Introduction to Complex Networks

Network Application Diagnostics B2M32DSA

Radek Mařík

> Czech Technical University Faculty of Electrical Engineering Department of Telecommunication Engineering Prague CZ

October 1, 2017

Outline

(1) Complex Networks

- Practical Examples
- Software Tools
- Network Volume
- Netflow Comprehension
- Network Visualization
- Data on the Ancient Egypt
- Mainframe Assembly Comprehension
- Enterprise people
(2) Complex Network Introduction
- Graph Terminology
- Graph Algorithms

Conservation within the global metabolic network ${ }^{\text {[PASPOo }]}$

(20) Phenylalanine, tyrosine and tryptophan biosynthesis
(21) Nitrogen metabolism
(24) Galactose metabolism
(25) Porphyrin and cholorophyll biosynthesis
19) Pyrimidine metabolism
(18) Purine metabolism
(17) Thiamine metabolism
(16) Urea cycle and metabolism of amino groups
(15) Glycine, serine and threonine metabolism

(14) Fatty acid biosynthesis pathway I
(13) Lysine biosynthesis and degradation
(12) Glutathione metabolism
(11) Diterpenoid biosynthesis

```
Superclass membership : Node color
    Carbohydrate metabolism
            Energy metabolism Lipid metabolism Nucleotde melaboism Amino acid metabolism Glycan metabolism Co-factors and vitamins Secondary metabolites Xenobiotics Multiple superclasses Múliple pathways in same superclass
```

Conservation : Node size
Highly conserved ($>=140$ genomes Less well conserved (< 140 genomes) 0

Pathway examples

(1) Blood group glycolipid and ganglioside biosynthesis; globoside metabolism (2) Aminosugars biosynthesis (3) Fructose and mannose metabolism
(4) N-glycan metabolism
(5) Alkaloid biosynthesis I
(6) Flavanoids, stilbene and lignin biosynthesis
(7) Inositol phosphate metabolism
(8) Prostaglandin and leukotriene metabolism
(9) Folate metabolism
(10) Penicillin and cephaloporin biosynthesis

Link Analysis of the AI Qaeda Terrorist Network ${ }^{[\text {F.Ms] }}$

Internet Map in $2015{ }^{[\text {Blol4, Opt17] }}$

Chocolate Making Process Dependencies ${ }^{[\text {[Fere4] }}$

More Examples

- Biological networks
- gene regulation networks
- protein-protein interaction networks
- metabolic networks
- the food web
- predator-prey relations
- brain network
- Social networks:
- networks of acquaintances
- collaboration networks
- phone-call networks
- citation networks
- opinion formation
- society/community/party networks
- Technological networks:
- the Internet
- telephone networks
- transportation networks
- sensor networks
- energy grid networks
- Informational networks:
- the World Wide Web
- Twitter
- Facebook
- peer-to-peer

SNA Books

Approach to Complex Networks

- One needs to distinguish between analysis and production phases
- Some phenomena appear only with sufficiently large data volumes (emergent events)
- Volume
- A number of suitable tools ... HDF5, ElasticSearch, Clouds
- Capable to operate with terabytes of data
- Visualization
- Critical if anomaly features are not known
- At present, there is no obvious choice of a tool and a network layout given a particular problem.
- Tools do not often scale with data volumes (>10.000 nodes, 10^{5} edges)
- GGobi, Pajek, NetworkX, SNAP, Tulip, Gephi, Cytospace, yEd, D3.js
- Aspects: data volume, interactions with the user

Popular software packages ${ }^{\text {[HLDS13] }}$

- Analysis
- UCINET (http://www.analytictech.com/ucinet.htm)
- ENET (http://analytictech.com/e-net/e-net.htm)
- Pajek (http://pajek.imfm.si/doku.php?id=pajek)
- RSIENA
- R
- NodeXL
- NetworkX ... a Python library
- iGrapha C/Python library
- Visualization
- yEd
- Gephi
- Cytospace
- Tulip
- NetDraw (2D, embedded in UCINET, see above)
- Mage (3D, embedded in UCINET, see above)
- visit www.netvis.org/resources.php for more

NETFLOW Primary Statistics

- Netflow
- Condensed records on a packet flow
- Several packets are merged into one netflow record
- Only 14-20 aggregated metrics

An enterprise traffic as a netflow sample taken during 9 days:

Statistics	Value
Total transported data volume	$13,995,690,457,765[B]$
Packet count	$20,131,367,095$
Netflow count	$617,326,053$
IP address count	686,168
Source IP address count	614,150
Destination IP address count	392,881
Different P2P connections count	$2,412,481$

Is the Sample of IP addresses reprezentative?

A Data Projection Focused on Services

- Destination IP vs. destination port (space of services and their locations)
- Some counts of accesses are exceptional (red)

Top Level IP Network Projection - Data Sparsity

- Focused on the network of source and destination IP addresses
- Top level octets of IP addresses (160.30.29.17 \Longrightarrow 160)
- A very sparse space
- A rather restricted source-destination IP connections (as expected)

Port Scanning from xxx.xxx.18.120 - Logical Time Progress

- $617,326,053$ netflows $\approx 60,000$ samples \times sample size 10.000
- $\Longrightarrow 60,000$ samples might be still visualized with difficulties
- $\Longrightarrow 1.000$ events can be easily missed with 10,000 sample size

Masters of Social Network Analysis ${ }^{[R P 13, ~ W e n 13] ~}$

- US National Security Agency
- Maintains large programs in social network analysis
- Believed to process 2×10^{10} node and tie updating events per day
- Result:
"Better Person Centric Analysis"

Types

- 94 entity/node types
(phone numbers, e-mail addresses, IP addresses, etc.)
- 164 relationship types to build "community of interest" profiles (travelsWith, hasFather, sentForumMessage, employs, etc.)

Egypt Data - Family Recognition

A family:

- Using family designation
- husband, wife, son, etc.
- A connected graph component
- Sparse data assumed
- Transformed into family tree using marriage nodes

Egypt Data - Transformation into Family Tree

A family as a connected component circular layout (yEd)

A family tree hierarchical layout (yEd)

Family Trees ${ }^{[\operatorname{Marar7]}}$

multitree-like tree driven layout, Graphviz

- Taxonomic information ITIS on plants, animals, fungi, and microbes,
- A phylogenetic tree with 945.352 nodes
- multitree-like tree driven layout

HLASM Mainframe Assembly

CHALLENGE: Complex Control Flow, a typical case

layered layout - Graphviz dot

Dependancy of External Symbols in Mainframe Assembly Software

Fruchterman-Reingold force-driven layout

- A software product . . . over 10.000.000 lines of code
- Over 400 modules ... red
- External symbols . . . green
- Thick line ... the definition of a symbol
- Thin linea reference to a symbol
- Where should the developer start with a bug analysis?

Assembly Software - Recovered Architecture

double-circular layout - yEd

Company Network of People - 3D Hyperbolic Tree Layout (Walrus)

Graph

A graph is a set of vertices and a set of lines between pairs of vertices.

- Actor - vertex, node, point

- Relation - line, edge, arc, link, tie
- Edge $=$ undirected line, $\{c, d\}$ c and d are end vertices
- Arc $=$ directed line, (a, d) a is the initial vertex, (source, start) d is the terminal vertex, (target, end)
- Parallel (multiple) arcs/edges are only allowed in multigraphs with more than one relation (set of lines).
- Loop (self-choice)

We focus on simple graphs!

A simple undirected graph has no loops and no parallel edges.
A simple directed graph has no parallel arcs.

Network [EK10, New10, Weh13, Erc15]

Network

A network consists of a graph and additional information on the vertices or the lines of the graph.

Formally, a network $\mathcal{N}=(\mathcal{V}, \mathcal{L}, \mathcal{P}, \mathcal{W})$ consists of:

- A graph $\mathcal{G}=(\mathcal{V}, \mathcal{L})$, where
- \mathcal{V} is the set of vertices,
- \mathcal{A} is the set of arcs,
- \mathcal{E} is the set of edges, and
- $\mathcal{L}=\mathcal{E} \cup \mathcal{A}$ is the set of lines.
- \mathcal{P} vertex value functions / properties: $p: \mathcal{V} \rightarrow A$
- \mathcal{W} line value functions / weights: $w: \mathcal{L} \rightarrow B$
- Long range dependencies vs. multidimensional space
- Specific topological properties
- Large/Huge volumes of sparse data records

Asymptotic Notation ${ }^{[C L R S O O, ~ E r c i t]}$

Let $c, c_{1}, c_{2} \in \mathbb{R}^{>0}, n_{0}, n \in \mathbb{N}, f, g \in \mathbb{N} \rightarrow \mathbb{R}^{+}$
Asymptotic upper bound (CZ horní asymptotický odhad)
$f(n) \in O(g(n))$, if $(\exists c>0)\left(\exists n_{0}\right)\left(\forall n>n_{0}\right):|f(n)| \leq|c \cdot g(n)|$

Asymptotic lower bound (CZ dolní asymptotický odhad)
$f(n) \in \Omega(g(n))$, if $(\exists c>0)\left(\exists n_{0}\right)\left(\forall n>n_{0}\right):|c \cdot g(n)| \leq|f(n)|$

Asymptotic tight bound (CZ optimální asymptotický odhad)

$$
\begin{aligned}
& f(n) \in \Theta(g(n)), \text { if } \Theta(g(n)) \stackrel{\text { def }}{=} O(g(n)) \cap \Omega(g(n)) \\
& \left(\exists c_{1}, c_{2}>0\right)\left(\exists n_{0}\right)\left(\forall n>n_{0}\right):\left|c_{1} \cdot g(n)\right|<|f(n)|<\left|c_{2} \cdot g(n)\right|
\end{aligned}
$$

NP-Completeness ${ }^{\text {[CLRS09, Erc15] }}$

P and NP

- P - Polynomial. Problems that can be solved in polynomial time.
- NP - Nondeterministic Polynomial. A problem is in NP if you can in polynomial time by a certifier test whether a solution is correct without worrying about how hard it might be to find the solution.
- Nondeterministic is a fancy way of talking about guessing a solution.
- $\mathrm{P} \subseteq \mathrm{NP}$
(??? P = NP ???)

NP-complete and NP-hard

- NPH - NP-hard. An NPH problem is a problem which is as hard as any problem in NP
- An NPH problem does not need to have a certificate.
- NPC - NP-complete. A problem is NPC if it is NP and is as hard as any problem in NP
- A problem A is NPC if it is both NPH and in NP, NPC = NP \cap NPH.

Complexity Classes Other Than NP ${ }^{[C L R S O 9, ~ E r c i t]}$

Complexity classes harder than NP

- PSPACE. Problems that can be solved using a reasonable amount of memory
- defined formally as a polynomial in the input size
- without regard to how much time the solution takes.
- EXPTIME. Problems that can be solved in exponential time.
- Undecidable. For some problems, we can prove that there is no algorithm that always solves them, no matter how much time or space is allowed.

Tree Search

- A systematic procedure, or algorithm, that generates a sequence of rooted trees in G, starting with the trivial tree consisting of a single root vertex r, and terminating either with a spanning tree of the graph or with a nonspanning tree whose associated edge cut is empty, is called tree-search and the resulting tree is referred to as a search tree [BM08].
- Depth-first search is a tree-search in which the vertex added to the tree T at each stage is one which is a neighbor of as recent an addition to T as possible.
- The resulting spanning tree is called a depth-first search tree or DFS-tree.

DFS-tree Search Edge Classification

- There are two times associated with each vertex $v \in G$ during the construction of its DFS-tree T :
- the discovery time $\tau_{d}(v)$ when v is incorporated into T and
- the finish time $\tau_{f}(v)$ when all the neighbors of v are found to be already in T.
- In particular, $\tau_{d}(r)=1, \tau_{f}(v)=\tau_{d}(v)+1$ for every leaf v of T, and $\tau_{f}(r)=2|V|$.
- Based on Proposition 1 and Theorem 1 any edge $e=u v$ in a graph G having a DFS-tree T with $\tau_{d}(u)<\tau_{d}(v)<\tau_{f}(v)<\tau_{f}(u)$ can be oriented as $\vec{e}=\overrightarrow{u v}=(u, v)$ and classified as:
- tree edge, if $e \in T$, i.e. the vertex u is an ancestor of v in T,
- back edge, if $e \notin T$.

Tree Search Times - Properties

Proposition 1 (Proposition 6.5 [BM08], p.141)

Let u and v be two vertices of G, with $\tau_{d}(u)<\tau_{d}(v)$.
(2) If u and v are adjacent in G, then $\tau_{f}(v)<\tau_{f}(u)$.
(0) u is an ancestor of v in T if and only if $\tau_{f}(v)<\tau_{f}(u)$.

Theorem 1 (Theorem 6.6 [BM08], p.142)

Let T be a DFS-tree of a graph G. Then every edge of G joins vertices which are related in T.

Lemma 1 (Lemma 22.11 [CLRS09], p.614)

A directed graph G is acyclic if and only if a depth-first search of G yields no back edges.

Tree Search Times - Properties

Proposition 2 (Proposition 1.5.6 [Die05], p.16)

Every connected graph contains a normal spanning tree, with any specified vertex as its root.

Breadth-first Search ${ }^{[\text {carsson Eects] }}$

Algorithm 1 BFS

1: Input: $G(V, E)$, a source node s
2: Output: $d_{v}, \operatorname{pred}[v], \forall v \in V$
3: $\quad \triangleright$ distance and place of a vertex in BFS
4: $Q \ldots$ a queue
5: for all $u \in V \backslash\{s\}$ do
$d_{u} \leftarrow \infty$
$\operatorname{pred}[u] \leftarrow \perp \quad \triangleright$ undetermined value
end for
9: $d_{s} \leftarrow 0$
10: $\operatorname{pred}[s] \leftarrow s$

BFS ... the main loop

11: $Q \leftarrow s$
12: while $Q \neq \emptyset$ do
13: $\quad u \leftarrow$ deque (Q)
14: \quad for all $(u, v) \in E$ do
15: \quad if $d_{v}=\infty$ then $d_{v} \leftarrow d_{u}+1$
$\operatorname{pred}[v] \leftarrow u$ enqueu (Q, v)
end if end for
21: end while

Theorem 2 (Theorem 3.1 [Erc15], p.35)

The time complexity of BFS algorithm is $\Theta(N+M)$ for a graph of order N and size M.

Depth-first Search ${ }^{[\text {[1rsson Eect] }}$

Algorithm 2 DFS_Forest

1: Input: $G(V, E)$, directed or undirected
2: Output: pred $[v]$, firstVis $[v], \sec \mathrm{Vis}[v]$,
$\forall v \in V$
int time $\leftarrow 0$; visited $[1: n] \leftarrow 0$
for all $u \in V$ do
visited $[u] \leftarrow$ false
$\operatorname{pred}[u] \leftarrow \perp \quad \triangleright$ undetermined value
end for
for all $u \in V$ do
if \neg visited $[u]$ then
$D F S(u)$
end if
12: end for

DFS procedure

13: procedure $\operatorname{DFS}(\mathrm{u})$
14: \quad visited $[u] \leftarrow$ true
15: \quad time \leftarrow time +1
16: \quad firstVis $[u] \leftarrow$ time
17: \quad for all $(u, v) \in E$ do
18:
19:
20:
21:
22:
23: \quad time \leftarrow time +1
24: \quad sectVis $[u] \leftarrow$ time
25: end procedure

Asymptotic complexity of the DFS algorithm

The time complexity is $\Theta(N+M)$ for a graph of order N and size M.

Dijkstra's Single Source Shortest Paths ${ }^{[C L R S O 9, ~ E c r i s] ~}$

Algorithm 3 Dijkstra_SSSP

1: Input: $G(V, E)$, directed or undirected,
2: Input: positive weights l_{e} on edges,
3: Input: a source node s
4: Output: $d_{v}, \operatorname{pred}[v], \forall v \in V$
5: for all $u \in V \backslash\{s\}$ do
6: $\quad d_{u} \leftarrow \infty$
7: $\quad \operatorname{pred}[u] \leftarrow \perp \quad \triangleright$ undetermined value
8: end for
9: $d_{s} \leftarrow 0$
10: $\operatorname{pred}[s] \leftarrow s$

```
SSSP ... the main loop
11: }S\leftarrow[V
12: while }S\not=\emptyset\mathrm{ do
13:
14:
15: for all }(u,v)\inE\mathrm{ do
16:
17:
18:
19:
20: end for
21: end while
```


Theorem 3 (Theorem 5.1 [Erc15], p.84)

The time complexity of the Dijkstra's_SSSP is $O\left(N^{2}\right)$ for a graph of order N.

Floyd-Warshall All Pairs Shortest Paths ${ }^{[\text {[clRsoe, Ecris] }}$

- The approach
- Dynamic programming approach
- Comparing all possible paths between each pair of nodes in G
- Improving the shortest path between them at each step until the result is optimal.
- Distance matrix $D[N, N]$ between nodes u and v
- Matrix $P[N, N]$ with the first node on the current shortest path from u to v

Example 1

FW APSP Algorithm [CLRS09, Erc15]

Algorithm 4 FW_APSP

1: Input: $G(V, E)$,
2: Input: weights w_{e} on edges,
3: no negative-weight cycles
4: Output: $D[N, N], P[N, N]$
5: for all $\{u, v\} \in V$ do
6: \quad if $u=v$ then
$D[u, v] \leftarrow 0 ; P[u, v] \leftarrow \perp$
else if $(u, v) \in E$ then
$D[u, v] \leftarrow w_{u v} ; P[u, v] \leftarrow v$
else
$D[u, v] \leftarrow \infty ; P[u, v] \leftarrow \perp$ end if
12. end for

APSP ... the main loop

14: $S \leftarrow \emptyset$
15: while $S \neq V$ do
16: \quad pick w from $V \backslash S \quad \triangleright$ Select a pivot
17: \quad for all $u \in V$ do
18: \quad for all $v \in V$ do
if $D[u, w]+D[w, v]<D[u, v]$ then
$D[u, v] \leftarrow D[u, w]+D[w, v]$
$P[u, v] \leftarrow P[u, w]$
end if
end for end for $S \leftarrow S \cup\{w\}$
26: end while

Asymptotic complexity of the FW_APSP algorithm

The time complexity is $\Theta\left(N^{3}\right)$ for a graph of order N.

FW APSP Algorithm Example ${ }^{[E F c 15]}$

$$
D=\left[\begin{array}{ccccc}
0 & \infty & \infty & \infty & 2 \\
4 & 0 & 9 & \infty & \infty \\
\infty & \infty & 0 & 3 & \infty \\
\infty & 6 & \infty & 0 & \infty \\
\infty & 1 & \infty & 12 & 0
\end{array}\right]
$$

$$
\rightarrow\left[\begin{array}{ccccc}
0 & 3 & \infty & 14 & 2 \\
4 & 0 & 9 & 12 & 6 \\
\infty & 9 & 0 & 3 & \infty \\
10 & 6 & 15 & 0 & \infty \\
5 & 1 & 10 & 12 & 0
\end{array}\right]
$$

$$
\rightarrow\left[\begin{array}{ccccc}
0 & 3 & 12 & 14 & 2 \\
4 & 0 & 9 & 12 & 6 \\
13 & 9 & 0 & 3 & 10 \\
10 & 6 & 15 & 0 & 12 \\
5 & 1 & 10 & 12 & 0
\end{array}\right]
$$

Summary

- An introduction to complex networks
- Several practical application domains shown
- Software tools overview
- Demonstration of two issues
- Network data volume
- Network visualization
- Graph Terminology Reminder
- Graph Path Algorithms Reminder

Appendix

Appendix

Graph Representation

7:	10
$10:$	14,22
$14:$	
$22:$	14,25
$25:$	30
$30:$	22

Adjacency matrix (Table)

	7	10	14	22	25	30
7	.	1
10	.	.	1	1	.	.
14
22	.	.	1	.	1	.
25	1
30	.	.	.	1	.	.

Graph (Formal Definitions) ${ }^{\text {Dieio5, EM0s, Wios] }}$

- A graph is a pair $G=(V, E)$ of sets such that $E \subseteq[V]^{2}, V \cap E=\emptyset$, together with an incidence function ψ_{G} that associates with each edge of G an unordered par of not necessarily distinct vertices of G.
- The number of vertices of a graph G is its order $N=v(G)=|V|=|G|$.
- A graph with vertex set V is said to be a graph on V.
- The vertex set of a graph G is referred to as $V(G)$, its edge set as $E(G)$, independently of any actual names of these two sets.
- We also write $v \in G$ instead of $v \in V(G)$, similarly $e \in G$.
- The number of edges of a graph G is its size denoted by $M=e(G)=|E|=\| G| |$.

Graph Operations ${ }^{\text {[Dieos, हmos, wiise] }}$

- Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs.
- If $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$, then G^{\prime} is a subgraph of G, written as $G^{\prime} \subseteq G$.
- If $G^{\prime} \subseteq G$ and G^{\prime} contains all the edges $x y \in E$ with $x, y \in V^{\prime}$, then G^{\prime} is an induced subgraph of G;
i.e. V^{\prime} induces or spans G^{\prime} in G and $G^{\prime}:=G\left[V^{\prime}\right]$.
- $G^{\prime} \subseteq G$ is a spanning subgraph of G if V^{\prime} spans all of G, i.e. if $V^{\prime}=V$.
- If U is any set of vertices, we write $G-U$ for $G[V \backslash U]$.
- If $U=\{v\}$ is a singleton, we write $G-v$ rather than $G-\{v\}$.
- For a subset $F \subseteq[V]^{2}$ we write
$G-F:=(V, E \backslash F)$ and
$G+F:=(V, E \cup F)$;
$G-\{e\}$ and $G+\{e\}$ are abbreviated to $G-e$ and $G+e$.

Graph Maximality

- A graph G is edge-maximal with a given graph property if G itself has the property byt no graph $G+u v$ does for non-adjacent vertices $u, v \in G$.
- When we call a graph minimal or maximal with some property but hove not specified any particular ordering, we refer to the subgraph relation.
- We speak of minimal or maximal sets of vertices or edges if the reference is made to set inclusion.

Graph Edges ${ }^{[D i e o 5, ~ в м м о в, ~ w i 99] ~}$

- Let e be an edge and u and v are vertices such that $\psi_{G}(e)=\{u, v\}$.
- A vertex v is incident with an edge e if $v \in e$; then e is an edge at v.
- The set of all the edges in E at a vertex v is denoted by $E(v)$.
- The two vertices v_{1} and v_{2} incident with an edge $e=\left\{v_{1}, v_{2}\right\}$ are its endvertices or ends, and an edge joins its ends.
- An edge $\{u, v\}$ might be written as $u v$ (or $v u$).
- If $u \in U \subseteq V$ and $w \in W \subseteq V$ then $u w$ is an U - W edge.
- The set of all $U-W$ edges in a set E is denoted by $E(U, W)$).
- Two vertices $u, v \in G$ are adjacent, or neighbors, if $u v \in G$.
- Two edges $e \neq f$ are adjacent if they have an end in common.
- If $\left\{V_{1}, V_{2}\right\}$ is a partition of V, the set $E\left(V_{1}, V_{2}\right)$ of all the edges of G crossing this partition is called a cut.

Graph Neighborhood ${ }^{[\text {Dieas, BMos, wise] }}$

- Let $G=(V, E)$ be a (non-empty) graph.
- The set of neighbors of a vertex v in G is denoted by $N_{G}(v)$, or briefly by $N(v)$.
- The neighbors of U for $U \subseteq V$, denoted by $N(U)$, is the set of the neighbors $V \backslash U$ of vertices in U.
- The degree (or valency) $d_{G}(v)=d(v)$ of a vertex v is the number $|E(v)|$ of edges at v.
- Let $r \geq 2$ be an integer.
- A graph $G=(V, E)$ is called r-partite if V admits a partition into r classes such that every edge has its ends in different classes: vertices in the same partition class are not adjacent.
- If $r=2$ then such a graph is denoted as bipartite.

$$
\text { - } V=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\emptyset
$$

Graph Path ${ }^{[D i e 05, ~ ह M 08, ~ M i l i e] ~}$

- A path is a non-empty graph $P=(V, E)$ of the form $V=\left\{v_{0}, v_{1}, \ldots v_{k}\right\}, E=\left\{v_{0} v_{1}, v_{1} v_{2}, \ldots v_{k-1} v_{k}\right\}$, where the v_{i} are all distinct.
- The vertices v_{0} and v_{k} are linked by P and are called its ends, the vertices $v_{1}, \ldots v_{k-1}$ are the inner vertices of P.
- A path P can often be identified by its natural sequence of its vertices, i.e. $P=v_{0} v_{1} \ldots v_{k}$ and called a path from v_{0} to v_{k} (or between v_{0} and v_{k}).
- Given sets A, B of vertices, we call $P=v_{0} v_{1} \ldots v_{k}$ an $A-B$ path if $V(P) \cap A=\left\{v_{0}\right\}$ and $V(P) \cap B=\left\{v_{k}\right\}$.
- We write $a-B$ path rather than $\{a\}-B$, etc.
- If $P=v_{0} \ldots v_{k-1}$ is a path and $k \geq 3$, then the graph $C:=P+v_{k-1} v_{0}$ is called a cycle.

Graph Subpath ${ }^{[\text {Dicos, вмов, wiies] }}$

- For $P=v_{0} v_{1} \ldots v_{k}$ and $0 \leq i \leq j \leq k$ we write

$$
\begin{align*}
P v_{i} & :=v_{0} \ldots v_{i}, \text { and } \tag{1}\\
v_{i} P & :=v_{i} \ldots v_{k}, \text { and } \tag{2}\\
v_{i} P v_{j} & :=v_{i} \ldots v_{j} \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
\stackrel{\circ}{P} & :=v_{1} \ldots v_{k-1}, \text { and } \tag{4}\\
P \stackrel{\circ}{v}_{i} & :=v_{0} \ldots v_{i-1}, \text { and } \tag{5}\\
\stackrel{\circ}{i}_{i} P & :=v_{i+1} \ldots v_{k}, \text { and } \tag{6}\\
\stackrel{v}{i}^{P} P \stackrel{\circ}{j}_{j} & :=v_{i+1} \ldots v_{j-1} \tag{7}
\end{align*}
$$

for the appropriate subpaths of P.

- A concatenation of three paths $P x \cup x Q y \cup y R$ is denoted as PxQyR

Graph Walk ${ }^{\text {Dimeos, smos, wịes] }}$

- A walk in a graph G is a sequence $W:=v_{0} e_{1} v_{1} \ldots v_{\ell-1} e_{\ell} v_{\ell}$, whose terms are alternately vertices and edges of G, such that v_{i-1} and v_{i} are the ends of $e_{i}, 1 \leq i \leq \ell$.
- If $v_{0}=x$ and $v_{\ell}=y$, we say that W connects x to y and refer to W as an $x y$-walk.
- The vertices x and y are called the ends of the walk, x being its initial vertex and y its terminal vertex, the vertices $v_{1}, \ldots, v_{\ell-1}$ are its internal vertices.
- The integer ℓ (the number of edge terms) is the length of W.
- An x-walk is a walk with initial vertex x.
- If there is an $x y$-walk in a graph G, then is also an $x y$-path.
- The length of a shortest such $x y$-path is called the distance between x and y and denoted $d_{G}(x, y)$.
- The greatest distance between any two vertices in G is called the diameter of G, denoted by $\operatorname{diam}(G)=\max _{y, v} d_{G}(u, v)$.

Graph Component

- A non-empty graph G is called connected if any two of its vertices are linked by a path in G, otherwise the graph is disconnected.
- If $U \subseteq V(G)$ and $G[U]$ is connected, we call U itself connected (in G).
- A maximal connected sugraph of G is called a component of G.

Graph Separator ${ }^{[D i e 05, ~ в м о в, ~ w i o g] ~}$

- If $A, B \subseteq V$ and $X \subseteq V \cup E$ are such that every $A-B$ path in G contains a vertex or an edge from X, we say that X separates the sets A a B in G.
- X separates G if $G-X$ is disconnected, that is, if X separates in G some two vertices that are not in X.
- A separating set of vertices is a separator.
- A vertex which separates two other vertices of the same component is a cutvertex, and an edge separating its ends is a bridge.
- The unordered pair $\{A, B\}$ is a separation of G if $A \cup B=V$ and G has no edge between $A \backslash B$ and $B \backslash A$.
- The number $|A \cap B|$ is the order of the separation $\{A, B\}$.

Graph Block ${ }^{\text {[Dieas, Emos, wiies] }}$

- G is k-connected (for $k \in \mathbb{N}$) if $|G|>k$ and $G-X$ is connected for every set $X \subseteq V$ with $|X|<k$.
- A maximal connected subgraph without a cutvertex is called a block.
- Thus, every block of a graph G is either a maximal 2-connected subgraph, or a bridge (with its ends), or an isolated vertex.
- By their maximality, different blocks of G overlap in at most one vertex, which is then a cutvertex of G.
- Every edge of G lies in a unique block, and G is the union of its blocks.
- Let A denote the set of cutvertices of G, and \mathcal{B} is set of its blocks.
- A bipartite graph on $A \cup \mathcal{B}$ formed by the edges $a B$ with $a \in A \cap B$ and $B \in \mathcal{B}$ is called a block graph of G.

Graph Tree ${ }^{[\text {Dieas B, вмов, wi®e] }}$

- An acyclic graph is a graph that does not contain any cycle.
- An acyclic graph is also called a forest.
- A connected forest is called a tree.
- The vertices of degree 1 in a tree are its leaves.
- One vertex of a tree can be selected as special; such a vertex is then called the root of this tree.
- A tree T with a fixed root r is a rooted tree.
- A spanning tree of a graph G is a minimal connected spanning subgraph $T \subset G$
- by the equivalence of (i) and (iii) of Theorem 4.

Proposition 3 (Proposition 3.1.2 [Die05], p.56)

The block graph of a connected graph is a tree.

Tree Properties I

Theorem 4 (Theorem 1.5.1 [Die05], p.14)

The following assertions are equivalent for a graph T :
(1) T is a tree;
(1) Any two vertices of T are linked by a unique path in T;
(1. T is minimally connected, i.e. T is connected but $T-e$ is disconnected for every edge $e \in T$;
(0) T is maximally acyclic, i.e. T contains no cycle but $T+u v$ does, for any two non-adjacent vertices $u, v \in T$.

Corollary 1 (Corollary 1.5.3 [Die05], p.14)

A connected graph with N vertices is a tree if and only if it has $N-1$ edges.

Tree Properties II

Corollary 2 (Corollary 1.5.2 [Die05], p.14)

The vertices of a tree can always be enumerated, say as v_{1}, \ldots, v_{N}, so that every v_{i} with $i \geq 2$ has a unique neighbor in $\left\{v_{1}, \ldots, v_{i-1}\right\}$.

Tree Order ${ }^{[D \operatorname{coses]}]}$

- We write $u T v$ for the unique path in a tree T between two vertices u, v
- with regard to (ii) of Theorem 4.
- The tree-order associated with T and its root r defines a partial ordering on $V(T)$ as $u \leq v$ for $u \in r T v$.
- If $u<v$ we say that
- u lies below v in T,
- $\lceil v\rceil:=\{u \mid u \leq v\}$ is the down-closure of v, and
- $\lfloor u\rfloor:=\{v \mid u \leq v\}$ is the up-closure of u.
- The root r is the least element in the tree order.
- The leaves of T are the maximal elements of its tree order.
- The ends of any edge of T are comparable.
- The down-closure of every vertex is a chain, a set of pairwise comparable elements.
- The vertices at distance k from r have height k and form the k th level of T.

Normal Spanning Tree ${ }^{[D 000]}$

- A rooted tree T contained in a graph G is called normal in G if the ends of every T-path in G are comparable in the tree-order of T.
- Normal spanning trees are also called depth-first search trees.

Normal Spanning Tree - Properties

Lemma 2 (Lemma 1.5.5 [Die05], p.15)

Let T be a normal tree in G :
(1) Any two vertices $u, v \in T$ are separated in G by the set $\lceil u\rceil \cap\lceil v\rceil$.
(1) If $S \subseteq V(T)=V(G)$ and S is down-closed, then the components of $G-S$ are spanned by the sets $\lfloor u\rfloor$ with u minimal in $T-S$.

Proposition 4 (Proposition 1.5.6 [Die05], p.16)

Every connected graph contains a normal spanning tree, with any vertex specified as its root.

Example 2 (Rapid Spanning Tree Protocol (802.1w) by Cisco [Cis17])

- A network protocol that builds a logical loop-free topology.

Digraph [Dies, ames, wise]

- A directed graph (or digraph) is a pair (V, E) of disjoint sets (of vertices and arcs) together with two maps init : $E \rightarrow V$ and ter : $E \rightarrow V$ assigning to every arc e an initial vertex init (e) and a terminal vertex $\operatorname{ter}(e)$.
- In some references, vertices of directed graphs are called nodes.
- The arc e is said to be directed from init (e) to ter (e).
- Both maps init (e) and ter (e) are often combined into an incidence function ψ_{D} that associates with each arc of D an ordered pair of vertices of $D, \psi_{D}(e)=(u, v)$.

Digraph Arc ${ }^{[D i e 05, ~ B M O s, ~ W i r i e s] ~}$

- If a is an arc and $\psi_{D}(a)=(u, v)$, then the vertex u is also referenced as the tail of a, and the vertex v its head; they are the two ends of a, and we also say that u dominates v.
- If the orientation of an arc is irrelevant to the discussion, we refer to the arc as edge of the directed graph.
- If $\operatorname{init}(e)=\operatorname{ter}(e)$, the edge e is called a loop.
- Note that a directed graph may have several arcs between the same two vertices u, v.

Graph Orientation ${ }^{\text {[BMOs, wise] }}$

- A directed graph D is an orientation of an (undirected) graph G if $V(D)=V(G)$ and $E(D)=E(G)$ and if $\{\operatorname{init}(e), \operatorname{ter}(e)\}=\{u, v\}$ for every $e=u v \in G$.
- Sometimes, it is necessary to distinguish an oriented version of a given graph from its (undirected) graph.
- We denote the (undirected) version as $G=(V, E)=\bar{G}$ and the related graph orientation by $\vec{G}=(V, \vec{E})$ where each oriented edge $\vec{e}=(u, v) \in \vec{G}$ is mapped to the edge $e=\{u, v\} \in G$.
- We say that $\bar{G}=G(\vec{G})$ is the underlying graph of \vec{G} [Wil98, BM08].
- A digraph D is connected if it cannot be expressed as the union of two digraphs, i.e. the underlaying graph of D is a connected graph.

Digraph Degree ${ }^{\text {[Dions, BMos, wiop] }}$

- The degree of a vertex v in a digraph D is simply the degree of v in the underlying graph $G(D)$ of D.
- The indegree $d_{D}^{-}(v)$ of a vertex $v \in D$ is the number of arcs with head v,
- the outdegree $d_{D}^{+}(v)$ of a vertex $v \in D$ is the number of arcs with tail v.
- A vertex of indegree zero is called a source, one of outdegree zero a sink.

Vertex Degree ${ }^{[\text {Wen13] }}$

- Degree of vertex i, $\operatorname{deg}(i)=d_{i}=k_{i}=\sum_{j=1}^{N} A_{i j}$
$=$ the number of lines with i as end-vertex, (end-vertex is both initial and terminal)
- Indegree of vertex $i, \operatorname{indeg}(i), \operatorname{deg}^{+}(i)$ $=k_{i}^{\mathrm{in}}=\sum_{j=1}^{N} A_{i j}$ the number of lines with v as terminal vertex
- Outdegree of vertex j, outdeg $(j), \operatorname{deg}^{-}(j)$ $=k_{j}^{\text {out }}=\sum_{i=1}^{N} A_{i j}$ the number of lines with j as initial vertex.

Example 3

$N=12, M=23, d e g^{+}(e)=3, \operatorname{deg}^{-}(e)=5, \operatorname{deg}(e)=6$

$$
\sum_{v \in \mathcal{V}} d e g^{+}(v)=\sum_{v \in \mathcal{V}} d e g^{-}(v)=|\mathcal{A}|+2|\mathcal{E}|
$$

Digraph Walk ${ }^{\text {[Dieas, вmos, wive] }}$

- A directed walk in a digraph D is an alternating sequence of vertices and $\operatorname{arcs} W:=\left(v_{0}, a_{1}, v_{1}, \ldots, v_{\ell-1}, a_{\ell}, v_{\ell}\right)$ such that v_{i-1} and v_{i} are the tail and head of a_{i}, respectively, $1 \leq i \leq \ell$.
- If x and y are the initial and terminal vertices of W, we refer to W as a directed (x, y)-walk.
- A directed path or directed cycle is an orientation of a path or cycle in which each vertex dominates its successor in the sequence.
- We say that a vertex y is reachable from a vertex x if there is a directed (x, y)-path.

Digraph Strong Connectivity ${ }^{[D i 005, ~ в м о в, ~ w i o g] ~}$

- In a digraph D, two vertices x and y are strongly connected if there is a directed (x, y)-walk and also a directed (y, x)-walk.
- Strong connection is an equivalence relation on the vertex set of a digraph.
- The subdigraphs of D induced by the equivalence classes with respect to this relation are called the strong components of D.
- The condensation $C(D)$ of a digraph D is the digraph whose vertices correspond to the strong components of D, two vertices of $C(D)$ being linked by an arc if and only if there is an arc in D linking the corresponding strong components and with the same orientation.
- The condensation of any digraph is acyclic.

References I

[Bei95] Boris Beizer. Black-Box Testing, Techniques for Functional Testing of Software and Systems. John Wiley \& Sons, Inc., New York, 1995.
[Blo14] David A. Bloom. Matula thoughts december 5, 2014, 2014.
[BM08] J.A. Bondy and U.S.R. Murty. Graph Theory. Springer, 2008.
[Cis17] Cisco. Understanding rapid spanning tree protocol (802.1w), 2017.
[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.
[Die05] Reinhard Diestel. Graph Theory. Springer, 2005.
[EK10] David Easley and Jon Kleinberg. Networks, Crowds, and Markets. Reasoning About a Highly Connected World. Cambridge University Press, July 2010.
[Erc15] Kayhan Erciyes. Complex Networks, An Algorithmic Perspective. CRC Press, 2015.
[FMS] FMS. Social network analysis (SNA) diagram, al qaeda terrorist network, accessed 28.1.2014.
[Fre14] Fremantle. Celebrating a soy-free easter with amedei chocolate, accessed 28.1.2014. http://infonolan.hubpages.com/hub/Celebrating-a-Soy-Free-Easter-with-Amedei-Chocolate, 2014.
[HLDS13] Dan Halgin, Joe Labianca, Rich DeJordy, and Maxim Sytch. Introduction to social network analysis. http://www.danhalgin.com/slides, August 2013.
[Mar17] Radek Marik. Complex Networks \& Their Applications V: Proceedings of the 5th International Workshop on Complex Networks and their Applications (COMPLEX NETWORKS 2016), chapter Efficient Genealogical Graph Layout, pages 567-578. Springer International Publishing, Cham, 2017.
[New10] M. Newman. Networks: an introduction. Oxford University Press, Inc., 2010.

References II

```
[Opt17] The OPTE project: The internet 2015; accessed 2017.09.17, 2017.
[PASP09] Jose M Peregrin-Alvarez, Chris Sanford, and John Parkinson. The conservation and evolutionary modularity of metabolism. Genome Biology, 10(6), June 2009.
[RP13] James Risen and Laura Poitras. N.S.A. gathers data on social connections of U.S. citizens, September 2013.
[Weh13] Stefan Wehrli. Social network analysis, lecture notes, December 2013.
[Wil98] Robin J. Wilson. Introduction to Graph Theory. Longman, fourth edition, 1998.
```

