the data types are called literals
C has 6 type of constants (literals)

Integer
Rational

We cannot simply write irrational numbers
Characters
Text strings
Enumerated Enum

Symbolic – #define NUMBER 10
Preprocessor

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 50 / 80

Program in C Values and Variables Expressions Standard Input/Output

Integer Literals

Integer values are stored as one of the integer type (keywords):
int, long, short, char and their signed and unsigned variants

Further integer data types are possible

Integer values (literals)
Decimal 123 450932
Hexadecimal 0x12 0xFAFF (starts with 0x or 0X)
Octal 0123 0567 (starts with 0)
unsigned 12345U (suffix U or u)
long 12345L (suffix L or l)
unsigned long 12345ul (suffix UL or ul)
long long 12345LL (suffix LL or ll)

Without suffix, the literal is of the type typu int

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 51 / 80

Program in C Values and Variables Expressions Standard Input/Output

Literals of Rational Numbers

Rational numbers can be written
with floating point – 13.1
or with mantissa and exponent – 31.4e-3 or 31.4E-3

Scientific notation

Floating point numeric types depends on the implementation, but
they usually follow IEEE-754-1985 float, double

Data types of the rational literals:
double – by default, if not explicitly specified to be another type
float – suffix F or f

float f = 10f;
long double – suffix L or l

long double ld = 10l;

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 52 / 80

Program in C Values and Variables Expressions Standard Input/Output

Character Literals

Format – single (or multiple) character in apostrophe
’A’, ’B’ or ’\n’

Value of the single character literal is the code of the character
’0’∼ 48, ’A’∼ 65

Value of character out of ASCII (greater than 127) depends on the compiler.

Type of the character constant (literal)
character constant is the int type

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 53 / 80

Program in C Values and Variables Expressions Standard Input/Output

String literals
Format – a sequence of character and control characters (escape
sequences) enclosed in quotation (citation) marks

"This is a string constant with the end of line character \n"

String constants separated by white spaces are joined to single
constant, e.g.,

"String literal" "with the end of the line character\n"

is concatenate into

"String literal with end of the line character\n"
Type

String literal is stored in the array of the type char terminated by
the null character ’\0’
E.g., String literal "word" is stored as

’w’ ’o’ ’r’ ’d’ ’\0’

The size of the array must be about 1 item longer to store \0!

More about text strings in the following lectures and labs
Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 54 / 80

Program in C Values and Variables Expressions Standard Input/Output

Constants of the Enumerated Type
Format

By default, values of the enumerated type starts from 0 and each
other item increase the value about one
Values can be explicitly prescribed

enum {
SPADES,
CLUBS,
HEARDS,
DIAMONDS

};

enum {
SPADES = 10,
CLUBS, /* the value is 11 */
HEARDS = 15,
DIAMONDS = 13

};

The enumeration values are usually written in uppercase.

Type – enumerated constant is the int type
Value of the enumerated literal can be used in loops
enum { SPADES = 0, CLUBS, HEARDS, DIAMONDS, NUM_COLORS };

for (int i = SPADES; i < NUM_COLORS; ++i) {
...

}

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 55 / 80

Program in C Values and Variables Expressions Standard Input/Output

Symbolic Constant – #define
Format – the constant is established by the preprocessor command
#define

It is macro command without argument
Each #define must be on a new line

#define SCORE 1
Usually written in uppercase

Symbolic constants can express constant expressions
#define MAX_1 ((10*6) - 3)

Symbolic constants can be nested
#define MAX_2 (MAX_1 + 1)

Preprocessor performs the text replacement of the define
constant by its value

#define MAX_2 (MAX_1 + 1)
It is highly recommended to use brackets to ensure correct evaluation of
the expression, e.g., the symbolic constant 5*MAX_1 with the outer brackets
is 5*((10*6) - 3)=285 vs 5*(10*6) - 3=297.

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 56 / 80

Program in C Values and Variables Expressions Standard Input/Output

Variable with a constant value
modifier (keyword) (const)

Using the keyword const, a variable can be marked as constant
Compiler checks assignment and do not allow to set a new value to the variable.

A constant value can be defined as follows
const float pi = 3.14159265;

In contrast to the symbolic constant
#define PI 3.14159265

Constant values have type, and thus it supports type checking

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 57 / 80

Program in C Values and Variables Expressions Standard Input/Output

Example: Sum of Two Values
1 #include <stdio.h>
2

3 int main(void)
4 {
5 int sum; // definition of local variable of the int type
6

7 sum = 100 + 43; /* set value of the expression to sum */
8 printf("The sum of 100 and 43 is %i\n", sum);
9 /* %i formatting commend to print integer number */

10 return 0;
11 }

The variable sum of the type int represents an integer number.
Its value is stored in the memory
sum is selected symbolic name of the memory location, where the
integer value (type int) is stored

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 58 / 80

Program in C Values and Variables Expressions Standard Input/Output

Example of Sum of Two Variables

1 #include <stdio.h>
2

3 int main(void)
4 {
5 int var1;
6 int var2 = 10; /* inicialization of the variable */
7 int sum;
8
9 var1 = 13;

10
11 sum = var1 + var2;
12

13 printf("The sum of %i and %i is %i\n", var1, var2, sum);
14
15 return 0;
16 }

Variables var1, var2 and sum represent three different locations in
the memory (allocated automatically), where three integer values
are stored.

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 59 / 80

Program in C Values and Variables Expressions Standard Input/Output

Variable Declaration

The variable declaration has general form
declaration-specifiers declarators;

Declaration specifiers are:
Storage classes: at most one of the auto, static, extern,
register
Type quantifiers: const, volatile, restrict

Zero or more type quantifiers are allowed
Type specifiers: void, char, short, int, long, float, double,
signed, unsigned. In addition, struct and union type specifiers
can be used. Finally, own types defined by typedef can be used as
well.

Detailed description in further lectures.

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 60 / 80

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization
unsigned char

1 unsigned char var1;
2 unsigned char var2;
3 unsigned char sum;
4

5 var1 = 13;
6 var2 = 10;
7

8 sum = var1 + var2;

Each variable allocate 1 byte
Content of the memory is not de-
fined after allocation
Name of the variable “refer-
ences” to the particular memory
location
Value of the variable is the con-
tent of the memory location

13 10 23

var1 var2 sum

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 61 / 80

Program in C Values and Variables Expressions Standard Input/Output

Assignment, Variables, and Memory – Visualization int

1 int var1;
2 int var2;
3 int sum;
4

5 // 00 00 00 13
6 var1 = 13;
7

8 // x00 x00 x01
xF4

9 var2 = 500;
10

11 sum = var1 +
var2;

Variables of the int types allocate 4
bytes
Size can be find out by the operator sizeof(int)

Memory content is not defined after the
definition of the variable to the memory

13 0 0 0 0xf4 0x01 0x00 0x00

var1 var2

0x1 0x2 0x0 0x0 0xC 0xD 0xE 0xF

sum

500 (dec) is 0x01F4 (hex)

513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types)
are stored in the little-endian order.

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 62 / 80

Program in C Values and Variables Expressions Standard Input/Output

Expressions

Expression prescribes calculation value of some given input
Expression is composed of operands, operators, and brackets
Expression can be formed of

literals

variables

constants

unary and binary operators

function calling

brackets

The order of operation evaluation is prescribed by the operator
precedence and associativity.

Example
10 + x * y // order of the evaluation 10 + (x * y)
10 + x + y // order of the evaluation (10 + x) + y

* has higher priority than +
+ is associative from the left-to-right

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 64 / 80

Program in C Values and Variables Expressions Standard Input/Output

Operators
Operators are selected characters (or a sequences of characters)
dedicated for writting expressions
Five types of binary operators can be distinguished

Arithmetic operators – additive (addition/subtraction) and multi-
plicative (multiplication/division)
Relational operators – comparison of values (less than, greater than,
. . .)
Logical operators – logical AND and OR
Bitwise operators – bitwise AND, OR, XOR, bitwise shift (left, right)
Assignment operator = – a variables (l-value) is on its left side

Unary operators
Indicating positive/negative value: + and −

Operator − modifies the sign of the expression
Modifying a variable : ++ and −−
Logical negation: !
Bitwise negation: ∼

Ternary operator – conditional expression ? :
Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 65 / 80

Program in C Values and Variables Expressions Standard Input/Output

Variables, Assignment Operator, and Assignment Statement
Variables are defined by the type and name

Name of the variable are in lowercase
Multi-word names can be written with underscore _

Or we can use CamelCase
Each variable is defined at new line
int n;
int number_of_items;
int numberOfItems;

Assignment is setting the value to the variable, i.e., the value is
stored at the memory location referenced by the variable name
Assignment operator

〈l-value〉 = 〈expression〉
Expression is literal, variable, function calling, . . .

The side is the so-called l-value – location-value, left-value
It must represent a memory location where the value can be stored.

Assignment is an expression and we can use it everywhere it is
allowed to use the expression of the particular type.

Assignment statement is the assignment operator = and ;
Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 66 / 80

Program in C Values and Variables Expressions Standard Input/Output

Basic Arithmetic Expressions

For an operator of the numeric types int and double, the
following operators are defined

Also for char, short, and float numeric types.

Unary operator for changing the sign −
Binary addition + and subtraction −
Binary multiplication * and division /

For integer operator, there is also
Binary module (integer reminder) %

If both operands are of the same type, the results of the
arithmetic operation is the same type
In a case of combined data types int and double, the data type
int is converted to double and the results is of the double type.

Implicit type conversion

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 67 / 80

Program in C Values and Variables Expressions Standard Input/Output

Example – Arithmetic Operators 1/2

1 int a = 10;
2 int b = 3;
3 int c = 4;
4 int d = 5;
5 int result;
6
7 result = a - b; // subtraction
8 printf("a - b = %i\n", result);
9

10 result = a * b; // multiplication
11 printf("a * b = %i\n", result);
12
13 result = a / b; // integer divison
14 printf("a / b = %i\n", result);
15
16 result = a + b * c; // priority of the operators
17 printf("a + b * c = %i\n", result);
18
19 printf("a * b + c * d = %i\n", a * b + c * d); // -> 50
20 printf("(a * b) + (c * d) = %i\n", (a * b) + (c * d)); // -> 50
21 printf("a * (b + c) * d = %i\n", a * (b + c) * d); // -> 350

lec01/arithmetic_operators.c

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 68 / 80

Program in C Values and Variables Expressions Standard Input/Output

Example – Arithmetic Operators 2/2
1 #include <stdio.h>
2
3 int main(void)
4 {
5 int x1 = 1;
6 double y1 = 2.2357;
7 float x2 = 2.5343f;
8 double y2 = 2;
9

10 printf("P1 = (%i, %f)\n", x1, y1);
11 printf("P1 = (%i, %i)\n", x1, (int)y1);
12 printf("P1 = (%f, %f)\n", (double)x1, (double)y1);
13 printf("P1 = (%.3f, %.3f)\n", (double)x1, (double)y1);
14
15 printf("P2 = (%f, %f)\n", x2, y2);
16
17 double dx = (x1 - x2); // implicit data conversion to float
18 double dy = (y1 - y2); // and finally to double
19
20 printf("(P1 - P2)=(%.3f, %0.3f)\n", dx, dy);
21 printf("|P1 - P2|^2=%.2f\n", dx * dx + dy * dy);
22 return 0;
23 }

lec01/points.c

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 69 / 80

Program in C Values and Variables Expressions Standard Input/Output

Standard Input and Output

An executed program within Operating System (OS) environments
has assigned (usually text-oriented) standard input (stdin) and
output (stdout)

Programs for MCU without OS does not have them

The stdin and stdout streams can be utilized for communication
with a user
Basic function for text-based input is getchar() and for the output
putchar()

Both are defined in the standard C library <stdio.h>

For parsing numeric values the scanf() function can be utilized
The function printf() provides formatted output, e.g., a number
of decimal places

They are library functions, not keywords of the C language.

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 71 / 80

Program in C Values and Variables Expressions Standard Input/Output

Formatted Output – printf()

Numeric values can be printed to the standard output using printf()
man printf or man 3 printf

The first argument is the format string that defines how the values
are printed
The conversion specification starts with the character ’%’
Text string not starting with % is printed as it is
Basic format strings to print values of particular types are

char %c
_Bool %i, %u
int %i, %x, %o
float %f, %e, %g, %a
double %f, %e, %g, %a

Specification of the number of digits is possible, as well as an align-
ment to left (right), etc.

Further options in homeworks and lab exercises.

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 72 / 80

Program in C Values and Variables Expressions Standard Input/Output

Formatted Input – scanf()
Numeric values from the standard input can be read using the
scanf() function man scanf or man 3 scanf

The argument of the function is a format string
Syntax is similar to printf()

It is necessary to provide a memory address of the variable to set
its value from the stdin
Example of readings integer value and value of the double type

1 #include <stdio.h>
2
3 int main(void)
4 {
5 int i;
6 double d;
7
8 printf("Enter int value: ");
9 scanf("%i", &i); // operator & returns the address of i

10
11 printf("Enter a double value: ");
12 scanf("%lf", &d);
13 printf("You entered %02i and %0.1f\n", i, d);
14
15 return 0;
16 } lec01/scanf.c

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 73 / 80

Program in C Values and Variables Expressions Standard Input/Output

Example: Program with Output to the stdout 1/2

Instead of printf() we can use fprintf() with explicit output
stream stdout, or alternatively stderr; both functions from the
<stdio.h>

1 #include <stdio.h>
2

3 int main(int argc, char **argv) {
4 fprintf(stdout, "My first program in C!\n");
5 fprintf(stdout, "Its name is \"%s\"\n", argv[0]);
6 fprintf(stdout, "Run with %d arguments\n", argc);
7 if (argc > 1) {
8 fprintf(stdout, "The arguments are:\n");
9 for (int i = 1; i < argc; ++i) {

10 fprintf(stdout, "Arg: %d is \"%s\"\n", i, argv[i]);
11 }
12 }
13 }

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 74 / 80

Program in C Values and Variables Expressions Standard Input/Output

Example: Program with Output to the stdout 2/2

Notice, using the header file <stdio.h>, several other files are in-
cluded as well to define types and functions for input and output.

Check by, e.g., clang -E print_args.c

clang print_args.c -o print_args
./print_args first second
My first program in C!
Its name is "./print_args"
It has been run with 3 arguments
The arguments are:
Arg: 1 is "first"
Arg: 2 is "second"

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 75 / 80

Program in C Values and Variables Expressions Standard Input/Output

Extended Variants of the main() Function

Extended declaration of the main() function provides access to
the environment variables

For Unix and MS Windows like OS

int main(int argc, char **argv, char **envp) { ... }

The environment variables can be accessed using the function getenv()
from the standard library <stdlib.h>.

lec01/main_env.c

For Mac OS X, there are further arguments
int main(int argc, char **argv, char **envp, char **apple)
{

...
}

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 76 / 80

Part III

Part 3 – Assignment HW 01

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 77 / 80

HW 01 – Assignment

Topic: ASCII art
Mandatory: 3 points; Optional: none; Bonus : none

Motivation: Have a fun with loops and user parametrization
of the program.

Goal: Acquire experience using loops and inner loops
Assignment:
https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw01

Read parameters specifying a picture of small house using selected
ASCII chars https://en.wikipedia.org/wiki/ASCII_art
Assesment of the input values

Deadline: 04.03.2017, 23:59:59 PST
PST – Pacific Standard Time

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 78 / 80

https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw01
https://en.wikipedia.org/wiki/ASCII_art

Topics Discussed

Summary of the Lecture

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 79 / 80

Topics Discussed

Topics Discussed

Information about the Course
Introduction to C Programming

Program, source codes and compilation of the program
Structure of the souce code and writting program
Variables and basic types
Variables, assignment, and memory
Basic Expressions
Standard input and output of the program
Formating input and output

Next: Expressions and Bitwise Operations, Selection Statements
and Loops

Jan Faigl, 2017 B3B36PRG – Lecture 01: Introduction to C Programming 80 / 80

	1
	Course Goals
	Means of Achieving the Course Goals
	Evaluation and Exam

	2
	Program in C
	Values and Variables
	Expressions
	Standard Input/Output

	3
	Summary
	Topics Discussed

