Introduction to Complex Networks Network Application Diagnostics B2M32DSA

#### Radek Mařík

Czech Technical University Faculty of Electrical Engineering Department of Telecommunication Engineering Prague CZ

October 1, 2017



### Outline

#### Complex Networks

- Practical Examples
- Software Tools
- Network Volume
   Netflow Comprehension
- Network Visualization
  - Data on the Ancient Egypt
  - Mainframe Assembly Comprehension
  - Enterprise people

#### 2 Complex Network Introduction

- Graph Terminology
- Graph Algorithms



#### Conservation within the global metabolic network [PASP09]





Lipid metabolism

Xenobiotics

White horder

(10) Penicillin and cephaloporin biosynthesis

(14) Fatty acid biosynthesis pathway I

(13) Lysine biosynthesis and degradation

(12) Glutathione metabolism

(11) Diterpenoid biosynthesis



# Link Analysis of the Al Qaeda Terrorist Network [FMS]





# Internet Map in 2015 [BI014, Opt17]





#### Practical Examples

### Chocolate Making Process Dependencies [Fre14]



7 / 76

### More Examples

- Biological networks
  - gene regulation networks
  - protein-protein interaction networks
  - metabolic networks
  - the food web
  - predator-prey relations
  - brain network
- Social networks:
  - networks of acquaintances
  - collaboration networks
  - phone-call networks
  - citation networks
  - opinion formation
  - society/community/party networks

- Technological networks:
  - the Internet
  - telephone networks
  - transportation networks
  - sensor networks
  - energy grid networks
- Informational networks:
  - the World Wide Web
  - Twitter
  - Facebook
  - peer-to-peer

### **SNA** Books





### Approach to Complex Networks

- One needs to distinguish between analysis and production phases
- Some phenomena appear only with sufficiently large data volumes (emergent events)
- Volume
  - A number of suitable tools ... HDF5, ElasticSearch, Clouds
  - Capable to operate with terabytes of data
- Visualization
  - Critical if anomaly features are not known
  - At present, there is no obvious choice of a tool and a network layout given a particular problem.
  - Tools do not often scale with data volumes (>  $10.000~{\rm nodes},~10^5~{\rm edges})$
  - GGobi, Pajek, NetworkX, SNAP, Tulip, Gephi, Cytospace, yEd, D3.js
  - Aspects: data volume, interactions with the user

## Popular software packages [HLDS13]

- Analysis
  - UCINET (http://www.analytictech.com/ucinet.htm)
  - ENET (http://analytictech.com/e-net/e-net.htm)
  - Pajek (http://pajek.imfm.si/doku.php?id=pajek)
  - RSIENA
  - R
  - NodeXL
  - NetworkX ... a Python library
  - iGraph ... a C/Python library
- Visualization
  - yEd
  - Gephi
  - Cytospace
  - Tulip
  - NetDraw (2D, embedded in UCINET, see above)
  - Mage (3D, embedded in UCINET, see above)
  - visit www.netvis.org/resources.php for more

### **NETFLOW Primary Statistics**

#### Netflow

- Condensed records on a packet flow
- Several packets are merged into one netflow record
- Only 14-20 aggregated metrics

An enterprise traffic as a netflow sample taken during 9 days:

| Statistics                      | Value                  |
|---------------------------------|------------------------|
| Total transported data volume   | 13,995,690,457,765 [B] |
| Packet count                    | 20,131,367,095         |
| Netflow count                   | 617,326,053            |
| IP address count                | 686,168                |
| Source IP address count         | 614,150                |
| Destination IP address count    | 392,881                |
| Different P2P connections count | 2,412,481              |



### Is the Sample of IP addresses reprezentative?



Radek Mařík (radek.marik@fel.cvut.cz)

M

### A Data Projection Focused on Services



- Destination IP vs. destination port (space of services and their locations)
- Some counts of accesses are exceptional (red)

### Top Level IP Network Projection - Data Sparsity



- Focused on the network of source and destination IP addresses
- Top level octets of IP addresses (160.30.29.17  $\implies$  160)
- A very sparse space
- A rather restricted source-destination IP connections (as expected)

M

### Port Scanning from xxx.xxx.18.120 - Logical Time Progress



• 617,326,053 netflows  $\approx$  60,000 samples  $\times$  sample size 10.000

- ullet  $\Longrightarrow$  60,000 samples might be still visualized with difficulties
- $\implies$  1.000 events can be easily missed with 10,000 sample size

Complex Networks Network Volume

### Masters of Social Network Analysis [RP13, Weh13]



- US National Security Agency
- Maintains large programs in social network analysis
- Believed to process  $2\times 10^{10}$  node and tie updating events per day
- Result:
  - "Better Person Centric Analysis"

#### Types

• 94 entity/node types

(phone numbers, e-mail addresses, IP addresses, etc.)

• **164 relationship** types to build "community of interest" profiles (*travelsWith*, *hasFather*, *sentForumMessage*, *employs*, etc.)

### Egypt Data - Family Recognition



### circular layout (yEd)

#### A family:

- Using family designation
  - husband, wife, son, etc.
- A connected graph component
- Sparse data assumed
- Transformed into family tree using marriage nodes



Complex Networks Netw

Network Visualization

### Egypt Data - Transformation into Family Tree



A family as a connected component circular layout (yEd)



#### A family tree hierarchical layout (yEd)

### Family Trees<sup>[Mar17]</sup>



### multitree-like tree driven layout, Graphviz



- Taxonomic information ITIS on plants, animals, fungi, and microbes,
- A phylogenetic tree with 945.352 nodes
- multitree-like tree driven layout



M

### **HLASM Mainframe Assembly**

| <ul> <li>Active Using</li> </ul> | as: IHIFS | ARA,R1  | 3        |                |         |                     |                                |           |
|----------------------------------|-----------|---------|----------|----------------|---------|---------------------|--------------------------------|-----------|
| ▲ Loc Object <sup>®</sup>        | Code      | Addr1   | Addr2 S  | Stint Source   | State   | nent                | HLASH R5.0 2008/04/            | /18 03.22 |
| →ODD28A 1A3B                     |           |         |          | 646            | AR      | R3,PBT              | ADDRESS OF PBT-ENTRY           | 11980000  |
| +00028C 910C 30                  | 106       | 00006   |          | 647            | TH      | 6(R3),BETABM        | PROCEDURE CALLED               | 12000000  |
| +000290 4780 D2                  | 284       |         | 00284    | 648            | BZ      | PROLOĜ1             | NO                             | 12020000  |
| +000294 0000 00                  | 100       |         | 00000    | 649            | C       | ADR, ASTLOC(D, FSA) | COMP.CONT.OF ADR.HITH ADDR.OF  | 12040000  |
| →** ASHAD44E Un                  | ndef ined | sunbo]  | ASTLO    | )C             |         |                     |                                |           |
| →** ASMA435I Re                  | ecord 619 | ⊑ín KC  | TEHO1.CE | T310.ASH(IHI)  | SR) o   | n volume: TSUD11    |                                |           |
| ÷                                |           |         |          | 650 *          |         |                     | *FUNCTIONVALUESTORAGE          | 12060000  |
| +000298 0000 00                  | 100       |         | 00000    | 651            | BE      | OERR21(D,FSA)       | BRANCH IF EQUAL                | 12080000  |
| →** ASHAD44E Un                  | ndef ined | synbo]  | - OERR2  | 21             |         | ,                   |                                |           |
| →** ASMA435I Re                  | ecord 621 | . in KC | TEHO1.CE | )T310.ASH(IHIA | FSA) or | n volume: TSUD11    |                                |           |
| +00029C 9110 30                  |           | 00006   |          | 652            | TH      | 6(R3),CODEPRM       | CODE PROCOURE CALLED           | 12100000  |
| ≠0002A0 4710 D4                  | 478       |         | 0047A    | 653            | BO      | PROLOG2             | YES                            | 12120000  |
| +0002A4 4803 00                  | 304       |         | 00004    | 654 PROLOG1    | LH      | RD,4(R3)            | LENGTH OF DSA TO REG D         | 12140000  |
| +0002A8 184F                     |           |         |          | 655            | LR      | R4,BRR              | SAVE BRR DURING GETHAIN        | 12160000  |
| ÷                                |           |         |          | 656            | CETHA   | IN Ŕ,LV=(D)         | GETHAIN FOR DSA                | 12180000  |
| ≠0002AA 4510 D2                  | 2AE       |         | OO2AE    | 658+           | BAL     | 1,*+4               | INDICATE GETHAIN 0Z30EN9G      | 01-GETHA  |
| ≠ODO2AE DADA                     |           |         |          | 659+           | SVC     | 1Ò                  | ISSUE GETHAIN SVC              | 01-CETHA  |
| →000280 18F4                     |           |         |          | 660            | LR      | BRR,R4              |                                | 12200000  |
| ≠0002B2 5802 B0                  |           |         | 00000    |                | L       | RO,Ó(R2,PBT)        |                                |           |
| ≠0002B6 5000 10                  |           |         | 00000    | 662            | ST      | R0,0(0,R1)          | AND STORE IT IN DSA            | 12240000  |
| ≠0002BA 50AD 10                  |           |         | 00004    | 663            | ST      | CDSA,4(0,R1)        | STORE POINTER OF EMBRACING PB. | 12260000  |
| →0002BE 4020 10                  |           |         | 00008    | 664            | STH     | R2,8(0,R1)          | STORE PBT DISPLACEMENT         | 12280000  |
| +0002C2 9200 10                  |           | DDDDA   |          | 665            | HVI     | 10(R1),X'00'        | ZEROS TO VALUE ARRAY AND       | 12300000  |
| +0002C6 D204 10                  |           |         |          | 666            | HVC     | 11(5,R1),10(R1)     | *ARRAY POINTERS                | 12320000  |
| ≠0002CC 5012 BD                  | 300       |         | 00000    | 667            | ST      | R1,0(R2,PBT)        | STORE CURR.DSA POINTER IN PBT  | 12340000  |
| ≠0002D0 18A1                     |           |         |          |                | LR      | CDŚA,R1             | SET COSA POINTER               | 12360000  |
| +000202 90BC A0                  |           |         | 00010    | 669            | STN     | PBT,LAT,16(CDSA)    |                                | 12380000  |
| +0002D6 0000 00                  | 300       |         | 00000    | 670            | L       | STH,RASPT(FSA)      | RAS-POINTER TOP                | 12400000  |
|                                  |           |         |          |                |         |                     |                                |           |





### CHALLENGE: Complex Control Flow, a typical case



#### layered layout - Graphviz dot

M

#### Complex Networks Network Visualization

# Dependancy of External Symbols in Mainframe Assembly Software



# Fruchterman-Reingold force-driven layout

- A software product ... over 10.000.000 lines of code
- Over 400 modules . . . red
- External symbols . . . green
- Thick line ... the definition of a symbol
- Thin line ... a reference to a symbol
- ٩
- Where should the developer start with a bug analysis?



### Assembly Software - Recovered Architecture



#### double-circular layout - yEd

Radek Mařík (radek.marik@fel.cvut.cz)



Complex Networks

Network Visualization

Company Network of People - 3D Hyperbolic Tree Layout (Walrus)



### Graph [Weh13]

A graph is a set of vertices and a set of lines between pairs of vertices.



- Actor vertex, node, point
- Relation line, edge, arc, link, tie
  - Edge = undirected line, {c, d} c and d are end vertices
  - Arc = directed line, (a, d)
     a is the initial vertex, (source, start)
     d is the terminal vertex, (target, end)
  - Parallel (multiple) arcs/edges are only allowed in multigraphs with more than one relation (set of lines).
  - Loop (self-choice)

#### We focus on simple graphs!

A **simple** undirected graph has no loops and no parallel edges. A simple directed graph has no parallel arcs.

Radek Mařík (radek.marik@fel.cvut.cz)

Introduction to Complex Networks

### Network [EK10, New10, Weh13, Erc15]

#### Network

A **network** consists of a graph and additional information on the vertices or the lines of the graph.



#### • Long range dependencies vs. multidimensional space

- Specific topological properties
- Large/Huge volumes of sparse data records

Radek Mařík (radek.marik@fel.cvut.cz)

Introduction to Complex Networks

### Asymptotic Notation [CLRS09, Erc15]

Let 
$$c, c_1, c_2 \in \mathbb{R}^{>0}$$
,  $n_0, n \in \mathbb{N}$ ,  $f, g \in \mathbb{N} \to \mathbb{R}^+$ 

Asymptotic upper bound (CZ horní asymptotický odhad)

 $f(n) \in O(g(n))$ , if  $(\exists c > 0)(\exists n_0)(\forall n > n_0) : |f(n)| \le |c \cdot g(n)|$ 

Asymptotic lower bound (CZ dolní asymptotický odhad)

 $f(n) \in \Omega(g(n))$ , if  $(\exists c > 0)(\exists n_0)(\forall n > n_0) : |c \cdot g(n)| \le |f(n)|$ 

Asymptotic tight bound (CZ optimální asymptotický odhad)

 $\begin{aligned} & f(n) \in \Theta(g(n)), \text{ if } \Theta(g(n)) \stackrel{\text{def}}{=} O(g(n)) \cap \Omega(g(n)) \\ & (\exists c_1, c_2 > 0) (\exists n_0) (\forall n > n_0) : |c_1 \cdot g(n)| < |f(n)| < |c_2 \cdot g(n)| \end{aligned}$ 



### NP-Completeness [CLRS09, Erc15]

#### P and NP

#### • P - Polynomial. Problems that can be solved in polynomial time.

- **NP Nondeterministic Polynomial**. A problem is in NP if you can in polynomial time by a *certifier* test whether a solution is correct without worrying about how hard it might be to find the solution.
  - Nondeterministic is a fancy way of talking about guessing a solution.
- $P \subseteq NP$  (??? P = NP ???)

#### NP-complete and NP-hard

- NPH NP-hard. An NPH problem is a problem which is as hard as any problem in NP
  - An NPH problem does not need to have a certificate.
- NPC NP-complete. A problem is NPC if it is NP and is as hard as any problem in NP
  - A problem A is NPC if it is both NPH and in NP, NPC = NP  $\cap$  NPH.

## Complexity Classes Other Than NP [CLRS09, Erc15]

#### Complexity classes harder than NP

- PSPACE. Problems that can be solved using a reasonable amount of memory
  - defined formally as a polynomial in the input size
  - without regard to how much time the solution takes.
- **EXPTIME**. Problems that can be solved in exponential time.
- **Undecidable**. For some problems, we can prove that there is no algorithm that always solves them, no matter how much time or space is allowed.



### Tree Search [BM08]

- A systematic procedure, or algorithm, that generates a sequence of rooted trees in G, starting with the trivial tree consisting of a single root vertex r, and terminating either with a spanning tree of the graph or with a nonspanning tree whose associated edge cut is empty, is called tree-search and the resulting tree is referred to as a search tree [BM08].
- **Depth-first search** is a tree-search in which the vertex added to the tree T at each stage is one which is a neighbor of as recent an addition to T as possible.
- The resulting spanning tree is called a **depth-first search tree** or **DFS-tree**.

### DFS-tree Search Edge Classification [BM08]

- There are two times associated with each vertex  $v \in G$  during the construction of its DFS-tree T:
  - the discovery time  $\tau_d(v)$  when v is incorporated into T and
  - the finish time  $\tau_f(v)$  when all the neighbors of v are found to be already in T.
- In particular,  $\tau_d(r) = 1$ ,  $\tau_f(v) = \tau_d(v) + 1$  for every leaf v of T, and  $\tau_f(r) = 2|V|$ .
- Based on Proposition 1 and Theorem 1 any edge e = uv in a graph G having a DFS-tree T with  $\tau_d(u) < \tau_d(v) < \tau_f(v) < \tau_f(u)$  can be oriented as  $\vec{e} = \vec{uv} = (u, v)$  and classified as:
  - tree edge, if  $e \in T$ , i.e. the vertex u is an ancestor of v in T,
  - back edge, if  $e \notin T$ .

### Tree Search Times - Properties

### Proposition 1 (Proposition 6.5 [BM08], p.141)

Let u and v be two vertices of G, with  $\tau_d(u) < \tau_d(v)$ .

- **1** If u and v are adjacent in G, then  $\tau_f(v) < \tau_f(u)$ .
- **(**) u is an ancestor of v in T if and only if  $\tau_f(v) < \tau_f(u)$ .

#### Theorem 1 (Theorem 6.6 [BM08], p.142)

Let T be a DFS-tree of a graph G. Then every edge of G joins vertices which are related in T.

#### Lemma 1 (Lemma 22.11 [CLRS09], p.614)

A directed graph G is acyclic if and only if a depth-first search of G yields no back edges.

Complex Network Introduction Graph Algorithms

### Tree Search Times - Properties

#### Proposition 2 (Proposition 1.5.6 [Die05], p.16)

Every connected graph contains a normal spanning tree, with any specified vertex as its root.



#### Graph Algorithms

### Breadth-first Search [CLRS09, Erc15]

#### Algorithm 1 BFS

| 1:   | <b>Input:</b> $G(V, E)$ , a source node s                     | 11: |
|------|---------------------------------------------------------------|-----|
|      | <b>Output:</b> $d_v$ , pred $[v]$ , $\forall v \in V$         | 12: |
|      | $\triangleright$ distance and place of a vertex in BFS        | 13: |
| -    | · · · · · · · · · · · · · · · · · · ·                         | 14: |
|      | Q a queue                                                     | 15: |
|      | for all $u \in V \setminus \{s\}$ do                          | 16: |
|      | $d_u \leftarrow \infty$                                       | 17: |
| 7:   | $pred[u] \leftarrow \bot  \triangleright  undetermined value$ |     |
| 8:   | end for                                                       | 18: |
| 9:   | $d_s \leftarrow 0$                                            | 19: |
| 10·  | $pred[s] \leftarrow s$                                        | 20: |
| - 0. | <b>h</b> [o] , o                                              | 21: |
|      |                                                               |     |

### BFS ... the main loop

| 11: | $Q \leftarrow s$            |
|-----|-----------------------------|
| 12: | while $Q \neq \emptyset$ do |
| 13: | $u \leftarrow deque(Q)$     |
| 14: | for all $(u,v) \in E$ do    |
| 15: | if $d_v = \infty$ then      |
| 16: | $d_v \leftarrow d_u + 1$    |
| 17: | $pred[v] \leftarrow u$      |
| 18: | enqueu(Q, v)                |
| 19: | end if                      |
| 20: | end for                     |
| 21: | end while                   |

#### Theorem 2 (Theorem 3.1 [Erc15], p.35)

The time complexity of BFS algorithm is  $\Theta(N+M)$  for a graph of order N and size M.

### Depth-first Search [CLRS09, Erc15]

#### Algorithm 2 DFS\_Forest

- 1: Input: G(V, E), directed or undirected
- 2: **Output:** pred[v], firstVis[v], secVis[v],  $\forall v \in V$
- 3: int time  $\leftarrow 0$ ; visited $[1:n] \leftarrow 0$
- 4: for all  $u \in V$  do
- 5:  $visited[u] \leftarrow false$
- 6:  $pred[u] \leftarrow \bot \Rightarrow undetermined value$
- 7: end for
- 8: for all  $u \in V$  do
- 9: if  $\neg visited[u]$  then
- 10: DFS(u)
- 11: end if
- 12: end for

#### DFS procedure

13: procedure DFS(u) 14:  $visited[u] \leftarrow true$ 15:  $time \leftarrow time + 1$ 16:  $firstVis[u] \leftarrow time$ for all  $(u, v) \in E$  do 17: if  $\neg visited[v]$  then 18:  $pred[v] \leftarrow u$ 19: DFS(u)20: 21: end if 22: end for 23:  $time \leftarrow time + 1$ 24:  $sectVis[u] \leftarrow time$ 25: end procedure

#### Asymptotic complexity of the DFS algorithm

The time complexity is  $\Theta(N+M)$  for a graph of order N and size M.

Radek Mařík (radek.marik@fel.cvut.cz)

Introduction to Complex Networks

## Dijkstra's Single Source Shortest Paths [CLRS09, Erc15]

| Algorithm 3 Dijkstra_SSSP                                                                                                                                                                                                                                                                                                                                                                                                           | SSSP the main loop                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Algorithm 3 Dijkstra_SSSP         1: Input: $G(V, E)$ , directed or undirected,         2: Input: positive weights $l_e$ on edges,         3: Input: a source node $s$ 4: Output: $d_v$ , pred $[v]$ , $\forall v \in V$ 5: for all $u \in V \setminus \{s\}$ do         6: $d_u \leftarrow \infty$ 7: pred $[u] \leftarrow \bot$ > undetermined value         8: end for         9: $d_s \leftarrow 0$ 10: pred $[s] \leftarrow s$ | $\begin{array}{c c} \hline \hline \\ $ |

#### Theorem 3 (Theorem 5.1 [Erc15], p.84)

The time complexity of the Dijkstra's\_SSSP is  $O(N^2)$  for a graph of order N.

Radek Mařík (radek.marik@fel.cvut.cz)

### Floyd-Warshall All Pairs Shortest Paths [CLRS09, Erc15]

- The approach
  - Dynamic programming approach
  - ${\scriptstyle \bullet}$  Comparing all possible paths between each pair of nodes in G
  - Improving the shortest path between them at each step until the result is optimal.
- Distance matrix D[N, N] between nodes u and v
- Matrix  ${\cal P}[N,N]$  with the first node on the current shortest path from u to v



Radek Mařík (radek.marik@fel.cvut.cz)

### FW APSP Algorithm [CLRS09, Erc15]

| Algorithm 4 FW_APSP               |                                                    |     | APSP the main loop                                                   |  |  |  |  |
|-----------------------------------|----------------------------------------------------|-----|----------------------------------------------------------------------|--|--|--|--|
| 1: Input: $G(V, E)$ ,             |                                                    |     | $14: S \leftarrow \emptyset$                                         |  |  |  |  |
| 2: Input: weights $w_e$ on edges, |                                                    | 15: | while $S \neq V$ do                                                  |  |  |  |  |
| 3:                                | no negative-weight cycles                          | 16: | <b>pick</b> $w$ from $V \setminus S$ $\triangleright$ Select a pivot |  |  |  |  |
| 4:                                | <b>Output:</b> $D[N, N]$ , $P[N, N]$               | 17: | for all $u \in V$ do                                                 |  |  |  |  |
| 5:                                | for all $\{u, v\} \in V$ do                        | 18: | for all $v \in V$ do                                                 |  |  |  |  |
| 6:                                | if $u = v$ then                                    | 19: | if $D[u,w] + D[w,v] < D[u,v]$ then                                   |  |  |  |  |
| 7:                                | $D[u,v] \leftarrow 0; P[u,v] \leftarrow \bot$      | 20: | $D[u,v] \leftarrow D[u,w] + D[w,v]$                                  |  |  |  |  |
| 8:                                | else if $(u,v) \in E$ then                         | 21: | $P[u,v] \leftarrow P[u,w]$                                           |  |  |  |  |
| 9:                                | $D[u, v] \leftarrow w_{uv}; P[u, v] \leftarrow v$  | 22: | end if                                                               |  |  |  |  |
| 10:                               | else                                               | 23: | end for                                                              |  |  |  |  |
| 11:                               | $D[u,v] \leftarrow \infty; P[u,v] \leftarrow \bot$ | 24: | end for                                                              |  |  |  |  |
| 12:                               | end if                                             | 25: | $S \leftarrow S \cup \{w\}$                                          |  |  |  |  |
| 13: end for                       |                                                    | 26: | end while                                                            |  |  |  |  |
|                                   |                                                    |     |                                                                      |  |  |  |  |

#### Asymptotic complexity of the FW\_APSP algorithm

The time complexity is  $\Theta(N^3)$  for a graph of order N.

Radek Mařík (radek.marik@fel.cvut.cz)

Introduction to Complex Networks

Complex Network Introduction

Graph Algorithms

### FW APSP Algorithm Example [Erc15]

$$D = \begin{bmatrix} 0 & \infty & \infty & \infty & 2\\ 4 & 0 & 9 & \infty & \infty\\ \infty & \infty & 0 & 3 & \infty\\ \infty & 6 & \infty & 0 & \infty\\ \infty & 1 & \infty & 12 & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 0 & 3 & \infty & 14 & 2\\ 4 & 0 & 9 & 12 & 6\\ \infty & 9 & 0 & 3 & \infty\\ 10 & 6 & 15 & 0 & \infty\\ 5 & 1 & 10 & 12 & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 0 & 3 & 12 & 14 & 2\\ 4 & 0 & 9 & 12 & 6\\ 13 & 9 & 0 & 3 & 10\\ 10 & 6 & 15 & 0 & 12\\ 5 & 1 & 10 & 12 & 0 \end{bmatrix}$$





#### Summary

- An introduction to complex networks
- Several practical application domains shown
- Software tools overview
- Demonstration of two issues
  - Network data volume
  - Network visualization
- Graph Terminology Reminder
- Graph Path Algorithms Reminder





# Appendix



Radek Mařík (radek.marik@fel.cvut.cz) Introduction to Complex Networks

Graph Terminology

### Graph Representation [Bei95]



#### Adjacency matrix (Table)

| 1 | 10               | 14 | 22              | 25                                                                                                                                                | 30                                                    |
|---|------------------|----|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|   | 1                |    |                 |                                                                                                                                                   |                                                       |
|   |                  | 1  | 1               |                                                                                                                                                   | .                                                     |
|   |                  |    |                 |                                                                                                                                                   | .                                                     |
|   |                  | 1  |                 | 1                                                                                                                                                 | .                                                     |
|   |                  |    |                 |                                                                                                                                                   | 1                                                     |
| - |                  |    | 1               |                                                                                                                                                   | .                                                     |
|   | ·<br>·<br>·<br>· |    | . 1 .<br>1<br>1 | .         1         .         .           .         .         1         1         1           .         .         .         .         .         . | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |



Radek Mařík (radek.marik@fel.cvut.cz)

### Graph (Formal Definitions) [Die05, BM08, Wil98]

- A graph is a pair G = (V, E) of sets such that E ⊆ [V]<sup>2</sup>, V ∩ E = Ø, together with an incidence function ψ<sub>G</sub> that associates with each edge of G an unordered par of not necessarily distinct vertices of G.
- The number of vertices of a graph G is its order N = v(G) = |V| = |G|.
- A graph with vertex set V is said to be a graph on V.
- The vertex set of a graph G is referred to as V(G), its edge set as E(G), independently of any actual names of these two sets.
- We also write  $v \in G$  instead of  $v \in V(G)$ , similarly  $e \in G$ .
- The number of edges of a graph G is its size denoted by M = e(G) = |E| = ||G||.

### Graph Operations [Die05, BM08, Wil98]

- Let G=(V,E) and  $G^{\prime}=(V^{\prime},E^{\prime})$  be two graphs.
- If V' ⊆ V and E' ⊆ E, then G' is a subgraph of G, written as G' ⊆ G.
- If G' ⊆ G and G' contains all the edges xy ∈ E with x, y ∈ V', then G' is an induced subgraph of G;
  i.e. V' induces or spans G' in G and G' := G[V'].
- G' ⊆ G is a spanning subgraph of G if V' spans all of G,
   i.e. if V' = V.
- If U is any set of vertices, we write G U for  $G[V \setminus U]$ .
- If  $U = \{v\}$  is a singleton, we write G v rather than  $G \{v\}$ .
- For a subset  $F \subseteq [V]^2$  we write  $G - F := (V, E \setminus F)$  and  $G + F := (V, E \cup F)$ ;  $G - \{e\}$  and  $G + \{e\}$  are abbreviated to G - e and G + e.

### Graph Maximality [Die05]

- A graph G is edge-maximal with a given graph property if G itself has the property byt no graph G + uv does for non-adjacent vertices u, v ∈ G.
- When we call a graph **minimal** or **maximal** with some property but hove not specified any particular ordering, we refer to the subgraph relation.
- We speak of minimal or maximal sets of vertices or edges if the reference is made to set inclusion.



### Graph Edges [Die05, BM08, Wil98]

- Let e be an edge and u and v are vertices such that  $\psi_G(e) = \{u, v\}$ .
- A vertex v is **incident** with an edge e if  $v \in e$ ; then e is an edge at v.
- The set of all the edges in E at a vertex v is denoted by E(v).
- The two vertices  $v_1$  and  $v_2$  incident with an edge  $e = \{v_1, v_2\}$  are its endvertices or ends, and an edge joins its ends.
- An edge  $\{u, v\}$  might be written as uv (or vu).
- If  $u \in U \subseteq V$  and  $w \in W \subseteq V$  then uw is an U W edge.
- The set of all U W edges in a set E is denoted by E(U, W)).
- Two vertices  $u, v \in G$  are adjacent, or neighbors, if  $uv \in G$ .
- Two edges  $e \neq f$  are **adjacent** if they have an end in common.
- If {V<sub>1</sub>, V<sub>2</sub>} is a partition of V, the set  $E(V_1, V_2)$  of all the edges of G crossing this partition is called a cut.

### Graph Neighborhood [Die05, BM08, Wil98]

- Let G = (V, E) be a (non-empty) graph.
- The set of **neighbors** of a vertex v in G is denoted by  $N_G(v)$ , or briefly by N(v).
- The neighbors of U for  $U \subseteq V$ , denoted by N(U), is the set of the neighbors  $V \setminus U$  of vertices in U.
- The degree (or valency)  $d_G(v) = d(v)$  of a vertex v is the number |E(v)| of edges at v.
- Let  $r \ge 2$  be an integer.
- A graph G = (V, E) is called *r*-partite if V admits a partition into r classes such that every edge has its ends in different classes: vertices in the same partition class are not adjacent.
- If r = 2 then such a graph is denoted as **bipartite**.

• 
$$V = V_1 \cup V_2$$
,  $V_1 \cap V_2 = \emptyset$ 



### Graph Path [Die05, BM08, Wil98]

- A path is a non-empty graph P = (V, E) of the form  $V = \{v_0, v_1, \ldots v_k\}, E = \{v_0v_1, v_1v_2, \ldots v_{k-1}v_k\},$  where the  $v_i$  are all distinct.
- The vertices  $v_0$  and  $v_k$  are **linked** by P and are called its **ends**, the vertices  $v_1, \ldots v_{k-1}$  are the **inner** vertices of P.
- A path P can often be identified by its natural sequence of its vertices, i.e. P = v<sub>0</sub>v<sub>1</sub>...v<sub>k</sub> and called a path from v<sub>0</sub> to v<sub>k</sub> (or between v<sub>0</sub> and v<sub>k</sub>).
- Given sets A, B of vertices, we call  $P = v_0v_1 \dots v_k$  an A B path if  $V(P) \cap A = \{v_0\}$  and  $V(P) \cap B = \{v_k\}$ .
- We write a B path rather than  $\{a\} B$ , etc.
- If  $P = v_0 \dots v_{k-1}$  is a path and  $k \ge 3$ , then the graph  $C := P + v_{k-1}v_0$  is called a cycle.

### Graph Subpath [Die05, BM08, Wil98]

• For  $P = v_0 v_1 \dots v_k$  and  $0 \le i \le j \le k$  we write

$$Pv_i := v_0 \dots v_i, \text{ and} \tag{1}$$

$$v_i P := v_i \dots v_k$$
, and (2)

$$v_i P v_j := v_i \dots v_j \tag{3}$$

and

$$\overset{\bullet}{P} := v_1 \dots v_{k-1}, \text{ and } \tag{4}$$

$$\underline{P}\mathring{v}_i := v_0 \dots v_{i-1}, \text{ and}$$
(5)

$$\dot{v}_i P := v_{i+1} \dots v_k, \text{ and} \tag{6}$$

$$\dot{v}_i P \dot{v}_j := v_{i+1} \dots v_{j-1} \tag{7}$$

for the appropriate subpaths of P.

• A concatenation of three paths  $Px \cup xQy \cup yR$  is denoted as PxQyR

### Graph Walk [Die05, BM08, Wil98]

- A walk in a graph G is a sequence  $W := v_0 e_1 v_1 \dots v_{\ell-1} e_{\ell} v_{\ell}$ , whose terms are alternately vertices and edges of G, such that  $v_{i-1}$ and  $v_i$  are the ends of  $e_i$ ,  $1 \le i \le \ell$ .
- If v<sub>0</sub> = x and v<sub>ℓ</sub> = y, we say that W connects x to y and refer to W as an xy-walk.
- The vertices x and y are called the ends of the walk, x being its initial vertex and y its terminal vertex, the vertices v<sub>1</sub>,..., v<sub>ℓ-1</sub> are its internal vertices.
- The integer  $\ell$  (the number of edge terms) is the **length** of W.
- An *x*-walk is a walk with initial vertex *x*.
- If there is an xy-walk in a graph G, then is also an xy-path.
- The length of a shortest such xy-path is called the **distance** between x and y and denoted  $d_G(x, y)$ .
- The greatest distance between any two vertices in G is called the diameter of G, denoted by diam(G) = max<sub>y,v</sub> d<sub>G</sub>(u, v).

### Graph Component [Die05, BM08, Wil98]

- A non-empty graph G is called **connected** if any two of its vertices are linked by a path in G, otherwise the graph is **disconnected**.
- If U ⊆ V(G) and G[U] is connected, we call U itself connected (in G).
- A maximal connected sugraph of G is called a **component** of G.



### Graph Separator [Die05, BM08, Wil98]

- If A, B ⊆ V and X ⊆ V ∪ E are such that every A - B path in G contains a vertex or an edge from X, we say that X separates the sets A a B in G.
- X separates G if G X is disconnected, that is, if X separates in G some two vertices that are not in X.
- A separating set of vertices is a separator.
- A vertex which separates two other vertices of the same component is a **cutvertex**, and an edge separating its ends is a **bridge**.
- The unordered pair {A, B} is a separation of G if A ∪ B = V and G has no edge between A \ B and B \ A.
- The number  $|A \cap B|$  is the order of the separation  $\{A, B\}$ .

### Graph Block [Die05, BM08, Wil98]

- G is k-connected (for k ∈ N) if |G| > k and G X is connected for every set X ⊆ V with |X| < k.</li>
- A maximal connected subgraph without a cutvertex is called a block.
- Thus, every block of a graph G is either a maximal 2-connected subgraph, or a bridge (with its ends), or an isolated vertex.
- By their maximality, different blocks of G overlap in at most one vertex, which is then a cutvertex of G.
- Every edge of G lies in a unique block, and G is the union of its blocks.
- Let A denote the set of cutvertices of G, and  $\mathcal{B}$  is set of its blocks.
- A bipartite graph on A ∪ B formed by the edges aB with a ∈ A ∩ B and B ∈ B is called a block graph of G.

### Graph Tree [Die05, BM08, Wil98]

- An acyclic graph is a graph that does not contain any cycle.
- An acyclic graph is also called a forest.
- A connected forest is called a tree.
- The vertices of degree 1 in a tree are its leaves.
- One vertex of a tree can be selected as special; such a vertex is then called the **root** of this tree.
- A tree T with a fixed root r is a rooted tree.
- A spanning tree of a graph G is a minimal connected spanning subgraph  $T \subset G$ 
  - by the equivalence of (i) and (iii) of Theorem 4.

#### Proposition 3 (Proposition 3.1.2 [Die05], p.56)

The block graph of a connected graph is a tree.

### Tree Properties I

#### Theorem 4 (Theorem 1.5.1 [Die05], p.14)

The following assertions are equivalent for a graph T:

- $\bigcirc$  T is a tree;
- If M Any two vertices of T are linked by a unique path in T;
- **(**) T is minimally connected, i.e. T is connected but T e is disconnected for every edge  $e \in T$ ;
- **(a)** T is maximally acyclic, i.e. T contains no cycle but T + uv does, for any two non-adjacent vertices  $u, v \in T$ .

#### Corollary 1 (Corollary 1.5.3 [Die05], p.14)

A connected graph with N vertices is a tree if and only if it has N-1 edges.

#### Tree Properties II

#### Corollary 2 (Corollary 1.5.2 [Die05], p.14)

The vertices of a tree can always be enumerated, say as  $v_1, \ldots, v_N$ , so that every  $v_i$  with  $i \ge 2$  has a unique neighbor in  $\{v_1, \ldots, v_{i-1}\}$ .



#### Tree Order [Die05]

- We write uTv for the unique path in a tree T between two vertices u, v
  - with regard to (ii) of Theorem 4.
- The tree-order associated with T and its root r defines a partial ordering on V(T) as  $u \leq v$  for  $u \in rTv$ .
- If u < v we say that
  - u lies below v in T,
  - $\lceil v \rceil := \{u | u \le v\}$  is the down-closure of v, and
  - $\lfloor u \rfloor := \{v | u \le v\}$  is the up-closure of u.
- The root r is the least element in the tree order.
- The leaves of T are the maximal elements of its tree order.
- The ends of any edge of T are comparable.
- The down-closure of every vertex is a **chain**, a set of pairwise comparable elements.
- The vertices at distance k from r have height k and form the kth level of T.

### Normal Spanning Tree [Die05]

- A rooted tree T contained in a graph G is called **normal in** G if the ends of every T-path in G are comparable in the tree-order of T.
- Normal spanning trees are also called **depth-first search trees**.



### Normal Spanning Tree - Properties

#### Lemma 2 (Lemma 1.5.5 [Die05], p.15)

Let T be a normal tree in G:

**(**) Any two vertices  $u, v \in T$  are separated in G by the set  $\lceil u \rceil \cap \lceil v \rceil$ .

() If  $S \subseteq V(T) = V(G)$  and S is down-closed, then the components of G - S are spanned by the sets |u| with u minimal in T - S.

#### Proposition 4 (Proposition 1.5.6 [Die05], p.16)

Every connected graph contains a normal spanning tree, with any vertex specified as its root.

#### Example 2 (Rapid Spanning Tree Protocol (802.1w) by Cisco [Cis17])

• A network protocol that builds a logical loop-free topology.

- A directed graph (or digraph) is a pair (V, E) of disjoint sets (of vertices and arcs) together with two maps init : E → V and ter : E → V assigning to every arc e an initial vertex init(e) and a terminal vertex ter(e).
- In some references, vertices of directed graphs are called nodes.
- The arc e is said to be **directed from** init(e) to ter(e).
- Both maps init(e) and ter(e) are often combined into an incidence function ψ<sub>D</sub> that associates with each arc of D an ordered pair of vertices of D, ψ<sub>D</sub>(e) = (u, v).



## Digraph Arc [Die05, BM08, Wil98]

- If a is an arc and ψ<sub>D</sub>(a) = (u, v), then the vertex u is also referenced as the tail of a, and the vertex v its head; they are the two ends of a, and we also say that u dominates v.
- If the orientation of an arc is irrelevant to the discussion, we refer to the arc as **edge** of the directed graph.
- If init(e) = ter(e), the edge e is called a **loop**.
- Note that a directed graph may have several arcs between the same two vertices u, v.



### Graph Orientation [BMO8, Wil98]

- A directed graph D is an orientation of an (undirected) graph G if V(D) = V(G) and E(D) = E(G) and if  $\{init(e), ter(e)\} = \{u, v\}$  for every  $e = uv \in G$ .
- Sometimes, it is necessary to distinguish an oriented version of a given graph from its (undirected) graph.
- We denote the (undirected) version as  $G = (V, E) = \overline{G}$  and the related graph orientation by  $\vec{G} = (V, \vec{E})$  where each oriented edge  $\vec{e} = (u, v) \in \vec{G}$  is mapped to the edge  $e = \{u, v\} \in G$ .
- We say that  $\overline{G} = G(\vec{G})$  is the underlying graph of  $\vec{G}$  [Wil98, BM08].
- A digraph D is **connected** if it cannot be expressed as the union of two digraphs, i.e. the underlaying graph of D is a connected graph.

### Digraph Degree [Die05, BM08, Wil98]

- The degree of a vertex v in a digraph D is simply the degree of v in the underlying graph G(D) of D.
- The indegree  $d_D^-(v)$  of a vertex  $v \in D$  is the number of arcs with head v,
- the outdegree  $d_D^+(v)$  of a vertex  $v \in D$  is the number of arcs with tail v.
- A vertex of indegree zero is called a **source**, one of outdegree zero a **sink**.



#### Graph Theory Graph Terminology

### Vertex Degree [Weh13]



- **Degree** of vertex i,  $deg(i) = d_i = k_i = \sum_{j=1}^N A_{ij}$ = the number of lines with i as end-vertex, (end-vertex is both initial and terminal)
- Indegree of vertex i, indeg(i),  $deg^+(i)$ =  $k_i^{in} = \sum_{j=1}^N A_{ij}$  the number of lines with v as terminal vertex
- **Outdegree** of vertex j, outdeg(j),  $deg^{-}(j) = k_j^{out} = \sum_{i=1}^{N} A_{ij}$  the number of lines with j as initial vertex.

#### Example 3

$$N = 12, M = 23, deg^+(e) = 3, deg^-(e) = 5, deg(e) = 6$$

$$\sum_{v \in \mathcal{V}} deg^+(v) = \sum_{v \in \mathcal{V}} deg^-(v) = |\mathcal{A}| + 2|\mathcal{E}|$$

Radek Mařík (radek.marik@fel.cvut.cz)

### Digraph Walk [Die05, BM08, Wil98]

- A directed walk in a digraph D is an alternating sequence of vertices and arcs  $W := (v_0, a_1, v_1, \dots, v_{\ell-1}, a_\ell, v_\ell)$  such that  $v_{i-1}$  and  $v_i$  are the tail and head of  $a_i$ , respectively,  $1 \le i \le \ell$ .
- If x and y are the initial and terminal vertices of W, we refer to W as a directed (x, y)-walk.
- A directed path or directed cycle is an orientation of a path or cycle in which each vertex dominates its successor in the sequence.
- We say that a vertex y is **reachable** from a vertex x if there is a directed (x, y)-path.



### Digraph Strong Connectivity [Die05, BM08, Wil98]

- In a digraph D, two vertices x and y are strongly connected if there is a directed (x, y)-walk and also a directed (y, x)-walk.
- Strong connection is an equivalence relation on the vertex set of a digraph.
- The subdigraphs of *D* induced by the equivalence classes with respect to this relation are called the **strong components** of *D*.
- The condensation C(D) of a digraph D is the digraph whose vertices correspond to the strong components of D, two vertices of C(D) being linked by an arc if and only if there is an arc in D linking the corresponding strong components and with the same orientation.
- The condensation of any digraph is acyclic.

#### References I

- [Bei95] Boris Beizer. Black-Box Testing, Techniques for Functional Testing of Software and Systems. John Wiley & Sons, Inc., New York, 1995.
- [Blo14] David A. Bloom. Matula thoughts december 5, 2014, 2014.
- [BM08] J.A. Bondy and U.S.R. Murty. Graph Theory. Springer, 2008.
- [Cis17] Cisco. Understanding rapid spanning tree protocol (802.1w), 2017.
- [CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.
- [Die05] Reinhard Diestel. Graph Theory. Springer, 2005.
- [EK10] David Easley and Jon Kleinberg. Networks, Crowds, and Markets. Reasoning About a Highly Connected World. Cambridge University Press, July 2010.
- [Erc15] Kayhan Erciyes. Complex Networks, An Algorithmic Perspective. CRC Press, 2015.
- [FMS] FMS. Social network analysis (SNA) diagram, al qaeda terrorist network, accessed 28.1.2014.
- [Fre14] Fremantle. Celebrating a soy-free easter with amedei chocolate, accessed 28.1.2014. http://infonolan.hubpages.com/hub/Celebrating-a-Soy-Free-Easter-with-Amedei-Chocolate, 2014.
- [HLDS13] Dan Halgin, Joe Labianca, Rich DeJordy, and Maxim Sytch. Introduction to social network analysis. http://www.danhalgin.com/slides, August 2013.
- [Mar17] Radek Marik. Complex Networks & Their Applications V: Proceedings of the 5th International Workshop on Complex Networks and their Applications (COMPLEX NETWORKS 2016), chapter Efficient Genealogical Graph Layout, pages 567–578. Springer International Publishing, Cham, 2017.
- [New10] M. Newman. Networks: an introduction. Oxford University Press, Inc., 2010.

#### **References II**

- [Opt17] The OPTE project: The internet 2015; accessed 2017.09.17, 2017.
- [PASP09] Jose M Peregrin-Alvarez, Chris Sanford, and John Parkinson. The conservation and evolutionary modularity of metabolism. Genome Biology, 10(6), June 2009.
- [RP13] James Risen and Laura Poitras. N.S.A. gathers data on social connections of U.S. citizens, September 2013.
- [Weh13] Stefan Wehrli. Social network analysis, lecture notes, December 2013.
- [Wil98] Robin J. Wilson. Introduction to Graph Theory. Longman, fourth edition, 1998.