Transformace (2)
priloha

Jaroslav Sloup
Katedra pogitacové grafiky a interakce, CVUT FEL
mistnost KN:E-413 (Karlovo namésti, budova E)
E-mail: felkel@fel.cvut.cz

S pouzitim materialu Bohuslava Hudce, Jaroslava Sloupa a
Vlastimila Havrana

Posledni zména: 16.2.2015

Projection transformations i DCGI
3D 2D
<€ > <€ >
,I(\/Iodillng atpd viewing Projection
vertex ransformations transformation
_’ Pers- .
- - - + =P pective =P Viewport —p
X modeling viewing _ division transformation
y transformation | transformation clipping
4
W
object world eye clip normalized window
(world) coordinates coordinates coordinates device coordinates
coordinates coordinates
world space camera space screen space
object space canonical

view volume
PGR 2

» the purpose of the projection transformation is to define a viewing volume,
which is used in two ways

* the viewing volume determines how an object is projected onto the
screen (that is, by using a perspective or an orthographic projection)

* it defines which objects or portions of objects are clipped out of the
final image

= there are three types of projections supported by OpenGL
* user defined (manually defined transformation matrix)
* orthographic projection (parallel)
* perspective projection

= note that projection transformation defines also so called clipping planes (6
planes — left, right, top, bottom, near, and far)

PGR 3

Orthographic projection ~

.. DCGH
#include <glm/gtc/matrix_transform.hpp>
glm::mat4 gim::ortho(
float left, float right, [* range on x-axis */
float bottom, float top, [* range on y-axis */
float near, float far); [* range on z-axis */
» creates a matrix for an orthographic
parallel viewing volume plane of top
rojection /
= [left, bottom, *] and RTO)
[right, top, *] are points
on the near/far clipping left

plane that are mapped
to the lower-left and
upper-right corners of
the viewport window

near tar
viewing volume = rectangular _bottom
parallelepiped (box)

right

PGR 4

DCGI
.. G R
y
= plane of projection size top
(the xy-plane cutout) plane (?f
projection
» transformation matrix of — X,
orthographic projection left right
B ight+left |
right2-left 0 0 o rrligght-leeft
0 2 0 __ top-+bottom bottom
Mparallel — top-bottom top-bottom
O O far:r21ear o I;%rrfr?g:rr
|0 0 0 1 |

= camera may be inside the viewing volume (e.g. glm::ortho(-1,1,-1,1,-1,1))
= the objects behind the camera are also displayed

= camera can be totally shifted (i.e. outside the viewing volume, it’s like using
a periscope) e.g. glm::ortho(-20,-10,-1,1,-1,1)

PGR 5

Perspective projection ”

#include <glm/gtc/matrix_transform.hpp>
glm::mat4 gim::frustum(
float left, float right,
float bottom, float top,
float near, float far);

= creates a matrix for a perspective-view frustum plane of
top projection

= the viewing volume is a
truncated pyramid whose
top has been cut off by a
plane parallel to its base

left

= objects that are closer to
the viewpoint appear
larger because they
occupy a proportionally
larger amount of the near
viewing volume

¥

¥

far
PGR 6

« transformation matrix of
perspective projection

Mfrustum =

» viewing volume can be asymmetric

glm::frustum(-1,1,-1,1,1,3.5)

PGR

2.near
right-left

0
0
0

glm::frustum(-1,1,-1,1,1.6,3.5)

O right+left
right-left
2 near top-+bottom
top-bottom top-bottom
O __ (far+near)
far-near
0 -1

__ 2.far.near
far-near

0

glm::frustum(-0.1,1,0.1,1,1,3.5)

#include <glm/gtc/matrix_transform.hpp>

glm::mat4 glm::perspective(
float fovy, float aspect,
float near, float far);

= creates a matrix for a symmetric
perspective-view frustum

= fovy is the angle of the
field of view in the x-z
plane, it must be in the
range [0.0,180.0]

= aspect is the aspect
ratio of the frustum, its
width divided by its
height

= near and far values
should always be
positive (near > 0)

PGR

plane of
projection

¥
T
=

¥

How to get image in double the maximal resolution?

draw the scene four times setting the

projections as shown in the table
save the rendered images
glue these images together (e.g. in

x=[left, right]
y=[bottom, top]

P x=[-1, 0] x=[0, 1]
y=[0, 1] y=[0, 1]
x=[-1, 0] x=[0, 1]
Photoshop or Gimp) y=[-1, 0] y=[-1, 0]

glm::mat4 matrix;

[* upper left part */

matrix = glm::frustum(-1,0,0,1, 1.6,3.5);
RenderModel();

[* upper right part */

matrix = glm::frustum(0,1,0,1, 1.6,3.5);
RenderModel();

[* lower left part */

matrix = glm::frustum(-1,0,-1,0, 1.6,3.5);
RenderModel();

[* lower right part */

matrix = glm::frustum(0,1,-1,0, 1.6,3.5);
RenderModel();

PGR

H = > - -
Viewport transformation DCGI
3D 2D
<€ > <€ >
Modeling and viewing Projection
vertex transformations transformation
_> Pers- .
- - - * =P pective =P Viewport —p
X modeling viewing o division transformation
y transformation [transformation clipping
A
W
object world eye clip normalized window
(world) coordinates coordinates coordinates device coordinates
coordinates coordinates
world space camera space screen space
object space canonical

view volume
PGR 10

= the viewport is the rectangular
region of the window where the viewport height
image is drawn

width

void glViewport(
GLint x, GLint y, GLsizei width, GLsizei height);

» defines a pixel rectangle in the window into which the final image is mapped
= viewport is usually set in the reshape callback

= the aspect ratio of a viewport should generally equal the aspect ratio of the
viewing volume, if these two ratios are different, the projected image will be
distorted when mapped into the viewport

= your application should detect window resize events and modify the viewport
appropriately

PGR 11

normalized device
coordinates [Xy, Vg, Z4]

1

-1
-1 1

X, = (W/2)x4+ 0,

Yo =(h/2)y4to0,
z, = [(F-n) /2] zy+ (n+f) / 2

z,, visibility testing (Z-buffer)

window coordinates

[Xw’ Yws Zw]

W

-viewport:-

screen

‘h

PGR

0, = X + W/2
o,=y+h/2
glDepthRange(n, f)
Set depth range — clamp(n,f)

near near clipping plane 0.0
far far clipping plane 1.0

12

Example: Rendering into two different viewports.

glm::mat4 matrix = gim::mat4(1.0);
glm::mat4 projectionMatrix = glm::perspective(

60, winW/(2.0*winH), 0.1, 10);
glViewport(0, 0, winW/2, winH); /* left viewport */
passMatrixToVertexShader(projectionMatrix);
passMatrixToVertexShader(matrix);
drawModel();

[* right viewport */
matrix = glm::rotate(
matrix, 45, glm::vec3(1.0f, 1.0f, 0.01}7,
glViewport(winW/2, 0, winW/2, winH);
passMatrixToVertexShader(matrix);

drawModel();
PGR

winW = 600... window width
winH = 300 ... window height

13

