
DOI 10.1007/s00165-006-0008-1
BCS © 2006
Formal Aspects of Computing (2006) 18: 433–458

Formal Aspects
of Computing

Analysis of a biphase mark protocol
with UPPAAL and PVS
F.W. Vaandrager1 and A.L. de Groot2

Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands.
E-mail: F.Vaandrager@cs.ru.nl; A.deGroot@cs.ru.nl

Abstract. The biphase mark protocol is a convention for representing both a string of bits and clock edges in a
square wave. The protocol is frequently used for communication at the physical level of the ISO/OSI hierarchy,
and is implemented on microcontrollers such as the Intel 82530 Serial Communications Controller. An important
property of the protocol is that bit strings of arbitrary length can be transmitted reliably, despite differences in
the clock rates of sender and receiver (drift), variations of the clock rates (jitter), and distortion of the signal
after generation of an edge. In this article, we show how the protocol can be modelled naturally in terms of timed
automata. We use the model checker Uppaal to derive the maximal tolerances on the clock rates, for different
instances of the protocol, and to support the general parametric verification that we formalized using the proof
assistant PVS. Based on the derived parameter constraints we propose instances of BMP that are correct (at least
in our model) but have a faster bit rate than the instances that are commonly implemented in hardware.

Keywords: Biphase mark protocol; Formal methods; Model checking; Theorem provers; Timed automata

1. Introduction

The biphase mark protocol (BMP) is a fundamental protocol that is widely used in applications where data
written by one device is read by another. It is used, for instance, in microcontrollers such as the Intel 82530 Serial
Communications Controller [Int91], in some optical communications and satellite telemetry applications, and
for communication between consumer electronics devices. A variation of biphase mark, called “Manchester”,
is used in the Ethernet. The first rigorous, formal analysis of (some instances of) the protocol was carried out
by Moore [Moo94] using the Boyer-Moore theorem prover Nqthm [BM88]. Moore used the biphase mark pro-
tocol to illustrate a formal, logical model of asynchronous communication. We refer to [Moo94] for additional
information and references on BMP.

In this article, we present the results of our efforts to model and analyze the biphase mark protocol using
the verification tools Uppaal and PVS. Our model generalizes Moore’s model, since it incorporates “clock jit-
ter” and the distortion in the signal due to the presence of an edge is not limited to the time-span of the cycle
during which the edge was written. We use Uppaal [LPY97], a model checker for networks of timed automata,
to automatically prove correctness of several instances of the protocol and to find error scenarios based on some

Correspondence and offprint requests to: F.W. Vaandrager, E-mail: F.Vaandrager@cs.ru.nl
1 F.W. Vaandrager was supported by EU IST project IST-2001-35304 Advanced Methods for Timed Systems (AMETIST).
2 A.L. de Groot was supported by NWO project 612.062.000 Architecture for Structuring the requirements Specification of Embedded
Safety-critical Systems (ASSESS).

434 F.W. Vaandrager, A.L. de Groot

1 0 0 0 1 1

cell

cell edges

signals sent

mark subcell

code subcell

if these two signals are

equal, a 0 was sent

if these two signals are

different, a 1 was sent

message

sampling distance

Fig. 1. Biphase mark terminology

incorrect instances. These experiments suggest constraints on the model parameters that are necessary for cor-
rectness. Using the proof assistant PVS [ORSH95] we establish that these constraints are in fact sufficient for
correctness. Our main objective for this article is to demonstrate that the timed automata framework [AD94]
allows for natural, straightforward modeling and analysis of this type of physical level communications proto-
cols. Methodologically, our results are interesting since we use two different tools – the model checker Uppaal
and the proof assistant PVS – in a combined manner to analyze a single system. Both tools play a vital and
complementary role in our analysis. As a byproduct of our efforts, we manage to find instances of BMP that are
correct (at least in our model) but have a faster bit rate than the instances that are commonly implemented in
hardware.

Outline. Section 2 contains an informal presentation of the protocol. In Sect. 3 we present our Uppaal model
and the parameter constraints that we inferred by trying to verify several instances of the protocol with Uppaal
model checker. Section 4 describes a straightforward encoding of the (semantics of) the Uppaal model within the
higher order logic input language of the proof assistant PVS. Section 5 reports on the formalization with PVS
of the (manual) proof that the parameter constraints are sufficient for correctness. In Sect. 6, we investigate the
consequences of the derived parameter constraints. In particular, we show how to syntesize the instance of BMP
with the fastest bit rate given an upper bound on the time needed for the signal to stabilize after occurrence of
an edge. Finally, Sect. 7 discusses related work and draws some conclusions.

The full Uppaal and PVS sources are available at the URL
http://www.cs.ru.nl/ita/publications/papers/fvaan/BMP.html.

2. Informal description of the protocol

Essentially, the biphase mark protocol is just a convention for representing both a string of bits and clock edges
in a square wave. In the protocol (see Fig. 1, taken from [Moo94]) each bit of a message is encoded in a cell, which
consists of a number of clock cycles and which is logically divided into a mark subcell and a code subcell. A typical
configuration is 16 cycles for the mark subcell and another 16 for the code subcell. The signal, which at any time
is either high or low, always changes value right at the beginning of a cell. In addition, if the signal encodes a “1”
the value also changes right at the beginning of the code subcell. If a cell encodes a “0” then the signal remains
constant throughout the cell. In order to decode the bit string again from the square wave, a decoder waits for
an edge that marks the beginning of a cell and then samples the wire after a specified number of clock cycles (the
sampling distance). If the value just after the edge agrees with the sampled value then the decoder assumes a “0”
has been sent, otherwise it assumes a “1” has been sent.

A clear advantage of BMP over, say, the naive scheme in which a “1” is encoded by a high signal and a “0”
by a low signal, is that BMP “synchronizes” the clocks of coder and decoder at the beginning of each cell. In
a setting with unreliable clocks, a decoder might not see the difference between the naive encoding of 10,000
consecutive 1’s, and the naive encoding of 10,001 consecutive 1’s. If BMP is used this problem does not arise,
except of course when clocks become excessively (depending on the other parameters of the protocol, usually 4
or 5 orders of magnitude worse than common clock crystals provide) unreliable.

Proving correctness of physical implementations of BMP is nontrivial due the combination of at least three
factors:

1. A physical system can not generate a perfect square wave. Edges will not be vertical or square: an electrical
signal changes continuously and may even “ring” before stabilizing at its new level. In our model we will

Analysis of a biphase mark protocol 435

edge
WireCoder Sampler Decoder

Clock

new out

tick

get put

in w

Tester

tock

s Clock2

Fig. 2. Architecture of the Uppaal model

assume that the value of the signal is nondeterministically defined (reading may produce any value) during
some bounded interval after the coder generates an edge.

2. If a signal is constant throughout a clock cycle then we may assume that sampling of this signal by the decoder
yields the correct value. However, if the value changes during a clock cycle then any value may come out as
we do not know at which point during the cycle sampling takes place. In our model we will assume that the
decoder samples the signal nondeterministically at some point during each clock cyle.

3. Physical clocks drift (that is, their rate may be too high or too low) and exhibit jitter (that is, their rate may
change over time). In our model we will assume that the clock rates of sender and receiver are contained in
an interval, so that subsequent clock ticks may be separated by any length of time in that interval.

As a consequence of these complications, one can easily imagine scenarios in which, for instance, a decoder
altogether misses an edge and completely garbles the remainder of the signal (in Sect. 3.10 we will present such
scenarios). In this article we identify the precise constraints on the various parameters of the protocol (lengths
of clock cycles, time before signal stabilizes, et cetera) that must be met in order to ensure correctness.

3. UPPAAL model and analysis

In this section, we describe the model that we constructed of the biphase mark protocol and the analysis results
that we obtained using the timed model checking tool Uppaal. For a detailed account of Uppaal we refer to
[LPY97] and to http://www.uppaal.com.

3.1. Architecture

Figure 2 presents the overall architecture of our Uppaal model. The model consists of a network of 7 timed
automata (shown as rectangles), which communicate via shared variables (circles) and synchronization actions
(labeled arrows). Automaton Clock models the hardware clock at the coding side. The automaton Coder models
the encoding process: based on a sequence of bits (which is received via variable in) and the tick events from the
Clock automaton, it generates edge events that determine a square wave. Within our model, the environment
(which is represented by the tester) places a new bit in variable in whenever the Coder is willing to accept a
get event. The Wire automaton nondeterministically transforms the perfect square wave from the Coder into a
signal whose value, stored in variable w, is nondeterministically defined during a specified interval after the coder
generates an edge. Automaton Clock2, which is similar to Clock, models the hardware clock at the decoding side.
The Sampler automaton periodically copies (samples) the value of variable w into variable new. The Boolean
variable s is used to coordinate the sampler and clock. Automaton Decoder models the decoding process. If at
the occurrence of a clock tick automaton Decoder observes that the value of new has changed it starts counting a
specified number of clock ticks and then compares the value of new after those ticks with the value it had before.
Depending on the outcome it places either a 0 or a 1 in register out and informs the environment about the fact
that a new bit has become available via a put action. The automaton Tester, finally, nondeterministically selects
bits, places them in register in upon request and checks whether the sequence of bits delivered via register out

436 F.W. Vaandrager, A.L. de Groot

Fig. 3. Parameters of the Uppaal model

X0

x <= max

x >= min
tick!

x := 0

Fig. 4. Clock

agrees with the sequence entered via register in. Whenever it observes a discrepancy, the Tester automaton jumps
to a designated error location. Hence, in order to establish correctness we must prove that the error location can
not be reached.

3.2. Model parameters

Figure 3 lists the parameters that are used in the model (constants in Uppaal terminology) and gives an example
instantiation. The domain of all parameters is the set of natural numbers. Constant cell specifies the size of a
cell in terms of the number of clock cycles. Similarly, mark and sample specify the size of the mark subcell and
the sampling distance, respectively. This specific configuration is used in the Intel 82530 Serial Communications
Controller [Int91]. Constants min and max specify the minimum and maximum number of time units in a clock
cycle (say, measured in nanoseconds); we assume 0 < min � max. Constant edgelength specifies the number
of time units needed for the signal to stabilize after occurrence of an edge. The values listed for min, max and
edgelength are not meant to be realistic – our model’s clocks are much worse than any that are used in real
machines [Cri89].

3.3. First clock

Timed automaton Clock models the hardware clock at the coding side. The automaton, which is displayed in
Fig. 4, only has a single location and a single transition. The automaton performs a synchronization action tick!
when its clock x has reached a value between min and max, and then returns to its initial state by resetting x.

3.4. The coder

We worked hard to make all the timed automata as simple as possible. As a result of our efforts, all automata in our
model have at most five locations.3 The automaton Coder, displayed in Fig. 5, is one of the two timed automata
in our model with five locations. The automaton Coder describes how the biphase mark protocol encodes a string
of bits and clock edges into a square wave. In its initial location C0 the automaton immediately (the location is
urgent) jumps via a get? transition to location C1, thereby telling the environment that it is about to fetch a new
bit from the in register. In the location C1, which is also urgent, an edge is generated and the automaton jumps,
depending on the bit that is being transmitted, either to location C2 (in case in � 1) or to location C3 (in case
in � 0). A local integer counter n is used to count clock ticks. Upon entering location C2 the automaton waits
until mark clock ticks have occurred, and then generates an edge and jumps to location C3. In location C3 the
automaton waits until cell clock ticks have occurred and then jumps back to its initial location to transmit the

3Actually, the number of locations is not a good measure of complexity since in the presence of integer variables each timed automaton is
trivially equivalent to one with just a single location. Without introducing any additional integer variables or coding tricks we could have
easily reduced the number of locations of the Coder automaton to 3 if Uppaal would have permitted us to decorate transitions with multiple
synchronization labels, as in the tool Kronos [BDM+98].

Analysis of a biphase mark protocol 437

C4

C3

C2C1

C0

get?

in == 1
edge!

n < mark - 1
tick?

n := n+1

in == 0
edge!

n < cell - 1
tick?

n := n+1

n == cell - 1
tick?

n := 0 edge!

n == mark - 1
tick?

n := n+1

Fig. 5. Coder

W2

W1
z <= edgelength

W0

w := 1 - w
fuzz!

edge?
z := 0,
v := 1 - v

z == edgelength
w := v

settle!

edge?

Fig. 6. Wire

next bit. In our model, we assume that there is always a next bit to transmit. It should not be difficult to generalize
our work to a setting where sometimes the environment has no more bits available for transmission.

3.5. The wire

The Wire automaton, displayed in Fig. 6, is introduced to model our assumption that it takes edgelength time
before an electric signal stabilizes after occurrence of an edge. The Boolean variable v is toggled when an edge?
event occurs. Thus, v evolves according to the perfect square wave that is generated by the Coder. There is also
another Boolean variable w, whose values reflect the actual observations that can be made on a physical wire. In
the initial location W0 the wire is stable and the values of v and w agree. Upon occurrence of an edge? the Wire
automaton moves to the unstable location W1 in which w can be assigned any value at any time. After being
unstable for edgelength time units, the system moves back again to the stable location W0 and the value of w
settles to v. For the parameter assignments for which the BMP is correct the Coder never generates an edge if the
Wire is in location W1. We will prove this by establishing that location W2 is unreachable in the full system for
any of the parameter assignments that we consider.

We find it convenient to give names to all the transitions in an automaton. This is achieved by misusing the
broadcast primitive in Uppaal: the broadcast actions fuzz! and settle! do not synchronize with actions from any
other automaton, but are just there to give transitions a name.

In our model we assume instantaneous message delivery: edges generated by the Coder may be detected
instantaneously by the Decoder. We claim that the constraints on the parameters that we derive in this paper to

438 F.W. Vaandrager, A.L. de Groot

s == 0

new := w,
s := 1

Sample!

Fig. 7. Sampler

y <= max
y >=min && s==1

tock!

y := 0,
s := 0

Fig. 8. Clock2

ensure correctness are not affected when we introduce a fixed transmission delay for all edges. However, we do
not formally prove this claim in this article.

3.6. The sampler

The Sampler automaton, displayed in Fig. 7, only has a single location and a single transition. The transition
copies (samples) the value of the wire variable w to a variable new that is used as input for the decoder. To ensure
that the sample transition occurs exactly once during every clock cycle we use an auxiliary Boolean variable s:
if s � 0 then the sampler may sample and if s � 1 then the (decoder) clock may tick. Only the samples taken
during the mark and sample clock cycles are actually used in the protocol, though.

3.7. Second clock

The Clock2 automaton, displayed in Fig. 8, models the hardware clock at the decoding side. This automaton is
exactly the same as the Clock at the coder side, except that it also reads/writes variable s to ensure strict alternation
of the sample and tock actions.

3.8. The decoder

The Decoder automaton, shown in Fig. 9, models in a straightforward manner the decoding of the (sampled)
wire signal into a bit string. The automaton uses a local Boolean variable old to record wire values it has seen
earlier. Like the Coder automaton, the activity of the Decoder automaton is driven by clock ticks. In the initial
location D0, each clock tick causes the automaton to compare the most recent value that has been sampled from
the wire (new) with the value stored in old. As long as these values remain the same no action is taken. But as
soon as the values of old and new become different, the automaton concludes that an edge has occurred, moves
to location D1, and toggles the value of old. In location D1 the automaton waits until sample clock ticks have
occurred (counted using a local integer variable m) and then jumps to location D2. If at that point in time new
equals old then output variable out is assigned the value 0, otherwise out is assigned the value 1 (cf Fig. 1). In a
subsequent transition that occurs immediately, the environment is informed that a new output has been produced
(via a put ! synchronization) and the Decoder returns to its initial location.

3.9. The tester

Figure 10 depicts the Tester automaton, the seventh and last component of the model. This automaton is not
part of the biphase mark protocol but just a highly nondeterministic environment of the protocol that has been
designed to test its correctness. If the protocol (the Coder in fact) asks for a new bit, the Tester puts a nondeter-
ministically selected bit in shared variable in. The Tester remembers which bits it has sent to the protocol; in and
buf store the most-recent two bits sent. If a third bit is requested by the Coder the overflow location T3 is reached
We will prove that for all parameter assignments for which the protocol operates correctly, there is at most one

Analysis of a biphase mark protocol 439

D2

D1D0
new != old
tock?

old := new

put!
m := 0

m == sample - 1
tock?

out := (new != old),
m := m + 1,
old := new

m < sample - 1
tock?

m := m+1
new == old
tock?

Fig. 9. Decoder

T3T2T1

Error

T0 get!
in := 1

get!
buf := in,
in := 1

out != in
put?put?

get!
in := 0

out == in
put?

get!
buf := in,
in := 0

out == buf
put?

out != buf
put?

get!

Fig. 10. Tester

bit that has been accepted by the Coder but not yet delivered by the Decoder. While searching for error scenarios
that arise for parameter assignments that do not satisfy the constraints, we will encounter instances of our model
in which two bits can be inside the protocol. We felt no need to model a tester that can handle situations in which
three or more bits are sent but not yet received. Whenever the protocol (the Decoder) produces an output, the
Tester checks whether this is the expected value. If it is correct, the Tester forgets the value, otherwise it jumps to
a special Error location. If the protocol is correct then the Error location can not be reached.

3.10. UPPAAL analysis results

The set of reachable symbolic states of our model is relatively small, and for all properties and parameter assign-
ments that we tried, Uppaal managed to establish validity or produced a counterexample within a second (running
Upppaal version 3.4.7 on a standard PC). Some basic well-formedness properties that we tested are that the system
contains no deadlocks, the coder never starts another voltage transition (edge) while the Wire automaton is still
in its unstable location, and that there are never more than two bits in transit in the protocol:
A[] not (deadlock or Wire.W2 or Tester.T3).

440 F.W. Vaandrager, A.L. de Groot

Sampling at very beginning long clock cycle

v

new
w

Coder start transmission of 1
Coder completes mark phase maximally fast

max max

Sampler samples at very end long clock cycle

mark * min

edgelength

Fig. 11. First error scenario: decoder misses edge at beginning of cell

But the key correctness property, of course, is that the Tester never enters the Error location:

A[] not (Tester.Error).

Whether these properties hold depends on the specific choice of the parameter values. Through playing with
different parameter assignments, and replaying the error traces in the simulator, we discovered that there appear
to be essentially three different scenarios that may lead the Tester to the Error location: (1) the decoder may miss
the edge at the beginning of a cell, (2) the decoder may sample too early, or (3) it may sample too late.

The first error scenario is illustrated in Figure 11. In this scenario, the coder transmits a 1 and passes through
the mark phase (location C2) maximally fast. This means that mark · min time units after the edge event that
marks the beginning of the cell we already see the edge event that marks the end of the mark phase (the line
labeled v in Fig. 11). We assume that after the first edge the wire remains unchanged maximally long, that is
edgelength time units, whereas after the second edge the wire immediately takes the new value (the line labeled w
in Fig. 11). Now the decoder may altogether miss the voltage change on the wire if it (1) operates maximally slow
for two clock cycles, (2) samples at the very beginning of the first clock cycle, just before the value of w changes,
(3) samples again at the very end of the second cycle, right after the value of w has changed again. In order to
avoid this error scenario, the following constraint on the parameters must be met, which ensures that an edge at
the beginning of a cell will always be detected by the decoder:

mark · min > 2 · max + edgelength (1)

The second error scenario, in which the decoder samples too early, is illustrated in Fig. 12. In this scenario,
the Coder operates maximally slow whereas the decoder operates maximally fast. The Coder transmits a 1 and
remains in the mark phase maximally long, that is mark · max time units elapse between the two edge events
(line labeled v in Fig. 12). This time, the wire immediately takes on the new value after the first edge, and sticks
to the previous value maximally long after the second edge (line labeled w in Fig. 12). The decoder immediately
detects the first edge and operates maximally fast. This means that the clock cycle in which it samples the value
that will determine whether a 0 or a 1 will be decoded starts after (sample − 1) · min time units. If we assume
that sampling takes place at the very beginning of this clock cycle, then the wrong bit (namely 0 instead of 1) will
be decoded if the sampling takes place right before w changes its value for the second time. In order to avoid this
error scenario, the following constraint on the parameters must be met:

(sample − 1) · min > mark · max + edgelength (2)

This constraint ensures that the decoder will not sample too early.
The third error scenario, in which the decoder samples too late, is illustrated in Fig. 13. In this scenario the

Coder operates maximally fast whereas the decoder is maximally slow: at the point where the decoder samples the

Analysis of a biphase mark protocol 441

min

mark * max edgelength

(sample – 1) * min

Coder starts transmission of 1 Coder completes mark phase maximally slow

Decoder receives 0
High voltage sampled at beginning clock cycle

Sampling at end of cycle, right after edge is generated

v
w
new

Fig. 12. Second error scenario: decoder samples too early

Sampling at very beginning clock cycle

Coder start transmission of 0
Coder completes transmission maximally fast

max max

edgelength

v

new
w

cell * min

sample * max

Sampling at very end of cycle, 1 received
Decoder detects edge

Fig. 13. Third error scenario: decoder samples too late

coder has already started with the transmission of the next bit. In order to avoid this error scenario, the following
constraint on the parameters must be met, which ensures that the decoder does not sample too late:

cell · min > (sample + 2) · max + edgelength (3)

An obvious question that arises is whether the three constraints introduced above are enough to ensure cor-
rectness: is the error location unreachable for all parameter assignments that satisfy constraints (1), (2) and (3)?
This question can not be answered using Uppaal, since Uppaal can only compute the set of reachable states
for a fixed parameter assignment, and there are infinitely many parameter assignments that satisfy the three
constraints. Using deductive verification and the theorem prover PVS, we will establish in the next two sections
that the three constraints together indeed guarantee correctness.

4. Translating the UPPAAL model into PVS

For the verification of the correctness of the biphase mark protocol with the given parameter constraints in a
symbolic fashion we use the theorem prover PVS, which is a higher-order logic theorem prover developed by SRI
[ORSH95]. We employ a framework in PVS that provides us with the standard definitions for automata and a
guideline as to how to translate automata from Uppaal to PVS. The translation is intended to ensure that the

442 F.W. Vaandrager, A.L. de Groot

S0

y <= max

S1

y <= max

new := w

Sample!

y >= min

tock! y := 0

Fig. 14. Product of automata for sampler and decoder clock

PVS model closely resembles the Uppaal model, so that it is easy to validate and to propagate changes from one
model to the other.

An automaton in Uppaal consists of a number of locations, some state variables and clocks, and transitions
(labeled arrows) from one location to another; the transitions may also be labeled with assignments to the state
variables and clocks, and they may be annotated with guards. Our translation deals with each of these parts of the
automaton in turn, yielding a PVS model containing locations, state variables, and transitions. The translation
of the automata in our Uppaal model from diagrams into our PVS framework in general proceeds as follows:

1. The locations and state variables of the Uppaal model are modeled in PVS as enumerations and records,
respectively.

2. Anonymous transitions (transitions not labeled with an action label) need to be labeled to distinguish them.
There are none in the Uppaal model we have, since all of its transitions are labeled.

3. Our approach focuses on local translations – each automaton is translated into PVS with no regard for the
context it will be placed in. Shared variables complicate this, because they require that two independently
translation automata synchronize on an otherwise invisible action (i.e. assignments to the shared variables).
Therefore we make that synchronization explicit. Shared variables are replaced by local variables whose values
are synchronized via a parameter of the transition. For instance, the get! action is replaced by a get!(b) where
b is the value generated by the tester and read by the coder.

4. The union of the sets of events of all the automata in the system is used as the global set of events. Explicit
time delay is included as delay(d).

5. For each automaton, we define a local state and a local transition relation, as well as the local initial state.
The local transition relation must deal with the global set of events – this is because our translation is a simple
one and does not take into account which events are relevant for which automata. No change should occur
in response to events not used locally in the automaton.

6. The parallel composition of the automata is constructed by hand. The global state is a record containing the
local states of each automaton. The global initial state is exactly the product of the local initial states.

7. The global transition relation applies each local transitions to the appropriate local state; since all local
transitions are given the global event, synchronization on shared events in the run is obtained .

We will perform each of these steps for the model of the biphase mark protocol in the following sections.
There is one place where we diverge from the Uppaal model in Sect. 3: we translate the product automaton
of the sampler and the second clock, instead of translating each individually. The reason for doing so is that
the shared variable s, which ensures strict alternation of actions in the automata, is not used in a way that our
shared-variable translation can deal with. It is, in the end, simpler to translate the product automaton than to
invent a complicated translation that can deal with the shared variable.

4.1. Merging automata

The product automaton of the sampler and the second clock is easy to calculate, and yields an Uppaal diagram
like the one in Fig. 14. We use this automaton instead of the two separate ones because both automata write to
the shared variable s, which makes our simple-and-straightforward translation to PVS inapplicable.

In this merged automaton, we have two locations, that represent the state s � 0 and s � 1 of the separate
automata; again, Sample! and tock! events occur in turn, with no more than max time between Uppaal x2 tock!s.

Analysis of a biphase mark protocol 443

Fig. 15. PVS Datatype for the Events of the biphase mark protocol

4.2. Removing shared variables

There are a few shared variables in the Uppaal model, as shown in Fig. 2. These are:

• in, between coder and tester.
• w, between wire and sampler.
• new, between sampler and decoder.
• out, between decoder and tester.
• s, the variable shared between the sampler and the second clock, is not needed, since we use the product of

those two automata instead.

Each of the uses, (reads or writes), of one of these shared variables can be changed into a parameterized event
so that all variables become local. Consider in, shared between the coder and the tester. The tester nondetermi-
nistically sets the value of in on several transitions labeled with get!. These can be replaced by a parameterized
get!(b) that represents the shared assignment in := b. In the coder, there is only one transition labeled get?, and
the (shared) value of in is used in urgent transitions immediately afterwards. We replace it by get?(b), and save
the value in a local variable in. It is straightforward to prove that the values of both local variables in in the two
automata are always equal, which is what we would expect of a shared variable.

Similarly, the value w that is read from the wire by the sampler can be added as a parameter to the action
Sample!. The wire’s local transition allows a Sample! transition with parameter b only when the wire variable
w has the value b. The sampler’s transition tock! triggers a read of the value of new in the decoder. We can add
the value of new as a parameter to it and use that value where needed.

Finally, the value of out is written by the decoder when it does a put! action, and the tester reads the value
immediately. Here too, adding a parameter to pass the value put by the decoder removes the need for a shared
variable.

4.3. Representing events

The collection of events in PVS is represented by an abstract datatype – this means that we automatically have
axioms that the events are distinct, as one would expect from an enumeration of all the distinct kinds of events.
The PVS code is shown in Fig. 15. We see the four parameterized actions, two actions without parameters, the
two broadcast actions with no parameters (settle and fuzz), and the additional delay event representing the
passage of time. Note that delay is parameterized by a posreal, i.e. a positive and non-zero amount of time. This
means that in our PVS model, there are no events which delay by zero time. This is a subtle difference with the
Uppaal semantics, where zero delays are possible (they do not change the state or the value of any clocks though,
so their deletion from the PVS model does no harm).

4.4. Local states and transitions

The aim of the translation into PVS is to prove that the parameter constraints that have been deduced in Sect. 3.10
are correct, i.e. that all choices of parameters within those constraints yield a correct protocol. We attempt to
remain as close as possible to the Uppaal model, so that it is intuitively clear that the PVS model represents
the diagrams accurately. To this end we will do the following for each automaton: define an enumeration of the

444 F.W. Vaandrager, A.L. de Groot

Fig. 16. PVS code for the Clock’s state and transition relation

locations of the automaton (if it has more than one) so that we can refer to those locations by name; define a
record that holds the location of the automaton and its local variables and clocks; define a transition relation on
the local state where the primary selection is by event. This means that the transition relation is written in PVS
like “if event is delay, then do this; else, if event is get, then do this ; . . . ” – the uniformity of expression defining
the transition relation is important in partially automating proofs over the automaton.

The remainder of this section shows the translation of specific automata – the Clock, the Coder – in more
detail.

The Clock: The clock has only one location, and a single clock named x, so the record structure for the state
of the clock is very simple: a single field for the clock x, as can be seen in Fig. 16. One might argue that this
representation could be simplified, down to identifying the state of the Clock with the value of the clock variable
x, but we believe that consistency in structure is important for the automation of proofs.

There are two different transitions that the clock can take: time can pass (subject to the location invariant),
or the clock can tick (subject to the transition guard). The PVS code for this does a case distinction on the event
in order to determine whether a given state-transition is allowed. The PVS code for the transition is shown in
Fig. 16. The PVS code defines a record type ClockState (the [# #] indicate a record) with a single field x for
the clock. The transition relation for the clock is named ClockTransition and is a function of three variables,
yielding a Boolean value. The parameters are s and s_, the local from state and the local to state, while a is the
global event that occurs; the transition relation must state whether the transition from local state s to s_when the
system performs an action a is allowed. The transition relation is defined using a CASES statement, where we can
list the events that change the local state of the clock. We see the use of the ELSE clause in the CASES expression in
order to deal with “all-the-events-not-mentioned-yet.” The CASES statement is required to be total by PVS, so we
use the ELSE clause to make it so. It is important to state that the state stays the same (s_ = s) when unhandled
events occur, since otherwise the state is allowed to change nondeterministically when other automata perform
an action.

The two events that are relevant for the Clock automaton are handled by writing the precondition (either the
location invariant or the transition guard) in conjunction with an expression stating how the local variables should
be updated. The update expression is typically written as s_ = s WITH [E]. The expression s WITH [E]
has the value of the record s with the fields named in E updated by assignment; we read this as calculating the new
state based on s and asserting that state s_ is that state. For the delay event, we need to check that the location
invariant is not violated by a delay of d time, and the clock x must advance by d for the transition to be acceptable.
In a similar vein, the transition for tick conjoins the transition guard with the resetting of clock x.

Coder: The structure of the coder is far complex than that of the Clock. There are only three event types (get,
edge, tick) that need to be handled, but since the event labels occur multiple times in the diagram the expressions
stating legality of a particular state-transition are more complex. The presence of urgent locations adds the delay
event to the list-of-events-to-handle. In Fig. 17 we see that in has become iv – this is because in is a reserved
word in PVS. The value iv is represented by a Boolean value; 0 or 1 would serve as well, but require an additional
type definition. State component n is declared to be below[cell], which means n < cell; PVS requires that we
prove this (which is trivial and done automatically with typecheck-prove).

The transition relation for the Coder is fairly straightforward. Delay events cannot happen when the Coder is
in locations c0, c1 or c4 since these are urgent locations (and recall that delays are non-zero in our PVS model),
but the state of the coder must stay the same when delay actions do occur otherwise. The PVS code is shown in
Fig. 18.

The event get? can only occur when the Coder is in location c0, and it is accompanied by a change in location
and saving the parameter value to a local variable. This is straightforward enough. The edge! event can occur in

Analysis of a biphase mark protocol 445

Fig. 17. PVS code for the Coder’s state

Fig. 18. PVS code for the Coder’s transition relation

one of three places; we write a disjunction of the transition expressions for each of those three distinct transitions.
Each one of those transition expressions – as usual – checks that the initial location is correct, checks the guard
on the transition, and states what the resulting state must be. Finally tick? occurs in four places in the diagram,
and each of these is dealt with similarly.

Other automata: The other automata in the system (the wire, the sampler with the second clock, the decoder
and the tester) are all straightforward to translate – the state consists of a few fields for the local variables, and
the transitions are all of types similar to what we have already described. The complete PVS specification for the
automata can be obtained from the URL mentioned in the introduction.

4.5. Global states and transitions

The global state of the entire system is of course the product of all the local states of the constituent automata.
The easiest way to achieve this in PVS is to define a new record with one field for each of the constituent automata,
as shown in Fig. 19. This global state contains no global variables, and hence the composition of the transition
relations is straightfoward as well.

The transition relation for the global state is the conjunction of the local transitions for each automaton applied
to the local states; the event a is passed to each local transition, along with the relevant local state. By having a
structured and straightforward representation of the global state, the global transition becomes straightforward

Fig. 19. Global state of the system model of the biphase mark protocol

446 F.W. Vaandrager, A.L. de Groot

Fig. 20. Global transition relation of the biphase mark protocol

Fig. 21. PVS code for main correctness theorem. The expressions for T represents the state of the Tester at index i of run R, while T’loc
represents the location the Tester is in

as well and we can later apply some automation to the calculation of next-states in the executions of the global
automaton. The global transition relation is shown in Fig. 20.

5. Proving correctness, with variations

The proof of the correctness of the biphase mark protocol was fairly straightforward, in large part thanks to the
invariants turned up by the experimentation with Uppaal. The additional verification found one omission in an
invariant, which was repaired by strengthening it; this enabled us to prove the correctness of all instances of the
protocol within the parameter space.

The proof in PVS of the correctness of the protocol and the necessity of the given bounds on the parameters
is purely symbolic, and shows that every instance that falls within the parameter constraints suggested by the
Uppaal analysis is correct. The proof proceeds by collecting 37 invarants and verifying each invariant in turn;
together, these invariants imply the global correctness of the protocol.

The global statement of correctness is much as in the Uppaal verification: in all executions of the automata
for the biphase mark protocol, there is no state of the system in which the tester automaton is in state t3, or in
state error. In PVS this appears as the theorem shown in Fig. 21. In the theorem, the LET expression is substituted
into the remainder of the theorem (after the IN), and the whole theorem is implicitly universally quantified over
any unbound variables (in this case, index i and run R).

The Uppaal verification – in particular the invariants checked there – gives a guideline for the formal verifi-
cation of the protocol in PVS, but it is not a road map. Indeed, as far as Uppaal is concerned, we need not bother
with any invariant other than that t3 and error are unreachable. This is both the strength and the weakness of
verification through Uppaal – we verify a single instance, or several instances, and though the truth of Uppaal’s
assertion that location t3 is unreachable does not change, we cannot see how this truth is arrived at, nor what the
most general bounds of the parameters of the protocol might be.

Section 5.1 details the structure of the proof and the approach used, while Sect. 5.2 shows how some auto-
mation can be introduced into the proofs in order to shorten them and make them more understandable to the
human reader. Section 5.3 examines the effect of introducing automation into the proofs.

5.1. Structure of the invariant proof

With the model as given the correctness condition is expressed in terms of the reachability of locations t3 and
error. The correctness condition is given as an invariant on the state of the system, as already shown in Fig. 21.
There are 37 invariants in all, each of which is proved by induction on the sequence of steps in a run of the
automaton. The invariants are grouped as follows (Figs. 23, 24 on page 448 show more detail):

• Invariants of the clock or coder in isolation, named Px (6 invariants).
• Invariants of the wire, sampler, or decoder in isolation, named Qx (6).
• Invariants of pairs of automata, named Rx (4).
• Invariants of the coder, clock and wire in parallel, named Tx (5).
• Invariants of all but the tester in parallel, named Gx (9).

Analysis of a biphase mark protocol 447

G6

G1
G2

G3

G4

G5

G7

G8

G9

Fig. 22. The interdependence of lemmata in group G. An arrow from lemma Gi to Gj means that the proof of lemma i needs the result of
lemma j

• Invariants of the system as a whole, named Hx (6).
• The global correctness invariant, I (1).

These 37 invariants were checked with Uppaal on some instances of the protocol before beginning the PVS
verification. In the PVS proof, some invariants were re-ordered (since the proof of P5 needed the result of P6, for
instance), and some corollaries were introduced to make proofs shorter. In the P, Q and R groups, each invariant
was proved individually. Groups T, G and H were proved simultaneously with the following approach (which
is tailored to being convenient in PVS – mathematically, we are merely showing that the group of invariants is
inductive):

1. For each invariant Ik to be proven in the group, define a predicate Ik(R, i) that takes an automaton run R and
an index i as parameters that asserts the invariant property on the ith state of the run R.

2. For each invariant Ik, write and prove a lemma Lk for the induction step of Ik as follows (assume n invariants
in the group):

I1(R, i) ∧ I2(R, i) ∧ · · · ∧ In(R, i) ⇒ Ik(R, i + 1)

3. Finally, define a lemma I for the group as a whole:

∀ i . I1(R, i) ∧ I2(R, i) ∧ · · · ∧ In(R, i)

The proof of this lemma is simple: check the base case of the induction, (i.e. that in all initial states, each
invariant holds individually), and for the induction step use lemmata L1 through Ln.

This approach can be used to find the interdependency graph of the invariants as well, by determining
which invariant-predicates are not used in each proof. Figure 22 shows how the invariants of group G are
interdependent – this also makes clear that no smaller group could be constructed that is still provable.

The “simple” invariants in groups P, Q and R are the sixteen invariants shown in Fig. 23. The proof of each
of these is fairly straightforward: induction on the index of the state the invariant is applied to. The base case is
trivial and solved with (grind), the induction step requires checking the relevant transitions, which means that
the global transition relation GlobalEffect needs to be introduced and expanded to the local transitions. Since
these steps are the same for every proof, we define a simple strategy (scheme for automation) called (auto-start)
that starts off an inductive proof by dealing with the base cases and the introduction of the local transitions (see
Sect. 5.2 for more details on the additional automation).

These 16 invariants, along with one additional support lemma, take 204 proof steps to prove. Each invariant
depends only on the invariants preceding it in the list (hence P6 and P5 are reversed, since the naming of the
invariants was established before the proofs were begun). Additional automation can reduce the number of steps
taken considerably (i.e. by half), which we will examine shortly.

The remaining invariants are divided into four groups. The groups T, G and H are intra-dependent, which
was partly illustrated in Fig. 22, while group I contains only a single invariant. Figure 24 shows the invariants.

448 F.W. Vaandrager, A.L. de Groot

Fig. 23. The “simple” invariants of at most two automata

The effort for each intra-dependent group is far greater than the effort for the simpler invariants listed above.
The T group of five invariants requires 432 proof steps – again, with additional automation this can be reduced
considerably.

The G group of invariants is by far the most complicated of the nests of interdependent invariants, and while
proving it the original invariants suggested by the Uppaal tests were found to be insufficiently strong to prove
the entire nest. The invariant G1 needs the additional condition

mark � n ⇒ sample · min − mark · max � z

This condition was discovered after staring at the proofs – all of which could not be finished because of the lack
of this information – for a few days. Once that was done, the proofs were fairly straightforward again, with only
the question of which invariants were dependent on which others.

Although invariants H4, H5 and H6 can be proved easily from H1–H3 and the G invariants, it turned out that
H1–H3 need the later H invariants in their proofs, which made this a new (though simple) nest of interdependent
invariants.

Finally, I is an almost trivial conclusion of H1–H3 and H6.
Initial proof statistics, of the hand-made proof with little automation, are shown in Fig. 25 (these are entirely

dependent on the PVS user that creates them, though). The statistics show that all the proofs together use only
28 different proof commands, one of which is a locally defined strategy for the purpose of initiating autom-
aton invariant proofs (auto-start). Four are sequent management commands not immediately relevant for
the proofs themselves (these are (name),(hide), (reveal) and (delete)). Three are proof commands auto-
matically used by PVS for proving TCCs, (Type-Check Conditions, normally inserted by PVS when it cannot
automatically deduce the type of an expression). One proof command is inserted by PVS automatically to finish
a trivial proof (one of the form P ⇒ P). This leaves 19 different commands that are actually typed by the user;
the vast majority are (assert) and (flatten), which follow from the habits of the PVS user who made these
particular proofs.

It should be clear that the amount of effort to do the proofs is enormous compared to the effort involved in
the Uppaal verification. The main reason for this is that initially it is not clear how each proof should proceed,
and there is little support built in to PVS for the kind of proofs that need to be done. Eventually, we see that
the structures of the proofs are remarkably regular, and can develop some reusable automation for dealing with
them.

There are several existing implementations of additional automation for proofs in a specific framework, both
in PVS and outside of PVS. One example of far-ranging automation is ACL2, which is a highly automated

Analysis of a biphase mark protocol 449

Fig. 24. Invariants for three or more automata in parallel

first order theorem prover which has been used for the mechanical verification of microprocessors [SH98]. Sim-
ilar (but much smaller-scale) microprocessor verification has been done in PVS, although with no automation
[Cyr93]. Protocol verification using roughly the same framework as we have used here can be found in [CHdV03].
Automation of PVS proofs in a specific context is mentioned briefly in [Gri00], Sect. 6.6.1; it is a shame that
such improvements have not percolated into the standard PVS distribution. The TAME modeling environment
[AHS98] offers automation for timed automata models in PVS.

5.2. Introducing automation to the proofs

With the statistics of Fig. 25 as a baseline, we can attempt to slim down the proofs by introducing additional
automation. Two examples that occur quite frequently in the proofs are:

• Using (case) to split up an implication. The PVS command (split) splits a sequent with an implication as
follows:

(A ⇒ B) � C becomes B � C ∧ � A

This throws away the fact that A holds in the left branch of the proof; hence, we often use (case) and
(assert) in order to achieve:

(A ⇒ B) � C becomes A, B � C ∧ � A

By creating a tiny strategy (split*) that does this automatically, we achieve two things:

1. The proof becomes shorter (in terms of user-entered steps)

450 F.W. Vaandrager, A.L. de Groot

Fig. 25. Proof statistics for first attempt at invariants

2. It becomes clearer where this technique is used, i.e. it distinguishes these frivolous uses of (case) from
ones where real new facts are introduced.

• Splitting a CASES statement. When confronted by a large CASES statement in a sequent (which is common in
the proof of the biphase mark protocol, since we have many automata with fairly large transition relation
expressions), it is often desirable to split it into one sequent for every case in the expression. This has the effect
of examining each transition individually. Typically, the sequent appears as:

{-1} CASES R!1‘events(i!1) OF
delay(d) : P1
tick : P2

...

This can be reduced to a collection of sequents, one for each case in the expression, each with a specific event
and transition predicate. For instance, the second sequent to prove here would be

{-1} tick?(R!1‘events(i!1))
{-2} P2

...

This can be achieved by using (lift-if) to change the CASES statement into a collection of nested IFs,
and then using (split) to split the IF statement repeatedly, with the liberal application of (flatten) and
(assert) to massage the sequent into basic shape (or prove particular subgoals automatically). Automating
this process in a single prover command (auto-step) gives us:

1. Shorter proofs
2. A more uniform structure of the proofs

Analysis of a biphase mark protocol 451

Fig. 26. Proof statistics for groups P, Q, R and T, before and after automation

We gain additional flexibility by automatically expanding local transition statements and by using the names
of local transitions, instead of formula numbers. A typical application of the resulting strategy is to expand
and simplify the local transition for the Coder with (auto-step (’c "Coder"))).

After re-doing the proofs with the additional automation (and with the knowledge that the first run of a proof
in PVS is nearly always a bit messy), the proof statistics become much smaller. For invariant groups P, Q, R and
T results are shown in Fig. 26.

This 79% reduction in the number of proof steps is partly attributable to the increased automation afforded
by the (auto-step) command. Some of the reduction can be attributed to the difference between finding a proof
(the initial proof attempt) and polishing a proof for presentation. While applying the increased automation to
the proof we also have the benefit of knowing how the proof is supposed to go, and we can judiciously prune the
proof of less-than-optimal proof explorations. Additionally, it occurs fairly regularly that it is unclear whether
some subtree in a proof can be proved easily; once the proof is done it is clear that (grind) would have done the
job as well, so the re-run of a proof replaces whole subtrees with (grind).

5.3. Summary of automation

Once the structure of the PVS proofs for the biphase mark protocol was clear, additional automation was intro-
duced in order to reduce the amount of steps used in doing the proofs. The comparisons of numbers of proof steps
with and without the automation made in the previous section suggest what could have been. Future proofs with
a simular structure may also benefit from this automation, using the new proof commands that were introduced:

• (split*) Handle implications in a nicer way than (split).
• (auto-start) Start an automaton proof by introducing local transition relations.
• (auto-step) Expand and rewrite a local transition relation.

There is a trade-off, though, when doing automated proofs, between brevity and comprehensibility. PVS’s
tremendously powerful (grind) command can reduce many proofs to one step, once the proof has been found.

452 F.W. Vaandrager, A.L. de Groot

Using (grind) when it is unclear that the lemma is sound is unwise, since it takes some time to grind its way
through the proof, and then it can:

• Fail, returning you to the original proof state and requiring you to do the proof by hand anyway, or
• Give you 64 (or some other large number) bizarrely formed subgoals to prove.

Neither of these results of (grind) are really useful for advancing the proof itself. Therefore we feel that the use
of (grind) should be restricted to those proofs that really are trivial. Somewhere in the middle lies the ideal, of
a proof that is short enough to understand and not so thoroughly automated that it is unbelievable. The use of
the Uppaal model gives similar results: we know something is true, but not necessarily why or whether the fact is
interesting.

Consider invariant G9:

G9(R,i) : bool =
LET D = R‘states(i)‘decoder, C = R‘states(i)‘coder,

W = R‘states(i)‘wire, S = R‘states(i)‘sampler IN
D‘loc = d2 AND C‘iv =>
sample*min - mark*max <= W‘z AND W‘z < (cell-mark)*min ;

The important step in the proof of G9 is the induction step, which is proven in the PVS lemma Gi:

Gi : LEMMA
G9(R,i) AND G3(R,i) AND G7(R,i) AND G2(R,i) AND G6(R,i) => G9(R,i+1)

The proof itself uses the earlier invariant Q3, the parameter assumption from Eq. 3 (on page 441) and an
additional lemma, called Gi1. The proof itself has the following structure:

• Start with (auto-start).
• Expand G9 itself.
• For each automaton, use (auto-step) to rewrite its local transitions and prove trivial subcases.
• Do a little rewriting and formula manipulation, introduce the additional invariants Q3 and Gi1 that are

needed to prove each step.

Without automation, the proof of G9 took 179 steps, exploring blind alleys, over-using (assert), and doing
formula manipulation the tedious way. With a little automation such as described in the previous section, the
number of proof steps declined to 59. In this simplified proof the structure of examining each automaton’s local
transitions was very visible. Further reflection, though, shows that the proof can be reduced to 5 steps:

(AUTO-START T) % Deal with base case.
(LEMMA "Gi1" ("i" "j!1" "R" "R")) % Needed much later with this
(LEMMA "Q3" ("i" "j!1" "R" "R")) % particular instantiation.
(USE "SampleEarlyEnough")
(GRIND) % Let PVS do the work.

This particular proof is a good example of a type of proof commonly found in mathematics texts: “Use lemmata
Gi1, Q3 and the parameter inequalities; the details are left to the interested reader.” In our context the interested
reader is the PVS theorem prover, which works out the details. Now, this proof might be good for verification
purposes but it is certainly not the kind of proof one can write on first setting out to prove a property like G9.
It is also not the kind of proof you would want to present as a didactic example to show the kind of reasoning
needed in a particular domain, but again, as a succinct demonstration of truth it is fine.

This suggests that we can distinguish three flavors of proof, created while reasoning about the biphase mark
protocol:

1. Exploratory proofs when we do not know how to prove the lemma – or even if the lemma is true. These proofs
use mostly basic commands from the PVS proof language and are rather lengthy, although each step is very
basic.

2. Polished proofs, using some automation that is built around the specific domain being studied and the frame-
work that is in use. With suitable (not overly case-specific) automation, the size of proofs can be reduced over
50%, while their comprehensibility is improved because we can (for instance) replace a scattered collection of
(expand), (lift-if) and (split) with a single (consider-each-local-transition) proof command
(although it is called (auto-step) in our automation attempt).

Analysis of a biphase mark protocol 453

3. Proofs that are as short as possible, for the purpose of machine verification of the lemma. These are useful
for re-checking a theory after changes have been incorporated, or as a basis for “details are left to the reader”
expositions.

6. Playing with the parameter inequalities

Now that we have formally derived a number of constraints on the protocol parameters, it is interesting to explore
the consequences of these results. An implementor of BMP will probably have limited influence on the values of
min, max and edgelength, but (s)he may freely choose the values of cell, mark and sample. For which values of
these parameters is the bit rate maximal? Are the conventional implementation choices indeed the optimal ones?

Rather than the specific values for the lower bound min and upper bound max on the time between clock
ticks, we find it convenient to consider the ratio

ρ � min
max

.

Since 0 < min � max, ratio ρ is contained in the interval (0, 1]. If ρ � 1 we have perfect hardware clocks, and
the closer ρ gets to 0, the more unreliable the clocks are. We also normalize the time edgelength with respect to
the maximum time between clock ticks:

E � edgelength
max

.

So E specifies the number of clock cycles the signal may remain distorted after occurrence of an edge. Now we
can rewrite the parameter constraints (1), (2) and (3) into:

mark · ρ > 2 + E (4)
(sample − 1) · ρ > mark + E (5)

cell · ρ > sample + 2 + E (6)

Since ρ ∈ (0, 1] and E � 0, inequality (4) implies mark > 2. Using this fact in combination with inequality (5)
implies sample > 3. Substituting this in inequality (6) gives cell > 5.

6.1. Minimizing the Cell Size (Assuming E � 1)

Moore [Moo94] assumed that the uncertain values read from the signal due to the presence of an edge are lim-
ited to the time-span of the cycle during which the edge was written, that is he assumed edgelength � max or
equivalently E � 1. With this additional assumption, the parameter inequalities further simplify to

mark · ρ > 3 (7)
(sample − 1) · ρ > mark + 1 (8)

cell · ρ > sample + 3 (9)

Hence with ρ close to 1 the minimal values for the other parameters are

mark � 4 sample � 7 cell � 11.

Implementors prefer to use instances of BMP with

cell � 2 · mark (10)

since this implies that the signal on the wire will be high approximately 50% of the time and low 50% of the time,
which is desirable from an electrical engineering perspective (“DC balanced”). With this additional requirement,
the minimal values become

mark � 7 sample � 10 cell � 14.

These unconventional choices permit a faster bit rate (since fewer cycles are spent on each bit) than the conven-
tional choices

mark � 16 sample � 23 cell � 32, and

454 F.W. Vaandrager, A.L. de Groot

Fig. 27. Lower bound on ρ for some example configurations (with E � 1)

Fig. 28. Upper bound on E for some example configurations (with ρ � 0.999)

mark � 8 sample � 11 cell � 16.

The next lemma states that if we assume that the cell size is twice the mark size, inequality 4 becomes redundant.

Lemma 1 Inequality (4) follows from (in)equalities (10), (5), (6), E � 0 and ρ ∈ (0, 1].

Proof. We derive:

mark · ρ
(10),(6)

> sample − mark · ρ + 2 + E

ρ∈(0,1]
� sample · ρ − ρ − mark + 2 + E

(5)
> mark + E − mark + 2 + E

E�0
� 2 + E.

�

6.2. Maximizing the clock tolerance

By combining constraints (4), (5) and (6) we infer a lower bound on ρ, that is, the maximal tolerance on timing:

ρ > max
(

2 + E

mark
,

mark + E

sample − 1
,

sample + 2 + E

cell

)
(11)

Figure 27 lists lower bounds for ρ for some example configurations, assuming E � 1. These numbers can be
easily validated using the Uppaal model checker. Our results significantly improve on those of Moore [Moo94],
who obtained (for a model that is less general) a lower bound of 0.95 for ρ for the 18-cycle version of BMP, and a
lower bound of 0.97 for the conventional 32-cycle version. Typical clocks used in hardware are incorrect by less
than 6 × 10−6 s per second [Cri89]. Thus,

ρ � 1 − 6 × 10−6

1 + 6 × 10−6
≈ 0.99999.

This means that in practice there is no need to optimize on the lower bound for ρ.

6.3. Maximizing the edge distortion tolerance

From a practical perspective, it is interesting to look for the maximal value for E, since, as we will see in the next
subsection, this will allow us to optimize the bit rate. Using inequalities (4), (5) and (6) we infer that E may take
any value as long as:

Analysis of a biphase mark protocol 455

E < min(mark · ρ − 2, (sample − 1) · ρ − mark, cell · ρ − sample − 2) (12)

Figure 28 lists upper bounds for E for some example configurations, taking a value 0.999 for ρ. If cell � 2 · max
then, by Lemma 1, the minimal value for the right hand side of inequality (12) is reached by either the second
or third subterm of the min-expression. Since sample occurs positively in the second term and negatively in the
third term, the choice of a real number value for sample that maximizes E for this case is the one for which the
second and third term are equal:

(sample − 1) · ρ − mark � cell · ρ − sample − 2.

The optimal (in the sense that it maximizes E) choice for sample therefore is

cell · ρ + mark + ρ − 2
1 + ρ

This optimal value is typically slightly less than 3mark−1
2 since

3mark − 1
2

− cell · ρ + mark + ρ − 2
1 + ρ

� (1 − ρ)(m + 3)
2(1 + ρ)

� 0

Using this observation, we may infer that (for realistic values of ρ and m, say ρ � 0.999 and m � 1000):

• If mark is odd then a strict upper bound on the value for E is 4ρmark−3mark−3
2 . If we choose for sample the

(integer) value 3mark−1
2 then E may take any value below this upper bound.

• If mark is even then a strict upper bound on the value for E is 3ρmark−2mark−4ρ

2 . If we choose for sample the
(integer) value 3mark−2

2 then E may take any value below this upper bound.

We write Eopt (mark) for the upper bound on the value of E for mark size mark, and sampleopt (mark) for the
optimal choice for sample given mark. In all examples of Fig. 28 with cell � 2 · max the actual value of sample
equals the optimal value (in the sense that it maximizes the upper bound on E) that we derived.

6.4. Optimizing the bit rate

We can now generalize the results from Section 6.1 to a setting with arbitrary E. If we know E and ρ then in order
to optimize the bit rate we need to find the instance of BMP with the smallest cell size that is correct. To obtain
this instance, we just take the smallest m with Eopt(m) > E and then set cell to 2 m, mark to m, and sample to
sampleopt(m).

Based on our model we conclude that the 14-cycle instance of BMP is preferable over the 16-cycle instance that
has been implemented in the Intel 82530 Serial Communications Controller. The 14-cycle version of the protocol
allows for a more than 14% faster bit rate, but has basically the same tolerance for signal distortion following
an edge. Also, the 30-cycle instance of BMP probably is preferable over the conventional 32-cycle version: it has
almost the same tolerance for signal distortion after an edge (E � 5.97 if ρ � 0.999) but allows for a more than
6% faster bit rate. Note however that our model is quite abstract and ignores various engineering realities like
metastability, reflection, noise and distortion. Like Moore [Moo94], we offer our model primarily as a catalyst
for thought. It is up to the engineers to decide whether our model is accurate enough for the purposes at hand.

7. Related work and concluding remarks

Related Work A main source of inspiration for this article has been the work of Moore [Moo94]. The basic
modelling assumptions that we use are similar to the ones proposed by Moore, although our model is somewhat
more general: unlike Moore we allow for clock jitter in our model, and we also drop Moore’s assumption that
the distortion in the signal due to the presence of an edge is limited to the time-span of the cycle during which
the edge was written. Moore [Moo94] developed a general model of asynchronous communication and used
this model to verify the correctness of 18 and 32 cycle instances of BMP. Interestingly, Moore did not succeed
in establishing correctness of the 16 cycle instance that has been implemented by Intel. As we pointed out in
Sect. 6.2, the bounds on timing uncertainty found by Moore are suboptimal.

Model checkers for timed and hybrid automata have been used successfully to analyze various physical level
communication protocols for consumer electronics devices [BPV94, DY95, HWT95, BGK+96, HSLL97]. Since

456 F.W. Vaandrager, A.L. de Groot

these protocols typically use variations of biphase mark (e.g. Manchester) an obvious idea was to try to recast
Moore’s work in a setting of timed or hybrid automata. A first attempt in this direction was made by Ivanov
and Griffioen [IG99], who automatically verified a few instances of BMP using the model checker HyTech. Their
model is somewhat restrictive, however, since for instance sampling was only allowed at the end of a read cycle.
In September 1999, the first author (FV) constructed the Uppaal model that has been described in this paper
(with only a few minor differences), and gave a presentation of this model and the derived parameter constraints
during a symposium on the occasion of the retirement of Hans Peek as professor at the University of Nijmegen.
After model and slides were made available on the web, several researchers took up the challenge to synthesize
the parameter constraints automatically. Bensalem et al. [BBF+00] propose algorithms and methods to compute
invariants of infinite-state systems. Using their approach they managed to synthesize versions of the last two
parameter constraints for a simplified version of our model in which the Wire and Sampler automaton have
been left out. The first parameter constraint is not needed in the simplified model. Henzinger et al. [HPWT01]
succeeded to partially synthesize our parameter constraints for BMP (they always had to fix some parameter) by
running HyTech on a manually constructed abstraction of the model.

An independent line of research was carried out by Van Hung [HI96, Hun98]. In this work, the BMP has
been modelled using Duration Calculus, and a full parameter analysis has been carried out with PVS. Van Hung
models beginning and end of transmission, but assumes fixed clock rates (no jitter). The parameter inequalities
discovered by Van Hung are similar to ours but with some “off by one” differences. Apparently, these differences
are caused by some counterintuitive property of the Duration Calculus model: if the coder generates an edge,
then the signal on the wire will be unreliable for E cycles (RR in Van Hung’s terminology) starting from the last
tick of the receiver clock. We believe our timed automaton model is more realistic.

Conclusions A fascinating question for us is whether our results about possible improvements of bit rates of the
biphase mark protocol carry over from our model to the real world. Although we believe that our model accurately
reflects the operation of some implementations of BPM (such as Intel 82530), there are other implementations
in which the receiver operates in a slightly different manner. In the popular AMD 85C30 Serial Communications
Controller [Adv92], for instance, clock information is recovered from the BPM signal using a digital phase-locked
loop (DPLL). The DPLL is driven by a clock that is nominally 16 times the data rate. The DPLL uses this clock,
along with the BPM signal, to construct a receive clock for the data. Depending on the precize timing of edges,
the receive clock counter can be adjusted. To describe this mechanism accurately would require an adaptation
of our model. Apart from investigating this issue, another obvious direction for future research is to carry out a
similar analysis for the Manchester encoding protocol as it is used in e.g. the Ethernet.

Uppaal has turned out to be an (almost) perfect tool for this type of application. Modelling the biphase mark
protocol in terms of networks of timed automata is very natural, the graphical user interface helps to visualize
the automata, the simulator is a great help during the initial validation of the model, and the ability of Uppaal
to generate counterexamples and to replay them in the simulator greatly helped to increase our insight in the
protocol.

Several authors have explored extensions of timed automata tools that are able to handle parametrized timed
automata and to verify/synthesize parameter constraints [HRSV02, AAB00, CS01]. We have arrived at the con-
clusion that this is probably not the way to go. Adding the feature of parameter handling to model checkers
greatly affects performance and reduces the size of the systems that can be handled. Still, generation of nonlinear
constraints (like in the case of BMP) turns out to be difficult. The ability to handle complex models is essential
for the success of model checking technology. The protocol discussed in the present article is very simple, but
even in this case adding additional features such as termination, bus collisions, and a more accurate modelling
of the hardware would probably push Uppaal to its limits. In our experience, it is typically easy to come up with
general parameter constraints (linear or nonlinear) based on the counterexamples produced by Uppaal. The
challenge therefore is to verify correctness of the parametrized system while assuming these constraints. For this,
the most promising approach in our view is via a translation of the Uppaal model to a general purpose theo-
rem prover such as PVS and exploitation of powerful invariant generation methods such as the ones proposed
by [BLS96, BBF+00]. For practical reasons and also because we had already a manual proof of the invariants
available, we just used PVS and not any of the additional invariant generation methods.

The proof of the correctness of the biphase mark protocol in PVS is required since the collection of Uppaal
invariants alone is not enough to establish that the parameter constraints are necessary and sufficient for the cor-
rectness of the protocol. The formalization in PVS revealed a small omission in the invariants from the manual
proof and enabled us to establish global correctness of the protocol for all of its instances. Additionally, we show
how a small effort in the automation of proofs can produce great improvements in proof size and readability.

Analysis of a biphase mark protocol 457

Acknowledgments

The authors would like to thank the Stan Ivanov, participants to System Modelling Course for Philips Research,
Jozef Hooman, Martijn Hendriks and Maarten Boasson for their comments on earlier version of this paper and
the formalization of the biphase mark protocol.

References

[AAB00] Annichini A, Asarin E, Bouajjani A (2000) Symbolic techniques for parametric reasoning about counter and clock systems.
In: Emerson EA, Sistla AP (eds) Proceedings of the 12th international conference on Computer aided verification, vol 1855 of
Lecture Notes in Computer Science. Springer, Berlin Heidelberg New York, pp 419–434

[AD94] Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126:183–235
[Adv92] Advanced Micro Devices, Inc (1992) Technical Manual Am8530H/Am85C30 Serial Communications Controller
[AH96] Alur R, Henzinger TA (eds) (1996) Proceedings of the 8th international conference on computer aided verification, New

Brunswick, NJ, USA, vol 1102 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg New York
[AHS98] Myla Archer (1998) Constance Heitmeyer, and Steve Sims. TAME: a PVS interface to simplify proofs for automata models.

In: User interfaces for theorem Provers. Eindhoven, The Netherlands
[BBF+00] Bensalem S, Bozga M, Fernandez JC, Ghirvu L, Laknech Y (2000) A transformational approach for generating non-linear

invariants. In: Palsberg J (ed) SAS, vol 1824 of Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York, pp
58–74

[BDM+98] Bozga M, Daws C, Maler O, Olivero A, Tripakis S, Yovine S (1998) Kronos: a model-checking tool for real-time systems. In:
Hu AJ, Vardi MY (eds) Proceedings of the 10th international conference on computer aided verification, Vancouver, BC, Canada,
vol 1427 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg New York, pp 546–550

[BGK+96] Bengtsson J, Griffioen WOD, Kristoffersen KJ, Larsen KG, Larsson F, Pettersson P, Yi W (1996) Verification of an audio
protocol with bus collision using UPPAAL. In: Alur and Henzinger [AH96], pp 244–256

[BLS96] Bensalem S, Lakhnech Y, Saidi H (1996) Powerful techniques for the automatic generation of invariants. In: Alur and Henzinger
[AH96], pp 323–335

[BM88] Boyer RS, Moore JS (1988) A computational logic handbook. Academic, New York
[BPV94] Bosscher DJB, Polak I, Vaandrager FW (1994) Verification of an audio control protocol. In: Langmaack H, de Roever W-P,

Vytopil J (eds) Proceedings of the third international school and symposium on formal techniques in real-time and fault-tolerant
systems (FTRTFT’94), Lübeck, Germany, September 1994, vol 863 of Lecture Notes in Computer Science, Springer, Berlin
Heidelberg New York, pp 170–192

[CHdV03] Chkliaev D, Hooman J, de Vink E (2003) Verification and improvement of the sliding window protocol. In: Proceedings
TACAS’03, vol 2619. Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York, pp 113–127

[Cri89] Cristian F (1989) Probabilistic clock synchronization. Distributed Comput 3:146–158
[CS01] Collomb–Annichini A, Sighireanu M (2001) Parameterized reachability analysis of the IEEE 1394 Root Contention Protocol

using TReX. In: Pettersson p, Yovine S (eds) Proceedings of the Workshop on Real-Time Tools (RT-TOOLS’2001)
[Cyr93] Cyrluk D (1993) Microprocessor verification in PVS: a methodology and simple example. Technical Report SRI-CSL-93-12,

Computer Science Laboratory, SRI International, Menlo Park, CA
[DY95] Daws C, Yovine S (1995) Two examples of verification of multirate timed automata with kronos. In: Proceedings of the 16th

IEEE real-time systems symposium (RTSS’95). Pisa, Italy. IEEE Computer Society Press, New York, pp 66–75
[Gri00] Griffioen WOD (2000) Studies in Computer Aided verification of protocols. PhD thesis, University of Nijmegen, May 2000.

http://www.cs.kun.nl/ita/former members/davidg/, IPA thesis no. 2000-04
[HI96] Hung DV, Kwang K II (1996) Verification via digitized models of real-time hybrid systems. In: Proceedings Asia-Pacific software

engineering conference (APSEC’96). IEEE Computer Society Press, New York, pp 4–15
[HPWT01] Henzinger TA, Preussig J, Wong-Toi H (2001) Some lessons from the HyTech experience. In: Proceedings of the 40th Annual

Conference on Decision and Control (CDC). IEEE Press, New York, pp 2887–2892
[HRSV02] Hune TS, Romijn JMT, Stoelinga MIA, Vaandrager FW (2002) Linear parametric model checking of timed automata. J Logic

Algebraic Program 52–53:183–220
[HSLL97] Havelund K, Skou A, Larsen KG, Lund K (1997) Formal modelling and analysis of an audio/video protocol: an industrial case

study using Uppaal. In: Proceedings of the 18th IEEE real-time systems symposium. IEEE Computer Society Press, New York,
pp 2–13

[Hun98] Hung DV (1998) Modelling and verification of biphase mark protocols using PVS. In: Proceedings of the international conference
on applications of concurrency to system design (CSD’98), Aizu-wakamatsu, Fukushima, Japan, March 1998. IEEE Computer
Society Press, pp 88–98

[HWT95] Ho P-H, Wong-Toi H (1995) Automated analysis of an audio control protocol. In: Wolper P (ed) Proceedings of the 7th interna-
tional conference on computer aided verification, Liège, Belgium, vol 939 of Lecture Notes in Computer Science. Springer, Berlin
Heidelberg New York

[IG99] Ivanov S, Griffioen WOD (1999) Verification of a biphase mark protocol. Report CSI-R9915, Computing Science Institute,
University of Nijmegen, August 1999

[Int91] Intel Corporation. Microcommunications (1991) Intel Literature Sales, P.O. Box 7641, Mt. Prospect, IL 60056-7641
[LPY97] Larsen KG, Pettersson P, Yi W (1997) Uppaal in a Nutshell. Int J Softw Tools Technol Transf 1(1–2):134–152
[Moo94] Moore J.S[trother] (1994) A formal model of asynchronous communication and its use in mechanically verifying a biphase

mark protocol. Formal Aspects Comput 6(1):60–91

458 F.W. Vaandrager, A.L. de Groot

[ORSH95] Owre S, Rushby J, Shankar N, von Henke F (1995) Formal verification for fault-tolerant architectures: prolegomena to the
design of PVS. IEEE Trans Softw Eng 21(2):107–125

[SH98] Sawada J, Hunt WA (1998) Processor verification with precise exceptions and speculative execution. In: Proceedings of 10th
international computer aided verification conference, pp 135–146

Received 10 November 2004 by J. Rushby
Accepted 6 March 2006 by C.B. Jones
Published online 8 September 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

